JPS62133770A - Ohmic-junction device - Google Patents

Ohmic-junction device

Info

Publication number
JPS62133770A
JPS62133770A JP60274390A JP27439085A JPS62133770A JP S62133770 A JPS62133770 A JP S62133770A JP 60274390 A JP60274390 A JP 60274390A JP 27439085 A JP27439085 A JP 27439085A JP S62133770 A JPS62133770 A JP S62133770A
Authority
JP
Japan
Prior art keywords
thin film
ohmic
amorphous semiconductor
electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60274390A
Other languages
Japanese (ja)
Other versions
JPH0758809B2 (en
Inventor
Takeshi Tenma
天間 毅
Setsuo Kotado
古田土 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP60274390A priority Critical patent/JPH0758809B2/en
Publication of JPS62133770A publication Critical patent/JPS62133770A/en
Publication of JPH0758809B2 publication Critical patent/JPH0758809B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System

Abstract

PURPOSE:To realize an amorphous semiconductor thin film ohmic junction free of diffusion- or eutectic-caused degradation even at a temperature of 400 deg.C or higher by a method wherein thin films of such a high-melting metal as Pt, Cr, Ti, Mo, or W are used for the formation of an ohmic-junction device. CONSTITUTION:In an ohmic-junction device built of an amorphous semiconductor 2 and a metal thin film electrode 3 provided thereon, Pt is the metal that constitutes the electrode 3. The Pt electrode 3 is connected directly, or through the intermediary of a Cr thin film 4, to the amorphous semiconductor 2. For the construction of the metal thin film electrode 3, high-melting Ti, Mo, or W may be employed. Pt not only melts at a high temperature but also well resists diffusion into an amorphous semiconductor. An ohmic-junction device incorporating Pt is affected little by the passage of time, capable of withstanding fusion, and excellent in heat-withstanding features. Use of Pt in a device improves the device in its functions and reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、シリコンもしくはゲルマニウム又はその双
方を主成分とするアモルファス半導体を用いて構成され
る電子デバイス、例えば、アモルファス太陽電池、アモ
ルファストランジスタ、アモルファス熱電対素子、アモ
ルファス歪みセ/す、アモルファスイメージセンサ等の
構成に必要とされるオーミック接合装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to electronic devices constructed using amorphous semiconductors containing silicon, germanium, or both as main components, such as amorphous solar cells, amorphous transistors, and amorphous semiconductors. The present invention relates to an ohmic junction device required for the construction of thermocouple elements, amorphous strain sensors, amorphous image sensors, and the like.

ここで、アモルファス半導体とは、液体及び気体を除く
物質であって、しかも結晶学的に3次元的周期性を示さ
ない半導体をさし、不規則、非晶質状のもので、X線回
折図形で特定しうる回折ピークを持たない、いわゆる”
アモルファス半導体”と、微結晶相を含むことによシ、
X線回折図形で特定しうる回折ピークを示す、いわゆる
”微結晶化(別名マイクロクリスタライン m1cro
 −crystalline )アモルファス半導体”
の両方を含むものをいう。
Here, an amorphous semiconductor refers to a substance excluding liquids and gases, which does not exhibit three-dimensional periodicity in terms of crystallography, and is irregular and non-crystalline. The so-called "
By containing "amorphous semiconductor" and microcrystalline phase,
So-called "microcrystallization" (also known as microcrystalline m1cro), which shows diffraction peaks that can be specified in the X-ray diffraction pattern.
-crystalline) amorphous semiconductor”
It refers to something that includes both.

〔従来の技術〕[Conventional technology]

プラズマCVD法をはじめ、スパッタ法、光CVD法、
ECRプラズマ法等を用いて低温で形成したアモルファ
ス半導体膜を用いてデバイスを構成する上において、オ
ーミック性の良好な電極形成は不可欠である。従来、オ
ーミック用電極としては、1.T、O(Indiwm工
in C)xide )薄膜やアルミニウム(AA) 
、金(Au) /ニクロム(NiCr)  等の金属薄
膜を、アモルファス半導体薄膜上に被着させる方法が用
いられてきた。
Including plasma CVD method, sputtering method, photo CVD method,
In constructing a device using an amorphous semiconductor film formed at low temperature using an ECR plasma method or the like, it is essential to form electrodes with good ohmic properties. Conventionally, ohmic electrodes include: 1. T, O(Indiwm in C)xide) thin film and aluminum (AA)
, a method of depositing a metal thin film such as gold (Au)/nichrome (NiCr) on an amorphous semiconductor thin film has been used.

アモルファス半導体基板上への金属薄膜等の被着方法と
しては、通常、真空蒸着法やスパッタ法が一般的であシ
、例えば、真空蒸着法を用いてNiCr合金を被着させ
、さらに、その上にAuを被着させることにより、オー
ミック電極を形成する方法が用いられてきた。しかしな
がら、かかる方法によ多金属薄膜を用いてオーミック接
合装置を形成した場合、高温でオーミック性がそこなわ
れるという問題があった。例えば、ゲルマニウムを含ん
だアモルファス半導体にAu / NiCrよシなる金
属薄膜を用いてオーミック接合装置を形成した場合、4
00℃以上でAuがアモルファス半導体薄膜中に拡散し
、その結果、接合抵抗の変化をもたらす。
Vacuum evaporation and sputtering methods are generally used as a method for depositing metal thin films on amorphous semiconductor substrates. For example, a NiCr alloy is deposited using a vacuum evaporation method, and then A method has been used in which an ohmic electrode is formed by depositing Au on the substrate. However, when an ohmic junction device is formed using a multi-metal thin film by such a method, there is a problem in that the ohmic properties are impaired at high temperatures. For example, if an ohmic junction device is formed using a metal thin film such as Au/NiCr on an amorphous semiconductor containing germanium,
At temperatures above 00° C., Au diffuses into the amorphous semiconductor thin film, resulting in a change in junction resistance.

この変化によシ、接合抵抗の大きさが接合面内で不均一
になシ、外部よシミ圧を印加し、電流を流すと接合面内
の局部に電流が集中し、オーミック接合装置の溶断をも
たらすという問題があった。
Due to this change, the magnitude of the junction resistance becomes non-uniform within the junction surface, and when external stain pressure is applied and current flows, the current concentrates locally within the junction surface, causing the ohmic junction device to melt. There was a problem of bringing

〔発明が解決しようとする問題点9 以上、述べたように、従来の金属薄膜を用いたオーミッ
ク接合装置では、次のような欠点を有する。400℃以
上の高温にさらされた場合、(1)アモルファス半導体
膜中にAu 、 AL等の金属が拡散することにより、
オーミック接合装置の溶断をもたらすこと、(2)抵抗
値等の電気的特性が大きく変化する。その結果、デバイ
スの信頼性を著しく低下していたこと。
[Problem 9 to be Solved by the Invention As described above, the conventional ohmic bonding device using a metal thin film has the following drawbacks. When exposed to high temperatures of 400°C or higher, (1) metals such as Au and AL diffuse into the amorphous semiconductor film, causing
(2) electrical characteristics such as resistance value change greatly; As a result, the reliability of the device was significantly reduced.

一般に、アモルファス半導体デバイスの応用は多岐にわ
たるので、高温下における使用や素子内の発熱等によシ
局所的に高温にさらされることがしばしばある。例えば
、宇宙利用等においてかかる事態が起る。そこで、本発
明では、白金(pt)に代表される高融点金属を主とす
る金属薄膜を用いて、オーミック接合装置を形成するこ
とにょシ、高温にさらされても特性の劣化や溶断の生じ
ない良好なオーミック接合装置を提供するものである。
Generally, amorphous semiconductor devices have a wide variety of applications, and are often locally exposed to high temperatures due to use at high temperatures or heat generation within the device. For example, such a situation occurs when using space. Therefore, in the present invention, it is necessary to form an ohmic bonding device using a metal thin film mainly made of a high-melting point metal such as platinum (PT). This provides a good ohmic bonding device.

〔発明の目的〕[Purpose of the invention]

本発明は、以上述べたように、従来のAt又はAu/N
iCrに代表される金属薄膜とアモルファス半導体とで
形成されるオーミック接合装置の問題点を改善するため
に高融点金属の代表であるところのptに着目して、良
好で安定なオーミック接合装置を提供するものである。
As described above, the present invention is based on the conventional At or Au/N
In order to improve the problems of ohmic junction devices formed with thin metal films such as iCr and amorphous semiconductors, we focus on PT, which is a typical high-melting point metal, and provide a good and stable ohmic junction device. It is something to do.

本発明によるオーミック接合装置の目的は、(1)40
0℃以上の高温でも熱拡散現象が起こシにくいようにす
ること、(2)オーミック接合装置が400℃以上の高
温でも劣化しないようにすること、(3)電極形成が容
易で電気的に良好で安定なオーミック性が得られるよう
にすること、(4)自動車用エンジン内や宇宙の如き地
球上とは異なった環境などの高温で利用しても耐えられ
ること、である。
The purpose of the ohmic bonding device according to the present invention is (1) 40
(2) To prevent the ohmic bonding device from deteriorating even at high temperatures of 400°C or higher; (3) To make electrode formation easy and electrically good. (4) It must be able to withstand use at high temperatures, such as in automobile engines and in environments different from those on Earth, such as space.

〔問題点を解決するための手段〕[Means for solving problems]

アモルファス半導体と、その上に設けた金属薄膜電極と
からなるオーミック接合装置において。
In an ohmic junction device consisting of an amorphous semiconductor and a metal thin film electrode provided thereon.

金属薄膜電極の材料としてptを用い、その結果、作ら
れたpt薄膜電極を直接にアモルファス半導体に接続す
るか、もしくはクロム(Cr)薄膜を介してアモルファ
ス半導体に接続することとした。なお、ptO代シに金
属薄膜電極として高融点金属のチタン(Ti)、モリフ
゛デン(Mo) 、タングステン(W)のいづれかを用
いても良い。pt薄膜は、電子ビームを用いた真空蒸着
法によシ容易に形成されたものを用いることができる。
PT was used as the material for the metal thin film electrode, and the resulting PT thin film electrode was connected either directly to the amorphous semiconductor or via a chromium (Cr) thin film. Incidentally, in place of ptO, any one of high melting point metals such as titanium (Ti), molybdenum (Mo), or tungsten (W) may be used as a metal thin film electrode. The PT thin film can be easily formed by a vacuum evaporation method using an electron beam.

〔作 用〕[For production]

ptは高融点であるばかシか、アモルファス半導体中に
拡散しにくい性質があることが発明者の実験によって判
明している。したがって、ptを用いて構成したオーミ
ック接合装置を備えたデバイスは経時変化がほとんどな
く、しかも溶断しにくく、なおかつ、耐熱性が優れてい
るので、デバイス17)高機能化、高信頼性化がはかれ
る。
The inventor's experiments have revealed that pt has a high melting point and is difficult to diffuse into an amorphous semiconductor. Therefore, a device equipped with an ohmic bonding device constructed using PT has almost no change over time, is difficult to blow out, and has excellent heat resistance, so that the device 17) has higher functionality and higher reliability. .

〔実施例〕〔Example〕

本発明によるオーミック接合装置に用いられるアモルフ
ァス半導体薄膜は、通常のプラズマCVD法、熱CVD
法、光CVD法、スパッタ法等で容易に形成できる。例
えば、プラズマCVD法とは、シランやゲルマン等の水
素化物原料ガスをプラズマ放電によシ分解し、低温で加
熱された基板上(例えば600℃以下)にシリコン(8
1)又はゲルマニウム(Ge)を主とするアモルファス
半導体薄膜を堆積する方法であり、大面積に均一した良
質なものを形成できる特徴を有する。原料ガスとしては
、水素化物以外に7ソカシランやフッカゲルマニウム等
のハロゲン族系フン化物が用いられる。
The amorphous semiconductor thin film used in the ohmic junction device according to the present invention can be produced by ordinary plasma CVD method, thermal CVD method, etc.
It can be easily formed by a method such as a method, a photo-CVD method, or a sputtering method. For example, in the plasma CVD method, a hydride raw material gas such as silane or germane is decomposed by plasma discharge, and silicon (8
1) or a method of depositing an amorphous semiconductor thin film mainly made of germanium (Ge), which has the feature of being able to form a uniform, high-quality film over a large area. As the raw material gas, in addition to hydrides, halogen group fluorides such as 7-sokasilane and hookahgermanium are used.

また、p形やn形を制御するため、微量のジボラン(B
2H6)やホスフィン(PH3)やアルタン(AlH3
)等の水素化物が添加される。光CVD法では、原料ガ
スの分解に光エネルギーを利用する方法により水銀増感
法や直接励起法が一般的に用いられ、イオンダメージが
ないので基板温度が200℃以下でも良好な膜形成がで
きる。しかし、堆積速度が遅いこと(〜IA/see以
下)と厚い膜形成が困難である(せいぜい数十^まで)
等の問題点を有する。
In addition, in order to control p-type and n-type, a trace amount of diborane (B
2H6), phosphine (PH3) and althane (AlH3)
) and other hydrides are added. In the photoCVD method, a mercury sensitization method or a direct excitation method is generally used by using light energy to decompose a source gas, and since there is no ion damage, good film formation can be achieved even at a substrate temperature of 200°C or less. . However, the deposition rate is slow (~IA/see or less) and it is difficult to form a thick film (up to a few dozen at most).
It has the following problems.

そこで、この欠点を補足する意味において、光CVD法
はプラズマCVD法と組み合わせ使用することによりお
互いの長所を引き出すことができる。
Therefore, in order to compensate for this drawback, the optical CVD method can be used in combination with the plasma CVD method to bring out the advantages of each other.

第1図は本発明によるオーミック接合装置を用いて構成
される熱電対素子の一実施例を示す、熱電対素子は絶縁
性基板1と、この基板上に形成されたアモルファス半導
体薄膜2とアモルファス半導体薄膜の一部を被覆するよ
うに設けられた金属薄膜電極3および金属薄層4とから
なる。
FIG. 1 shows an embodiment of a thermocouple element constructed using an ohmic junction device according to the present invention. The thermocouple element includes an insulating substrate 1, an amorphous semiconductor thin film 2 formed on this substrate, and an amorphous semiconductor It consists of a metal thin film electrode 3 and a metal thin layer 4 provided so as to cover a part of the thin film.

ここで、図示した熱電対素子は、オーミック接合装置の
アモルファス半導体薄膜の膜特性に与える影響を顕示す
る構造の一例であり、他の構造の電子デバイスを用いて
も同様の結果が得られる。
Here, the illustrated thermocouple element is an example of a structure that reveals the influence on the film characteristics of the amorphous semiconductor thin film of the ohmic junction device, and similar results can be obtained using electronic devices with other structures.

絶縁性基板1としては、ガラス板、マイカ、ポリA= 茜ドフィルム等の如き熱伝導率が小さく、かつ、電気的
絶縁を示す固体が用いられる。本実施例で↓ はコーニング70+9を用いた場合について示す。アモ
ルファス半導体薄膜2にはシリコン・ゲルマニウムを主
成分とするものを用いた。また、金属薄膜電極3には、
超高真空中での電子ビーム蒸着法を用いてptを堆積し
た。さらに、金属薄層4には電子ビーム蒸着法、スパッ
タ法によるMo 、 Ti 、Cr等を数百穴堆積した
。パターン形成にはホトエツチング法、メタルマスク法
を用いた。なお、第1図には、アモルファス半導体薄膜
2と金属薄膜電極3との間に、付着力を高めるために金
属薄層4を挿入した例を図示したが、金属薄層4を用い
なくとも以下に述べる実施例では同様な結果が得られて
いる。
As the insulating substrate 1, a solid material having low thermal conductivity and exhibiting electrical insulation, such as a glass plate, mica, or poly(A) madder film, is used. In this example, ↓ indicates the case where Corning 70+9 is used. The amorphous semiconductor thin film 2 was made of silicon-germanium as its main components. In addition, the metal thin film electrode 3 has
PT was deposited using electron beam evaporation in ultra-high vacuum. Further, several hundred holes of Mo, Ti, Cr, etc. were deposited on the metal thin layer 4 by electron beam evaporation or sputtering. A photoetching method and a metal mask method were used to form the pattern. Although FIG. 1 shows an example in which a thin metal layer 4 is inserted between the amorphous semiconductor thin film 2 and the metal thin film electrode 3 in order to increase adhesion, the following can be achieved without using the metal thin layer 4. Similar results were obtained in the examples described in .

第2図は、第1図に示した本発明によるオーミック接合
装置を用いて構成される熱電対素子のオーミック特性を
示すオシロ写真である。オーミック特性の評価の方法と
しては、アモルファス半導体2の一端を被覆するように
形成されたオーミック接合装置A点と他端を被覆するよ
うに形成されたオーミック接合装置の取り出し電極B点
との間に流れる電流の大きさの電圧依存性を調べること
によυ求めた。第2図において、横軸は印加電圧を、縦
軸は流れる電流の大きさを示す図から判るように、印加
電圧の大きさと、流れる電流の大きさは正比例している
。これよυ本発明によるオーミック接合装置は良好なオ
ーミック性を示すことが確認された。
FIG. 2 is an oscilloscope photograph showing the ohmic characteristics of a thermocouple element constructed using the ohmic junction device according to the present invention shown in FIG. As a method for evaluating the ohmic characteristics, the ohmic junction device is formed between point A, which is formed so as to cover one end of the amorphous semiconductor 2, and point B, which is the take-out electrode of the ohmic junction device, which is formed so as to cover the other end of the amorphous semiconductor 2. υ was determined by examining the voltage dependence of the magnitude of the flowing current. In FIG. 2, the horizontal axis represents the applied voltage and the vertical axis represents the magnitude of the flowing current. As can be seen from the diagram, the magnitude of the applied voltage and the magnitude of the flowing current are directly proportional. It was confirmed that the ohmic junction device according to the present invention exhibits good ohmic properties.

第3図は、第1図に示した熱電対素子の抵抗値の熱処理
に伴う変化率を示すものである。熱処理は該熱電対素子
を窒素雰囲気中で3分間高温に保持し、その後室温に戻
す方法を用いた。横軸は、熱処理温度の高さを、また、
縦軸は熱処理に伴う抵抗値の初期値(熱処理前)に対す
る変化率(%)の大きさをそれぞれ示す。第3図におい
て黒丸印は、本発明によるPt/Cr t&を用いて形
成したオーミック接合装置を備えた熱電対素子の抵抗値
の変化率(%)の大きさを、また、白丸印は従来まで最
も高温に耐えるといわれていたAu/NiCr電極を用
いて形成したオーミック接合装置を備えた熱電対素子の
抵抗値の変化率(チ)の大きさをそれぞれ示す。Au/
NiCr電極を用いた場合は、500℃以上で熱処理す
ると、該熱処理に伴ない抵抗値が変化しはじめ、600
℃では該抵抗値が急激に減少する(22チ)のに対し、
Pt/Cr電極を用いた場合は、600℃で該抵抗値が
変化しはじめ、その後もゆっくり減少することが示され
ている。
FIG. 3 shows the rate of change in resistance value of the thermocouple element shown in FIG. 1 due to heat treatment. For the heat treatment, a method was used in which the thermocouple element was held at a high temperature for 3 minutes in a nitrogen atmosphere, and then returned to room temperature. The horizontal axis shows the height of the heat treatment temperature, and
The vertical axis indicates the rate of change (%) of the resistance value due to heat treatment with respect to the initial value (before heat treatment). In Fig. 3, the black circles indicate the magnitude of the change rate (%) of the resistance value of the thermocouple element equipped with the ohmic junction device formed using Pt/Cr t& according to the present invention, and the white circles indicate the rate of change (%) of the conventional thermocouple element. The magnitude of the rate of change (chi) in the resistance value of a thermocouple element equipped with an ohmic junction device formed using an Au/NiCr electrode, which is said to be able to withstand the highest temperatures, is shown. Au/
When using a NiCr electrode, when heat treated at 500°C or higher, the resistance value begins to change due to the heat treatment, and
℃, the resistance value decreases rapidly (22 cm),
It has been shown that when a Pt/Cr electrode is used, the resistance value begins to change at 600° C. and then slowly decreases thereafter.

第4図は、第1図に示した熱電対素子を用いて測定した
ゼーベック係数の熱処理に伴う変化率を示す図である。
FIG. 4 is a diagram showing the rate of change of the Seebeck coefficient, measured using the thermocouple element shown in FIG. 1, due to heat treatment.

ゼーベック係数の測定力法としては、第1図中における
アモルファス半導体薄膜2と金属電極3との接合部C点
を温接点と、取り出し電極部A点、B点を冷接点とし、
該温接点と冷接点との間に温度差を与え、各電極部A点
、B点間に発生する直流電圧の大きさを、前記温度差で
除する方法を用いた。横軸は熱処理温度の高さを、また
、縦軸は熱処理に伴うゼーベック係数の初期値(熱処理
前)に対する変化率(%)の大きさをそれぞれ示す。第
4図において、黒丸印は不発明によるPt/Cr電極を
用いて形成したオーミック接合ベック係数の変化率(%
)の大きさをそれぞれ示す。
As a force method for measuring the Seebeck coefficient, point C at the junction between the amorphous semiconductor thin film 2 and metal electrode 3 in FIG.
A method was used in which a temperature difference was given between the hot junction and the cold junction, and the magnitude of the DC voltage generated between the points A and B of each electrode section was divided by the temperature difference. The horizontal axis indicates the height of the heat treatment temperature, and the vertical axis indicates the rate of change (%) of the Seebeck coefficient with respect to the initial value (before heat treatment) due to heat treatment. In Fig. 4, the black circles indicate the rate of change (%) in the Beck coefficient of the ohmic junction formed using the uninvented Pt/Cr electrode.
) are shown respectively.

Au/NiCr電極を用いた場合は、熱処理温度が40
0℃以上でゼーベック係数が変化しはじめ、熱処理温度
が500℃、600℃と高くなるに従って変化率が約2
0%、40チと急激に増大する。一方、Pt/Cr電極
を用いた場合は、熱処理温度が900℃まで、はとんど
変化しないことが示されている。
When using Au/NiCr electrodes, the heat treatment temperature is 40°C.
The Seebeck coefficient begins to change above 0°C, and as the heat treatment temperature increases to 500°C and 600°C, the rate of change increases by approximately 2.
It increases rapidly to 0% and 40chi. On the other hand, it has been shown that when a Pt/Cr electrode is used, the heat treatment temperature hardly changes up to 900°C.

以上の実験結果で示されたオーミック接合装置における
電極材料の違いによる熱処理に伴う抵抗値およびゼーベ
ック係数の各変化率(チ)の大きさの違いは、電極材料
のアモルファス半導体膜中への拡散係数の差異によるこ
とが拡散現象を顕微鏡で観察することによシ確認するこ
とができた。
The difference in the rate of change (ch) of the resistance value and Seebeck coefficient due to heat treatment due to the difference in electrode materials in the ohmic junction device shown in the above experimental results is due to the diffusion coefficient of the electrode material into the amorphous semiconductor film. By observing the diffusion phenomenon under a microscope, it was confirmed that this was due to the difference in .

第5図および第6図は第1図に示した熱電対素子におけ
るD部のガラス基板1側よシ眺めた顕微鏡拡大写真を示
す。第5図は電極材料にAu/NiCr金属薄膜を用い
て400℃で熱処理した後の状態を、又、第6図はPt
/Cr金属薄膜を用いて600℃で熱処理した後の状態
をそれぞれ撮影したものでおる。
5 and 6 show enlarged microscopic photographs of the D portion of the thermocouple element shown in FIG. 1, viewed from the glass substrate 1 side. Figure 5 shows the state after heat treatment at 400°C using Au/NiCr metal thin film as the electrode material, and Figure 6 shows the state after heat treatment at 400°C.
/Cr metal thin films are photographed after heat treatment at 600°C.

図中、12.16はシリコン・ゲルマニウム薄膜、13
はAu/NiCr金属薄膜、14はAuがシリコン・ゲ
ルマニウム薄膜中に拡散した部分を、15.18はガラ
ス基板、17はPt/Cr金属薄膜をそれぞれ示す。第
5図の写真よp明らかなように、Au/NiCr金属薄
膜を用いた場合には、400℃の熱処理でAuがシリコ
ン・ゲルマニウム薄膜中に拡散することがわかる。
In the figure, 12.16 is a silicon germanium thin film, 13
14 represents a portion where Au is diffused into a silicon germanium thin film, 15 and 18 represent a glass substrate, and 17 represents a Pt/Cr metal thin film. As is clear from the photograph in FIG. 5, when an Au/NiCr metal thin film is used, Au is diffused into the silicon-germanium thin film by heat treatment at 400°C.

図中、拡散部が帯状になっているのは、Auの拡散がN
iCrによシ阻止され、シリコン・ゲルマニウム薄膜を
用いた場合、600℃の熱処理を行なっても拡散は生じ
ていないことを示している。
In the figure, the band-shaped diffusion part is due to the diffusion of Au.
This shows that when a silicon-germanium thin film is used and is inhibited by iCr, no diffusion occurs even after heat treatment at 600°C.

以上、述べたことから、熱処理による抵抗値およびゼー
ベック係数の変化をもたらす要因としては、Auがシリ
コン・ゲルマニウム薄膜中に拡散することであることが
示された。従って、耐熱性に優れ、かつ素子特性の変化
のないオーミック接合装置用金属薄膜材料としてはpt
に代表される高融点金属で、しかもアモルファス半導体
中への拡散係数が小さいものがよいことが確認できた。
From the above, it has been shown that the cause of changes in resistance value and Seebeck coefficient due to heat treatment is the diffusion of Au into the silicon germanium thin film. Therefore, as a metal thin film material for ohmic junction devices that has excellent heat resistance and does not change element characteristics, PT
It was confirmed that metals with a high melting point, such as those represented by , and which have a small diffusion coefficient into an amorphous semiconductor are good.

以上、アモルファス半導体薄膜としてシリコン・ゲルマ
ニウム薄膜、金属薄膜として、Pt/Cr f用いた場
合について、耐熱性の向上、信頼性の向上が画れること
を詳述したが、アモルファス半導(tJ[とじては、ア
モルファスシリコン、アモルファスケルマニウム、アモ
ルファスシリコン・カーバイド等の各アモルファス半導
体においてPt/Cr 、 Pt 、Mo 、 Ti 
、W等の各高融点金属薄膜のいずれかを用いてオーミッ
ク接合装置を形成することによシ、アモルファスデバイ
スの耐熱性の向上、信頼性の向上を得ることができた。
Above, we have explained in detail that improvements in heat resistance and reliability can be achieved when using silicon/germanium thin films as amorphous semiconductor thin films and Pt/Cr f as metal thin films. In each amorphous semiconductor such as amorphous silicon, amorphous kermanium, amorphous silicon carbide, Pt/Cr, Pt, Mo, Ti
By forming an ohmic junction device using any of the high melting point metal thin films such as , W, etc., it was possible to improve the heat resistance and reliability of the amorphous device.

本発明によるアモルファス半導体デバイスノ耐熱性の向
上および信頼性の向上によシ、従来、アモルファス半導
体デバイスの用途が限られていたのを拡張することがで
きた。特に、アモルファス太陽電池の宇宙分野や電力発
電分野への応用や、〔発明の効果〕 次に本発明による効果を述べる。
By improving the heat resistance and reliability of amorphous semiconductor devices according to the present invention, it has been possible to expand the conventionally limited applications of amorphous semiconductor devices. In particular, the application of amorphous solar cells to the space field and power generation field, and [Effects of the Invention] Next, the effects of the present invention will be described.

(1)金属材料としてPt 、 Or 、 Ti +M
o +W等高融点金属からなる金属薄膜を用いてオーミ
ック接合装置を形成したので、従来不可能といわれた4
00℃以上の高温においても、拡散や共晶等による劣化
のない、シリコンもしくはゲルマニウムまたはその双方
を主成分とするアモルファス半導体薄膜用オーミック接
合装置を実現できた。
(1) Pt, Or, Ti + M as metal materials
Since we formed an ohmic bonding device using a metal thin film made of a high melting point metal such as +W, we achieved 4.
It has been possible to realize an ohmic junction device for an amorphous semiconductor thin film containing silicon or germanium or both as main components, which does not deteriorate due to diffusion, eutectic, etc. even at high temperatures of 00° C. or higher.

(2)耐熱性に優れ、かつ劣化の少ないオーミック接合
装置を用いることにより、高信頼性アモルファスデバイ
スを実現できた。
(2) By using an ohmic bonding device with excellent heat resistance and little deterioration, a highly reliable amorphous device was realized.

(3)耐熱性に優れ、かつ劣化の少ないオーミック接合
装置を用いることにより、宇宙空間や電力発電に使用で
きるアモルファス太陽電池や悪環境下でも使用できるア
モルファスセンサラ実現できた。
(3) By using an ohmic bonding device that has excellent heat resistance and minimal deterioration, we have been able to create amorphous solar cells that can be used in space and power generation, as well as amorphous sensors that can be used in harsh environments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、オーミック接合装置を用いた熱電対素子を示
す。 第2図は、Cr薄層を介しているpt薄膜とアモルファ
ス半導体薄膜とからなるオーミック接合装置におけるオ
ーミック特性を示すオシロ写真である。 第3図は、熱処理前後の抵抗値の変化率を各熱処理温度
に対してプロットしたものを示す。 第4図は、熱処理前後のゼーベック係数の変化率を各熱
処理温度に対してプロットしたものを示す。 第5図は、400℃で熱処理したときのAuのアモルフ
ァス半導体中への熱拡散現象の様子を示す顕微鏡写真で
ある。 第6図は、Pt/Cr金属薄膜を用いて600cで熱処
理した後の状態を示す顕微鏡写真である。 図中、2はシリコンもしくはゲルマニウム、またはその
双方を主成分とするアモルファス半導体薄膜、3は金属
薄膜電極、4は金属薄層をそれぞれ示す。 特許出願人  アンリツ株式会社 代理人  弁理士 電池 龍太部 1・・・絶縁性基板 2・・・アモルファス半導体薄膜 3・・・金属薄膜電極 4・・・金属薄検几 脳  歴 附  1111・ 〜1−1 0・1) 卜歴卜 全批全 qフ             ω 手続補正書(自発) 昭和61年 1月2λ日
FIG. 1 shows a thermocouple element using an ohmic junction device. FIG. 2 is an oscilloscope photograph showing the ohmic characteristics of an ohmic junction device consisting of a PT thin film and an amorphous semiconductor thin film with a Cr thin layer interposed therebetween. FIG. 3 shows the rate of change in resistance before and after heat treatment plotted against each heat treatment temperature. FIG. 4 shows the rate of change in the Seebeck coefficient before and after heat treatment plotted against each heat treatment temperature. FIG. 5 is a micrograph showing the thermal diffusion phenomenon of Au into an amorphous semiconductor when heat treated at 400°C. FIG. 6 is a micrograph showing the state of a Pt/Cr metal thin film after heat treatment at 600c. In the figure, 2 is an amorphous semiconductor thin film mainly composed of silicon or germanium, or both, 3 is a metal thin film electrode, and 4 is a metal thin layer. Patent Applicant Anritsu Corporation Agent Patent Attorney Battery Ryutabe 1...Insulating Substrate 2...Amorphous Semiconductor Thin Film 3...Metal Thin Film Electrode 4...Metal Thin Testing Paperback 1111. ~1- 1 0.1) History of the entire review ω Procedural amendment (voluntary) January 2nd, 1985

Claims (1)

【特許請求の範囲】[Claims] シリコンもしくはゲルマニウム又はその双方を主成分と
するアモルファス半導体(2)と、該半導体上に備えら
れた金属薄膜電極(3)とでなるオーミック接合装置に
おいて:該金属薄膜電極が白金でなり、この白金でなる
薄膜電極が直接あるいは金属薄層(4)を介して該半導
体に接続されていることを特徴とするオーミック接合装
置。
In an ohmic junction device comprising an amorphous semiconductor (2) mainly composed of silicon or germanium or both, and a metal thin film electrode (3) provided on the semiconductor: the metal thin film electrode is made of platinum, and the platinum An ohmic junction device characterized in that a thin film electrode made of the above is connected to the semiconductor directly or via a thin metal layer (4).
JP60274390A 1985-12-06 1985-12-06 Ohmic joining device Expired - Lifetime JPH0758809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60274390A JPH0758809B2 (en) 1985-12-06 1985-12-06 Ohmic joining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60274390A JPH0758809B2 (en) 1985-12-06 1985-12-06 Ohmic joining device

Publications (2)

Publication Number Publication Date
JPS62133770A true JPS62133770A (en) 1987-06-16
JPH0758809B2 JPH0758809B2 (en) 1995-06-21

Family

ID=17541001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60274390A Expired - Lifetime JPH0758809B2 (en) 1985-12-06 1985-12-06 Ohmic joining device

Country Status (1)

Country Link
JP (1) JPH0758809B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963195A (en) * 1986-10-24 1990-10-16 Anritsu Corporation Electric resistor and a power detector both comprising a thin film conductor
JP2003031860A (en) * 2001-07-19 2003-01-31 Toshiba Corp Thermoelectric material and thermoelectric conversion module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137289A (en) * 1978-04-17 1979-10-24 Asahi Chemical Ind Method of fabricating photovoltaic element
JPS55108780A (en) * 1979-02-14 1980-08-21 Sharp Corp Thin film solar cell
JPS57103370A (en) * 1980-12-19 1982-06-26 Agency Of Ind Science & Technol Amorphous semiconductor solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137289A (en) * 1978-04-17 1979-10-24 Asahi Chemical Ind Method of fabricating photovoltaic element
JPS55108780A (en) * 1979-02-14 1980-08-21 Sharp Corp Thin film solar cell
JPS57103370A (en) * 1980-12-19 1982-06-26 Agency Of Ind Science & Technol Amorphous semiconductor solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963195A (en) * 1986-10-24 1990-10-16 Anritsu Corporation Electric resistor and a power detector both comprising a thin film conductor
US5102470A (en) * 1986-10-24 1992-04-07 Anritsu Corporation Electric resistor having a thin film conductor
JP2003031860A (en) * 2001-07-19 2003-01-31 Toshiba Corp Thermoelectric material and thermoelectric conversion module

Also Published As

Publication number Publication date
JPH0758809B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
US3106489A (en) Semiconductor device fabrication
JPH03133176A (en) Silicon carbide semiconductor device and manufacture thereof
JPS6191974A (en) Heat resisting multijunction type semiconductor element
US4320248A (en) Semiconductor photoelectric conversion device
JPH02275624A (en) Ohmic electrode and its forming method
EP0642169B1 (en) Ohmic electrode and method for forming it
JPS62133770A (en) Ohmic-junction device
JPS5892281A (en) Thin film solar cell
Janz et al. Conductive SiC as an intermediate layer for CSITF solar cells
JP2563760B2 (en) Method for manufacturing semiconductor device
JPS63292682A (en) Manufacture of thin film semiconductor device
JPS6315484A (en) Thin-film electric conductor of mixed silicon/germanium/ gold crystal
JPS60210885A (en) Semiconductor element
JP2645586B2 (en) Germanium thin film n-type conductor and method of manufacturing the same
Thornburg et al. Current controlled negative differential resistance in a-CdAs2 thin film sandwich structures
JP2987531B2 (en) Liquid crystal display
Okojie Characterization and fabrication of a (6H)-SiC as a piezoresistive pressure sensor for high temperature applications
JPS635914B2 (en)
JPH0462976A (en) Manufacture of acceleration sensor
JPS63240067A (en) Formation of gate insulating film of mis type semiconductor device
JPH0214568A (en) Manufacture of semiconductor device
JP3134359B2 (en) Thin film thermoelectric element
JPH0227827B2 (en)
JP2876405B2 (en) Thin film thermocouple element
JPH03110870A (en) Nonsingle-crystal optoelectric transducer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term