JPS6213533A - Manufacture of high strength steel sheet having superior bending characteristic - Google Patents

Manufacture of high strength steel sheet having superior bending characteristic

Info

Publication number
JPS6213533A
JPS6213533A JP15056285A JP15056285A JPS6213533A JP S6213533 A JPS6213533 A JP S6213533A JP 15056285 A JP15056285 A JP 15056285A JP 15056285 A JP15056285 A JP 15056285A JP S6213533 A JPS6213533 A JP S6213533A
Authority
JP
Japan
Prior art keywords
transformation point
steel
cooling rate
steel sheet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15056285A
Other languages
Japanese (ja)
Inventor
Masaru Oka
岡 賢
Kazumasa Yamazaki
一正 山崎
Yaichiro Mizuyama
水山 弥一郎
Hirotsugu Tsuchiya
土屋 裕嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15056285A priority Critical patent/JPS6213533A/en
Publication of JPS6213533A publication Critical patent/JPS6213533A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high strength steel sheet having superior bending characteristics and 80-150kgf/mm<2> tensile strength by regulating the components of a steel and subjecting the steel to hot rolling, cold rolling, annealing and cooling under specified conditions. CONSTITUTION:The composition of a steel is composed of, by weight, 0.03-0.2% C, 0.3-11.5% Si, 0.5-2.6% Mn, 0.01-0.25% Ti and/or 0.01-0.3% Nb and the balance Fe with inevitable impurities. The steel is hot rolled at a finishing temp. of the A3 transformation point or above, cooled at >=50 deg.C/sec cooling rate, coiled at the A1 transformation point or below and cold rolled as usual. In an annealing stage, the resulting steel sheet is held at the A1 transformation point - 900 deg.C for 1sec-5min, cooled to 100-300 deg.C at 100-500 deg.C/sec average cooling rate, held at 300-500 deg.C for 1-20min and cooled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は80 = 150 kg 17mm2の引張強
さを有し。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention has a tensile strength of 80 = 150 kg 17 mm2.

かつ曲げ特性の優れた高強度薄鋼板の製造方法に関する
ものである。
The present invention also relates to a method for manufacturing a high-strength thin steel sheet with excellent bending properties.

(従来の技術) 近年、自動車業界においては、燃費向上のだめの車体の
軽量化、あるいは衝突時に乗員の安全性を確保する必要
があることなどから高強度鋼板の使用が多くなっている
0ことに衝突時の安全性からは引張強さが80 k g
f 7mm2以上と従来にない非常に高い引張強さを有
する鋼板が要求されている。
(Conventional technology) In recent years, high-strength steel plates have been increasingly used in the automobile industry due to the need to reduce the weight of car bodies to improve fuel efficiency and to ensure the safety of passengers in the event of a collision. For safety in the event of a collision, the tensile strength is 80 kg.
There is a demand for a steel plate that has an extremely high tensile strength of f 7 mm2 or more, which is unprecedented.

自動車用鋼板は単に強度が高ければよいというものでは
なく、用途から加工性と溶接性が必要であり、とくに、
80 kgf 7mm2以上の引張強さを有する鋼板に
おいては加工性のうちでも曲げ特性が要求されている〇 一般に、高強度薄鋼板の加工性は強度と伸びのバランス
で整理され、強度が高く、シかも、伸びのよい鋼板が高
強度薄鋼板として優れているとされている。しかし、自
動車用高強度薄鋼板の加工は曲げ加工によることが多く
、曲げ特性の優れた鋼板が高強度薄鋼板として優れてい
るといえる。
Automotive steel sheets do not just need to have high strength; they also need workability and weldability due to their intended use.
80 kgf For steel sheets with a tensile strength of 7 mm2 or more, bending properties are required among workability. In general, the workability of high-strength thin steel sheets is determined by the balance between strength and elongation. It is said that steel sheets with good elongation are excellent as high-strength thin steel sheets. However, high-strength thin steel sheets for automobiles are often processed by bending, and it can be said that steel sheets with excellent bending properties are excellent as high-strength thin steel sheets.

一方、80 kgf/mm2以上の引張強さを有する高
強度薄鋼板の製造に関しては、従来よシ特開昭58−2
2327号公報の如く水冷による方法、あるいは箱焼鈍
のように冷却速度の遅い場合は合金添加量を増やして強
度を高める方法が用いられている。
On the other hand, regarding the production of high-strength thin steel sheets having a tensile strength of 80 kgf/mm2 or more, the conventional method was disclosed in JP-A-58-2.
A method using water cooling as in Japanese Patent No. 2327, or a method in which the cooling rate is slow as in box annealing, increasing the amount of alloy added to increase the strength is used.

水冷による方法では、冷却速度があまシに速いために冷
却過程において鋼板中に蓄積される歪量が多く、優れた
曲げ特性を得ることができず、また、冷却速度がきわめ
て遅い箱焼鈍の場合には、80kgf/mm2以上の引
張強さを得るためには多量の合金元素を添加する必要が
あり、溶接性を損なうとともに、経済的に高価なものに
なる。したがって従来からの方法では、自動車用鋼板と
しては、曲げ特性を満足する8 0 kg f 7mm
”以上の引張強さを有する高強度薄鋼板を特に経済的に
製造することはできなかった。
In the water cooling method, the cooling rate is too fast, so a large amount of strain accumulates in the steel plate during the cooling process, making it impossible to obtain excellent bending properties.In addition, in box annealing, where the cooling rate is extremely slow In order to obtain a tensile strength of 80 kgf/mm2 or more, it is necessary to add a large amount of alloying elements, which impairs weldability and becomes economically expensive. Therefore, in the conventional method, the steel sheet for automobiles is made of 80 kg f 7 mm, which satisfies the bending properties.
``It has not been possible to produce high-strength thin steel sheets with a tensile strength higher than this particularly economically.

(発明が解決しようとする問題点) 本発明は上記の欠点を改善し、80〜150 kgf 
/mm2の引張強さを有し、かつ、曲げ特性の優れた高
強度薄鋼板の製造方法を提供するものである。
(Problems to be Solved by the Invention) The present invention improves the above-mentioned drawbacks and
The present invention provides a method for manufacturing a high-strength thin steel plate having a tensile strength of /mm2 and excellent bending properties.

(問題点を解決するための手段) 本発明は、c:o、oa〜0.20%、Si:0.3〜
1.5%、Mn : 0.5〜2.6%、Ti :0.
01〜0.25%とNb:0.O1〜0、3 %の1種
または2種を含有し、残部Feおよび不可避的不純物か
らなる鋼をA3変態点以上の仕上温度で熱間圧延し、仕
上から巻取までを冷却速度50℃八eへ以上で冷却し、
A1変態点以下で巻取って、常法の冷間圧延をした後、
焼鈍工程においてA、変態点以上900℃の温度範囲に
1秒〜5分間保持した後、平均冷却速度100〜500
℃八ecで100〜300℃まで冷却し、ついで、30
0〜500℃で1〜20分間保持した後冷却することを
特徴とする80〜150 kgf/mm2の引張強さを
有する曲げ特性やすぐれた高強度薄鋼板の製造方法、お
よび上記の方法において、付加的にB:O,0OQ3〜
0.01%を含有させた鋼を用いることを特徴とする8
0〜150kg f/mm2の引張強さを有する曲げ特
性つすぐれた高強度薄鋼板の製造方法である。
(Means for solving the problems) The present invention provides c:o, oa~0.20%, Si:0.3~0.
1.5%, Mn: 0.5-2.6%, Ti: 0.
01-0.25% and Nb:0. Steel containing one or two of 1 to 0.3% O, with the balance consisting of Fe and unavoidable impurities, is hot rolled at a finishing temperature above the A3 transformation point, and the cooling rate from finishing to coiling is 50°C. Cool to e or more,
After winding at a temperature below the A1 transformation point and cold rolling in a conventional manner,
In the annealing process A, after holding in the temperature range of 900 ° C above the transformation point for 1 second to 5 minutes, the average cooling rate is 100 to 500
Cool to 100-300℃ at 8 EC, then 30℃
A method for manufacturing a high-strength thin steel sheet with excellent bending properties and a tensile strength of 80 to 150 kgf/mm2, which is characterized by holding at 0 to 500°C for 1 to 20 minutes and then cooling, and the above method, Additionally B:O,0OQ3~
8 characterized by using steel containing 0.01%
This is a method for producing a high-strength thin steel plate having a tensile strength of 0 to 150 kg f/mm2 and excellent bending properties.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明者らは曲げ特性の優れた80〜150 kgf/
mm2の引張強さを有する高強度薄鋼板の製造方法につ
いて鋭意検討した結果、熱間圧延での仕上から巻取まで
を冷却速度50℃/sec以上で冷却し、A1  変態
点以下で巻取り、焼鈍工程における冷却速度を100〜
b いで300〜500℃で1〜20分間保持した後冷却す
ることを特定し、かつ、Si量を0.3〜1.5チの範
囲で鋼板の組織の均一性が得られ、曲げ特性に優れた効
果をおよぼすこと、また、焼鈍工程における冷却速度を
100〜500℃八ecとするこへによって、Bによる
焼き入れ効果を助長し、高強度薄鋼板とすることともに
、急冷後の組織を300〜500℃で1〜20分間保持
した後冷却することで組織の硬度差を少なくして曲げ特
性に優れた効果をおよぼすことなどで曲げ特性つ優れた
高強度薄鋼板が得られることを知見した。
The present inventors have developed a 80 to 150 kgf/
As a result of intensive study on the manufacturing method of high-strength thin steel sheets having a tensile strength of mm2, we found that the process from finishing in hot rolling to coiling was cooled at a cooling rate of 50°C/sec or more, and coiled at a temperature below the A1 transformation point. The cooling rate in the annealing process is 100~
b) It was specified that the steel plate should be held at 300 to 500℃ for 1 to 20 minutes and then cooled, and the uniformity of the structure of the steel plate could be obtained by keeping the Si amount in the range of 0.3 to 1.5 inches, and the bending properties would be improved. In addition, by setting the cooling rate in the annealing process at 100 to 500°C to 8 ec, the quenching effect of B is promoted and a high-strength thin steel sheet is obtained, and the structure after quenching is improved. It was discovered that holding at 300 to 500°C for 1 to 20 minutes and then cooling reduces the difference in hardness of the structure and has an effect on excellent bending properties, resulting in a high-strength thin steel sheet with excellent bending properties. did.

第1図はC:O,1t%、Mn : 2.2 %、Ti
:0.05%、B:0.0012%を含有した鋼を基本
成分として、Si量を0.1〜2.0%の範囲で変化さ
せた鋼を溶製し常法に従い熱間圧延で仕上温度850℃
、仕上から巻取までの冷却速度を100℃/sec、巻
取温度550℃と700℃で巻取り、常法に従い冷間圧
延を施し、板厚1.2 mmの鋼板としだ後、第1図(
ロ)の如く800℃まで冷却し、300℃で3分間保持
後、冷却したときのSi含有量と90°曲げでの曲げ可
能最小径(mm)との関係について調べた図である。図
から、Siを含有するに従い、強度が増すにもかかわら
ず曲げ可能最小径(mm)が小さくなり、曲げ特性が向
上していることがわかる。また、巻取温度が高い方が曲
げ可能最小径(mm)が小さく曲げ特性が向上している
ことがわかる。このことは、Siによるフェライト相の
純化、熱間圧延での仕上げから巻取りまでの冷却速度が
速いことで鋼板の厚さ方向の組織の均一性が得られ、曲
げ特性が向上したものである。
Figure 1 shows C:O, 1t%, Mn: 2.2%, Ti
Using steel containing 0.05% of Si and 0.0012% of B as a basic component, steel with Si content varied in the range of 0.1 to 2.0% was melted and hot rolled according to a conventional method. Finishing temperature 850℃
, the cooling rate from finishing to winding was 100°C/sec, the winding temperature was 550°C and 700°C, and cold rolling was performed according to a conventional method to form a steel plate with a thickness of 1.2 mm. figure(
FIG. 2 is a graph showing the relationship between the Si content and the minimum bendable diameter (mm) at 90° bending after cooling to 800° C. and holding at 300° C. for 3 minutes as shown in (b). From the figure, it can be seen that as Si is contained, the minimum bendable diameter (mm) becomes smaller despite the increase in strength, and the bending properties are improved. It can also be seen that the higher the winding temperature is, the smaller the bendable minimum diameter (mm) is and the bending characteristics are improved. This is due to the purification of the ferrite phase by Si and the fast cooling rate from finishing to coiling during hot rolling, which results in uniformity of the structure in the thickness direction of the steel sheet, which improves the bending properties. .

第2図はc:o、tt%、Mn : 2.2%、T;:
o、os%、B:0.0012%、Si:1.0チを含
有した鋼を溶製し、常法に従い熱間圧延で仕上温度85
0℃、仕上から巻取までの冷却速度を100℃/sec
、巻取温度700℃で巻取り、常法に従い冷間圧延を施
し、板厚1.2 mmの鋼板とした後、第2図(に)の
如く800℃の温度にて40秒保持し、ついで700℃
まで5℃八へcで冷却した後、200℃八ecへ冷却速
度で200℃まで冷却し、200〜550℃まで変化さ
せ、3分間保持後、冷却したときの200〜500℃の
温度変化と90°曲げでの曲げ可能最小径(mm)との
関係について調べた図である。図から、急冷後の保持温
度300℃以上で曲げ可能最小径(mm)が小さくなり
、曲げ特性が向上していることがわかる。このことは急
冷によって生成したマルテンサイト相が焼き戻され、ベ
ーナイト相になり、フェライトとの硬度差がなくなり曲
げ特性が向上したものである。
Figure 2 shows c:o, tt%, Mn: 2.2%, T;:
A steel containing o, os%, B: 0.0012%, Si: 1.0% is melted and hot rolled according to a conventional method to a finishing temperature of 85%.
0℃, cooling rate from finishing to winding 100℃/sec
After winding at a winding temperature of 700°C and cold rolling according to a conventional method to obtain a steel plate with a thickness of 1.2 mm, the steel plate was held at a temperature of 800°C for 40 seconds as shown in Figure 2 (2). Then 700℃
After cooling at 5℃ to 8℃, cool to 200℃ at a cooling rate of 200℃ to 8EC, change from 200 to 550℃, hold for 3 minutes, and then cool down to 200 to 500℃. It is a figure which investigated the relationship with the minimum bendable diameter (mm) in 90 degree bending. From the figure, it can be seen that when the holding temperature after quenching is 300° C. or higher, the minimum bendable diameter (mm) becomes smaller and the bending characteristics are improved. This is because the martensite phase generated by rapid cooling is tempered and becomes a bainite phase, which eliminates the difference in hardness from ferrite and improves bending properties.

このように、本発明によれば、引張強さに比し優れた曲
げ特性を有している80kgf/mm2以上の高強度薄
鋼板が容易に製造できることカニわかる。
As described above, it can be seen that according to the present invention, a high-strength thin steel plate of 80 kgf/mm2 or more, which has superior bending properties compared to tensile strength, can be easily produced.

本発明において、成分を上記のごとく限定した理由は以
下のとおりであるO Cは析出強化および変態強化を利用し強度を得るだめに
必要な元素であり、その含有量が0.03%未満では析
出強化および変態強化が十分利用できず、所望の引張強
さが得られないためその下限を0.03%とした。−1
′だ、0.2%を超えて含有するとCの偏析がおこシ組
織が均一にならず、曲げ特性を悪くし、また、溶接性が
著しく低下するため上限を0.2チとした。
In the present invention, the reason for limiting the components as described above is as follows.OC is an element necessary to obtain strength using precipitation strengthening and transformation strengthening, and if its content is less than 0.03%, Since precipitation strengthening and transformation strengthening cannot be fully utilized and the desired tensile strength cannot be obtained, the lower limit is set at 0.03%. -1
However, if the content exceeds 0.2%, C segregation will occur, the structure will not be uniform, the bending properties will deteriorate, and weldability will deteriorate significantly, so the upper limit was set at 0.2%.

Siはフェライト相の純化で鋼板の厚さ方向の組織の均
一性が得られ、その下限は0.3%で、それ未満だと効
果が薄くなる。
By purifying the ferrite phase, Si provides a uniform structure in the thickness direction of the steel sheet, and its lower limit is 0.3%, and if it is less than that, the effect will be weak.

また1、5%を超えた別の添加は熱間圧延工程における
スケールの発生を著しくシ、鋼板の表面性状を劣化させ
るので上限を1.5チとした。
Furthermore, addition of other components in excess of 1.5% significantly causes scale formation in the hot rolling process and deteriorates the surface quality of the steel sheet, so the upper limit was set at 1.5%.

Mnは変態強化を利用し強度を得るために重要な元素で
あシ、その含有量が0.5%未満では生成するマルテン
サイトの量が少なく所望の引張強さが得られないため下
限を0.5%とした。
Mn is an important element for obtaining strength using transformation strengthening, and if its content is less than 0.5%, the amount of martensite produced is small and the desired tensile strength cannot be obtained, so the lower limit is set to 0. .5%.

また、2.6%を超えると溶接性を著しく損なうばかり
か、本発明の特徴である組織の均一性を損ない曲げ特性
が悪くなるため上限を2.6%としたoTi およびN
bは析出強化を利用し強度を得るために必要な元素であ
る。また、Bを有効に利用させるために不可欠な元素で
あり、さらに、溶接性を向上させる元素である。BはN
と結びつきやすい元素であり、鋼中に固溶NがあるとB
Nとして析出しBが有効に利用できない。しかしTi、
 Nbは窒化物として固定する能力を持つので、Bを有
効に利用するのに役立つと共に強度を得るのに重要であ
るoTiはその含有量が0.01%未満では、上述のN
の固定、溶接性の改善に対して不十分であるため下限を
o、 o i q6とした。また、0.25%を超えて
含有してもその効果は飽和するため上限を0.25%と
した。NbはTiと同様にその含有量が0、011未満
では、Nの固定、溶接性の改善に対して不十分であるた
め下限を0.01%とした。また、0、30 %を超え
て含有してもその効果は飽和するため上限を0.30チ
とした。
Moreover, if it exceeds 2.6%, not only will weldability be significantly impaired, but also the uniformity of the structure, which is a feature of the present invention, will be impaired, resulting in poor bending properties.
b is an element necessary to obtain strength by utilizing precipitation strengthening. Further, B is an essential element for effectively utilizing B, and furthermore, it is an element that improves weldability. B is N
It is an element that easily combines with B, and when solid solution N exists in steel, B
Precipitated B cannot be effectively used as N. But Ti,
Since Nb has the ability to fix as a nitride, it is useful for effectively utilizing B and is important for obtaining strength.
The lower limit was set to o, o i q6 because it was insufficient for fixing the metal and improving weldability. Furthermore, even if the content exceeds 0.25%, the effect is saturated, so the upper limit was set at 0.25%. Like Ti, if the Nb content is less than 0.011%, it is insufficient for fixing N and improving weldability, so the lower limit was set at 0.01%. Furthermore, since the effect is saturated even if the content exceeds 0.30%, the upper limit was set at 0.30%.

Bは焼鈍工程における急冷による焼き入れ強化元素であ
シ、その含有量がO,OQOas未満であると効果がな
くなるため下限を0.0003 %とした。
B is a hardening-strengthening element caused by rapid cooling in the annealing process, and if its content is less than O, OQOas, it loses its effect, so the lower limit was set at 0.0003%.

また、0.0100% を超えて含有すると熱間圧延工
程で疵が発生しやすくなり、鋼板の表面性状を著しく損
なうので上限を0.0100%とした。
Furthermore, if the content exceeds 0.0100%, flaws are likely to occur during the hot rolling process and the surface quality of the steel sheet will be significantly impaired, so the upper limit was set at 0.0100%.

熱間圧延工程の仕上温度をA3変態点以上とするのはそ
れ未満とすると圧延の歪かのこシ、組織を均一にできな
いためである0 熱間圧延工程の仕上から巻取までの冷却速度を50℃八
eへ以上とするのは、それ未満では板厚方向に組織が層
状組織となり、冷間圧延、焼鈍を行った後の組織が不均
一になり、曲げ特性が劣化するためである。
The reason why the finishing temperature in the hot rolling process is set above the A3 transformation point is that if it is lower than that, the rolling distortion and structure cannot be made uniform.0 Cooling rate from finishing to coiling in the hot rolling process is 50 The reason for setting the temperature to 8e or higher is that if the temperature is lower than 8e, the structure will become a layered structure in the thickness direction of the plate, and the structure after cold rolling and annealing will become non-uniform and the bending properties will deteriorate.

熱間圧延工程の巻取温度をA1変態点以下とするのは、
それ以上で巻取ると巻取後の冷却が遅く組織が不均一に
なるためである。また、スケールの生成量が多く酸洗性
が劣るためである。
The reason why the coiling temperature in the hot rolling process is set to be below the A1 transformation point is to
This is because if it is wound more than that, cooling after winding will be slow and the structure will become non-uniform. Another reason is that the amount of scale produced is large and the pickling properties are poor.

焼鈍温度の範囲はA1変態点以下では変態強化が利用で
きないためその下限をA1変態点とする。At変態点は
本発明鋼の成分範囲ではおよそ690〜730℃である
。また、900℃ を超える温度では連続焼鈍工程にお
ける通板が困難となることから上限を900℃とする。
Since transformation strengthening cannot be utilized below the A1 transformation point, the lower limit of the annealing temperature is set to the A1 transformation point. The At transformation point is approximately 690 to 730°C in the composition range of the steel of the present invention. Further, since it becomes difficult to pass the plate in the continuous annealing process at a temperature exceeding 900°C, the upper limit is set at 900°C.

冷却速度は、100℃八ecへ満ではBの効果を有効に
利用できないばかりか、  ゛急冷によるマルテンサイ
ト変態ができず、所望の引張強さを得るには合金添加量
を増加しなければならず、曲げ特性を悪くするので下限
を100℃八ecへした。また、500℃八e(へ超え
る場合には冷却中に鋼板に蓄積される歪量が多くなり良
好な曲げ特性を得ることが難しいため上限を500℃/
secとした。冷却後の温度を100〜300℃とした
後、300〜500℃で保定するのはマルテンサイト変
態後、焼き戻してベーナイトとして、フェライトとの硬
度差を小さくして曲げ特性の向上をはかるためで、冷却
後の温度を100℃未満にするとマルテンサイトの硬度
が増し曲げ特性を悪くするとともに、300〜500″
ctでの加熱が必要で経済的にも不利であるため下限を
100℃とした0また、300℃を超えるとマルテンサ
イト変態に不利で所望の強度を得るのが難しいため上限
を300℃とした。さらに、300〜500℃で保定す
るのはマルテンサイト変態後、焼き戻してベーナイトと
して曲げ特性を向上させるためであるが、下限を800
℃とするのは焼戻してベーナイトとするためであり、上
限を500℃とするのはそれを超えると焼き戻しされす
ぎて所望の強度を得るのが難しいためである。
If the cooling rate is less than 8 ec at 100°C, not only will the effect of B not be effectively utilized, but martensitic transformation cannot occur due to rapid cooling, and the amount of alloy added must be increased to obtain the desired tensile strength. First, the lower limit was set to 100° C. and 8 ec, as this would worsen the bending properties. In addition, if the temperature exceeds 500°C, the amount of strain accumulated in the steel plate during cooling increases, making it difficult to obtain good bending properties.
sec. The reason why the temperature after cooling is set to 100 to 300°C and then held at 300 to 500°C is to improve bending properties by reducing the hardness difference with ferrite by tempering it to form bainite after martensitic transformation. If the temperature after cooling is less than 100°C, the hardness of martensite will increase, worsening the bending properties, and
ct heating is required and is economically disadvantageous, so the lower limit was set at 100°C.In addition, if it exceeds 300°C, it is disadvantageous to martensitic transformation and it is difficult to obtain the desired strength, so the upper limit was set at 300°C. . Furthermore, the reason why the temperature is maintained at 300 to 500°C is to improve the bending properties by tempering as bainite after martensitic transformation, but the lower limit is set at 800°C.
The reason why the temperature is set at 500°C is to temper it to form bainite, and the reason why the upper limit is set at 500°C is because if it exceeds this temperature, it will be too tempered and it will be difficult to obtain the desired strength.

以上、本発明に従えば、80〜150 kgf/mm2
の引張強さを有する曲げ特性にすぐれた高強度薄鋼板を
経済的に製造することが可能である。
As described above, according to the present invention, 80 to 150 kgf/mm2
It is possible to economically produce high-strength thin steel sheets with excellent bending properties and a tensile strength of .

(実施例) つぎに、実施例をあげて本発明の詳細な説明する0 実施例1 造塊法あるいは連続鋳造法によって製造した第1表に示
す鋼を連続熱延で第2表に示す製造条件で熱間圧延、酸
洗、冷間圧延、焼鈍を行い、焼鈍後得られた鋼板の引張
強さと曲げ特性について調査した。
(Example) Next, the present invention will be explained in detail with reference to Examples.0 Example 1 The steel shown in Table 1 produced by the ingot-forming method or the continuous casting method was continuously hot-rolled as shown in Table 2. Hot rolling, pickling, cold rolling, and annealing were performed under various conditions, and the tensile strength and bending properties of the steel sheets obtained after annealing were investigated.

第3表かられかるとおシ、本発明法以外の比較法では所
望の引張強さと曲げ特性が得られず、それに比し本発明
法の製造では所望の引張強さと曲げ特性が得られること
がわかる。
From Table 3, it can be seen that the comparative methods other than the method of the present invention cannot obtain the desired tensile strength and bending properties, whereas the method of the present invention can obtain the desired tensile strength and bending properties. Recognize.

(発明の効果) 以上説明してきたように、本発明に従えば、80〜15
0 kgf/mm2の引張強さを有する曲げ特性にすぐ
れた高強度薄鋼板を経済的に製造することが可能である
(Effect of the invention) As explained above, according to the present invention, 80 to 15
It is possible to economically produce a high-strength thin steel sheet with excellent bending properties and a tensile strength of 0 kgf/mm2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)はSi含有量と90°曲げでの曲げ可能最
小径(mm)  との関係を示す図、第1図(ロ)は焼
鈍工程のヒートパターン図、第2図(イ)は焼鈍工程で
の冷却後200〜500℃で保定したときの温度と90
’曲げでの曲げ可能最小径(mm)  との関係を示す
図、第2図(ロ)は焼鈍工程のヒートパターン図である
。 Ll’)   寸  哨  ヘ  − 喰÷看トな 1
Figure 1 (a) is a diagram showing the relationship between Si content and the minimum bendable diameter (mm) at 90° bending, Figure 1 (b) is a heat pattern diagram of the annealing process, and Figure 2 (a) is the temperature when held at 200 to 500℃ after cooling in the annealing process and 90℃
A diagram showing the relationship with the minimum bendable diameter (mm) in bending, and Figure 2 (b) is a heat pattern diagram of the annealing process. Ll') Dimension He - Eat ÷ Watch 1

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.03〜0.20%、 Si:0.3〜1.5%、 Mn:0.5〜2.6%、 Ti:0.01〜0.25%とNb:0.01〜0.3
%の1種または2種 を含有し残部Feおよび不可避的不純物からなる鋼を、
A_3変態点以上の仕上温度で熱間圧延し、仕上から巻
取までを冷却速度50℃/sec以上で冷却し、A_1
変態点以下で巻取って、常法の冷間圧延をした後、焼鈍
工程においてA_1変態以上900℃の温度範囲に1秒
〜5分間保持した後、平均冷却速度100〜500℃/
secで100〜300℃まで冷却し、ついで、300
〜500℃で1〜20分間保持した後冷却することを特
徴とする80〜150kgf/mm^2の引張強さを有
する曲げ特性のすぐれた高強度薄鋼板の製造方法。
(1) C: 0.03-0.20%, Si: 0.3-1.5%, Mn: 0.5-2.6%, Ti: 0.01-0.25% and Nb: 0 .01~0.3
Steel containing one or two types of % and the balance consisting of Fe and unavoidable impurities,
A_3 Hot rolled at a finishing temperature of at least the transformation point, cooled at a cooling rate of 50°C/sec or more from finishing to winding, A_1
After coiling at a temperature below the transformation point and cold rolling in a conventional manner, the annealing process is held at a temperature range of 900°C above A_1 transformation for 1 second to 5 minutes, followed by an average cooling rate of 100 to 500°C/
sec to 100-300℃, then 300℃
A method for manufacturing a high-strength thin steel sheet having a tensile strength of 80 to 150 kgf/mm^2 and excellent bending properties, which comprises holding the steel plate at ~500°C for 1 to 20 minutes and then cooling it.
(2)C:0.03〜0.20%、 Si:0.3〜1.5%、 Mn:0.5〜2.6%、 Ti:0.01〜0.25%とNb:0.01〜0.3
%の1種または2種 B:0.0003〜0.01%、 を含有し残部Feおよび不可避的不純物からなる鋼を、
A_3変態点以上の仕上温度で熱間圧延し、仕上から巻
取までを冷却速度50℃/sec以上で冷却し、A_1
変態点以下で巻取って、常法の冷間圧延をした後、焼鈍
工程においてA_1変態点以上900℃の温度範囲に1
秒〜5分間保持した後、平均冷却速度100〜500℃
/secで100〜300℃まで冷却し、ついで、30
0〜500℃で1〜20分間保持した後冷却することを
特徴とする80〜150kgf/mm^2の引張強さを
有する曲げ特性のすぐれた高強度薄鋼板の製造方法。
(2) C: 0.03-0.20%, Si: 0.3-1.5%, Mn: 0.5-2.6%, Ti: 0.01-0.25% and Nb: 0 .01~0.3
% type 1 or type 2 B: 0.0003 to 0.01%, the balance consisting of Fe and unavoidable impurities,
A_3 Hot rolled at a finishing temperature of at least the transformation point, cooled at a cooling rate of 50°C/sec or more from finishing to winding, A_1
After winding at a temperature below the transformation point and cold rolling in a conventional manner, the annealing process is performed at a temperature range of 900°C above the A_1 transformation point.
After holding for seconds to 5 minutes, average cooling rate 100 to 500℃
/sec to 100-300℃, then 30℃
A method for producing a high-strength thin steel sheet having a tensile strength of 80 to 150 kgf/mm^2 and excellent bending properties, which comprises holding the steel plate at 0 to 500°C for 1 to 20 minutes and then cooling it.
JP15056285A 1985-07-09 1985-07-09 Manufacture of high strength steel sheet having superior bending characteristic Pending JPS6213533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15056285A JPS6213533A (en) 1985-07-09 1985-07-09 Manufacture of high strength steel sheet having superior bending characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15056285A JPS6213533A (en) 1985-07-09 1985-07-09 Manufacture of high strength steel sheet having superior bending characteristic

Publications (1)

Publication Number Publication Date
JPS6213533A true JPS6213533A (en) 1987-01-22

Family

ID=15499588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15056285A Pending JPS6213533A (en) 1985-07-09 1985-07-09 Manufacture of high strength steel sheet having superior bending characteristic

Country Status (1)

Country Link
JP (1) JPS6213533A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463227A (en) * 1990-07-02 1992-02-28 Nippon Steel Corp Manufacture of hot rolled steel for resistance welded steel tube for reinforcing car body
WO2003104499A1 (en) * 2002-06-10 2003-12-18 Jfeスチール株式会社 Method for producing cold rolled steel plate of super high strength
WO2010058762A1 (en) 2008-11-19 2010-05-27 住友金属工業株式会社 Steel sheet, surface-treated steel sheet, and method for producing the same
CN111304538A (en) * 2020-03-31 2020-06-19 武汉钢铁有限公司 Low-cost hot-rolled ultrahigh-strength steel and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463227A (en) * 1990-07-02 1992-02-28 Nippon Steel Corp Manufacture of hot rolled steel for resistance welded steel tube for reinforcing car body
WO2003104499A1 (en) * 2002-06-10 2003-12-18 Jfeスチール株式会社 Method for producing cold rolled steel plate of super high strength
US7507307B2 (en) 2002-06-10 2009-03-24 Jfe Steel Corporation Method for producing cold rolled steel plate of super high strength
WO2010058762A1 (en) 2008-11-19 2010-05-27 住友金属工業株式会社 Steel sheet, surface-treated steel sheet, and method for producing the same
CN111304538A (en) * 2020-03-31 2020-06-19 武汉钢铁有限公司 Low-cost hot-rolled ultrahigh-strength steel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5292698B2 (en) Extremely soft high carbon hot-rolled steel sheet and method for producing the same
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
WO2001023625A1 (en) Sheet steel and method for producing sheet steel
JP2001081533A (en) High tensile strength cold rolled steel sheet and its manufacture
JPH04337026A (en) Production of hot rolled high strength steel plate excellent in fatigue strength and fatigue crack propagation resistance
JP2003013145A (en) Method for manufacturing high-carbon hot-rolled steel sheet superior in stretch flange formability
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP2003013144A (en) Method for manufacturing high-carbon cold-rolled steel sheet superior in stretch flange formability
JPS6213533A (en) Manufacture of high strength steel sheet having superior bending characteristic
JP2001064728A (en) Production of 60 kilo class high tensile strength steel excellent in weldability and toughness after strain aging
JPS5849624B2 (en) Method for manufacturing high-strength cold-rolled steel sheets with excellent drawability and shapeability
JPH02149646A (en) High strength hot rolled steel sheet having excellent workability and weldability
JP6628018B1 (en) Hot rolled steel sheet
JP4765388B2 (en) Manufacturing method for cold rolled steel sheet with excellent flatness after punching
JPH0790482A (en) Thin steel sheet excellent in impact resistance and its production
JPS60224717A (en) Manufacture of high-tension cold-rolled steel sheet having superior cold workability and weldability
JPS63179046A (en) High-strength sheet metal excellent in workability and season cracking resistance and its production
RU2784908C1 (en) Method for producing hot-rolled sheet structural steel
JPS63243226A (en) Production of cold rolled steel sheet for ultra-deep drawing having excellent resistance to brittleness by secondary operation
JPH0745687B2 (en) Method for producing high-strength hot-rolled thin steel sheet with excellent stretch-flangeability
JPH022929B2 (en)
JPS6314817A (en) Production of high-strength thin steel sheet having excellent bending characteristic
JP2001089816A (en) Method of manufacturing high strength hot rolled steel plate
JPH0665647A (en) Effective production of cold rolled steel sheet extremely excellent in deep drawability
KR100276303B1 (en) The manufacturing method of pipe used low carbon cold rolling steel sheet with anti season creaking