JPS5849624B2 - Method for manufacturing high-strength cold-rolled steel sheets with excellent drawability and shapeability - Google Patents

Method for manufacturing high-strength cold-rolled steel sheets with excellent drawability and shapeability

Info

Publication number
JPS5849624B2
JPS5849624B2 JP849179A JP849179A JPS5849624B2 JP S5849624 B2 JPS5849624 B2 JP S5849624B2 JP 849179 A JP849179 A JP 849179A JP 849179 A JP849179 A JP 849179A JP S5849624 B2 JPS5849624 B2 JP S5849624B2
Authority
JP
Japan
Prior art keywords
steel
value
temperature
yield ratio
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP849179A
Other languages
Japanese (ja)
Other versions
JPS55100934A (en
Inventor
篤樹 岡本
政司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP849179A priority Critical patent/JPS5849624B2/en
Publication of JPS55100934A publication Critical patent/JPS55100934A/en
Publication of JPS5849624B2 publication Critical patent/JPS5849624B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Description

【発明の詳細な説明】 本発明は絞り性ならびに形状性にすぐれた高張力冷延鋼
板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high-strength cold-rolled steel sheet with excellent drawability and shapeability.

近時、自動車車体の強度向上あるいは重量軽減を目的と
する高張力鋼板の利用が推進されており、この種用途に
適した高張力冷延鋼板の開発が望まれている。
Recently, the use of high-strength steel sheets for the purpose of improving the strength or reducing the weight of automobile bodies has been promoted, and there is a desire to develop high-strength cold-rolled steel sheets suitable for this type of use.

自動車用鋼板は一般にプレス加工を行なってから使用さ
れるので、このプレス加工に適する性質が必要である。
Since steel sheets for automobiles are generally used after being press-formed, they must have properties suitable for this press-forming.

特に車体パネルのように厳しい加工がなされる部品につ
いては絞り性ならびに形状性にすぐれた性質が要求され
る。
In particular, parts that undergo severe processing such as car body panels require excellent drawability and shapeability.

絞り性は鋼板のr値(ランクフォード値)が高いほど良
好であり従来の軟質鋼板においては製造条件の改良など
により高いr値の鋼板が各種開発されている。
The higher the r-value (Lankford value) of a steel sheet, the better the drawability is, and various types of steel sheets with higher r-values have been developed by improving manufacturing conditions for conventional soft steel sheets.

しかしr値は鋼板の強度が上昇すると低下の傾向にあり
、高張力鋼板のr値は1.0前後であった。
However, the r value tends to decrease as the strength of the steel plate increases, and the r value of the high tensile strength steel plate was around 1.0.

形状性は鋼板の降伏強度が低くかつ降伏比が低いほど良
好となるが一般のフエライト+パーライト組織の鋼では
降伏比は0.65〜0.85であるため、鋼の引張強度
が増すと降伏強度も上昇してしまい一般的に言って高張
力鋼板の形状性ははなはだしく悪く、自動車用にはあま
り使用されなかった。
The lower the yield strength and yield ratio of the steel plate, the better the shape properties will be. However, in general steel with a ferrite + pearlite structure, the yield ratio is 0.65 to 0.85, so as the tensile strength of the steel increases, the yield ratio becomes better. The strength also increased, and generally speaking, the shapeability of high-tensile steel sheets was extremely poor, so they were not used much for automobiles.

近年フエライト地中にマルテンサイトを細かく分散させ
た鋼が開発されたが、この鋼では、該マルテンサイトが
転位の発生源となり一様な変形が比較的容易に行なわれ
るので降伏強度が低く、0.60以下の低い降伏比とな
る。
In recent years, a steel with finely dispersed martensite in ferrite has been developed, but in this steel, the martensite becomes a source of dislocations and uniform deformation occurs relatively easily, so the yield strength is low and 0. This results in a low yield ratio of .60 or less.

このような低降伏比の鋼にて各種プレス成形性テストを
行なった結果では従来のフエライト+パーライト組織の
鋼板(降伏比0.65〜0.85)より形状性が良好な
ことが確認されている。
The results of various press formability tests conducted on steel with such a low yield ratio confirmed that it has better formability than conventional steel sheets with a ferrite + pearlite structure (yield ratio of 0.65 to 0.85). There is.

さてこのように降伏比の低い鋼板を得るには冷間圧延後
連続焼鈍する方法が最も有利と考えられていた。
Now, in order to obtain a steel plate with such a low yield ratio, the method of continuous annealing after cold rolling was considered to be the most advantageous.

その冶金的背景は鋼板をフエライト(ct)+オーステ
ナイ}(r)二相共存温度に加熱しその後急冷すること
によりγ相をマルテンサイトに変態させ、前記低降伏比
を得るもので、その冷却速度条件などにより鋼中、C量
,Mn量,Si量などが調整される。
The metallurgical background is that the steel plate is heated to the coexistence temperature of ferrite (ct) + austenite (r) and then rapidly cooled to transform the γ phase into martensite and obtain the low yield ratio. The amount of C, Mn, Si, etc. in the steel is adjusted depending on the conditions.

このような製造法による低降伏比高張力鋼板は前記のよ
うに形状性は良好であるがr値が1.0以下で低いこと
マルテンサイト組織を得るために多量のMnあるいはS
iの添加を必要とすることの2点の問題点があった。
The low yield ratio high tensile strength steel sheet manufactured by this manufacturing method has good shape properties as mentioned above, but has a low r value of 1.0 or less.In order to obtain a martensitic structure, a large amount of Mn or S is required.
There were two problems with the necessity of adding i.

そこで種々の実験,研究の結果、発明者らは鋼中Mn
,SolAl,Nを適量添加し、かつ前述連続焼鈍炉に
よる熱処理前に650〜800℃の温度範囲で箱焼鈍す
ることにより、連続焼鈍後、降伏比0.60以下でかつ
r値1.2以上の高張力鋼板が容易に得られることが判
明した。
As a result of various experiments and research, the inventors found that Mn in steel
By adding appropriate amounts of , SolAl, and N and box annealing in a temperature range of 650 to 800°C before heat treatment in the continuous annealing furnace, the yield ratio is 0.60 or less and the r value is 1.2 or more after continuous annealing. It was found that a high tensile strength steel plate of 100% can be easily obtained.

すなわち冷間圧延した鋼板を箱焼鈍するとその昇温過程
でルヘが析出しr値に好ましい再結晶集合組織が形成さ
れこれは次工程の連続焼鈍でもこわされないので1.2
以上の高いr値が得られる。
In other words, when a cold-rolled steel sheet is box annealed, Ruhe precipitates during the heating process, forming a recrystallized texture favorable to the r value, which is not destroyed even in the next step of continuous annealing, so it is 1.2
A high r value as above can be obtained.

また箱焼鈍の均熱過程では鋼板は650〜800℃に加
熱されるため、その時存在するγ相中へC原子、Mn原
子が著しく偏折する。
Further, in the soaking process of box annealing, the steel sheet is heated to 650 to 800°C, so that C atoms and Mn atoms are significantly polarized into the γ phase existing at that time.

しかし箱焼鈍の冷却速度は遅いためそのγ相はパーライ
トに変態し低降伏比とはならない。
However, since the cooling rate in box annealing is slow, the γ phase transforms into pearlite and a low yield ratio is not achieved.

次の連続焼鈍工程では、鋼板は600〜850℃に加熱
されるため、上記パーライト相はγ相となり、次いで1
0〜1 0 0 ’C/SeCという速い冷却速度で冷
却されるため、これによりγ相はマルテンサイト相とな
る。
In the next continuous annealing process, the steel plate is heated to 600 to 850°C, so the pearlite phase becomes γ phase, and then 1
Since it is cooled at a fast cooling rate of 0 to 100'C/SeC, the γ phase becomes a martensitic phase.

この冷却速度については好ましくは、20〜ioo℃/
secとすることが望ましい。
The cooling rate is preferably 20 to ioo°C/
It is desirable to set it to sec.

このようにしてフエライト+マルテンサイトの組織が得
られる。
In this way, a ferrite+martensite structure is obtained.

この製造法ではMnの偏折を利用しているので、鋼中平
均Mn量は少なくてすみ、それだけコストの低下とr値
の向上に寄与する。
Since this manufacturing method utilizes the polarization of Mn, the average amount of Mn in the steel can be small, which contributes to lowering costs and improving the r value.

さらに詳述すれば、第1表に示した成分を含有する供試
鋼(1), CB) , (C)を転炉で溶製しスラブ
となした後それぞれ加熱温度1220℃、仕上温度86
0℃、巻取温度560℃の温度条件で熱間圧延して3.
2關厚の鋼板に仕上げた。
More specifically, the test steels (1), CB), and (C) containing the components shown in Table 1 were melted into slabs in a converter, and then heated at a heating temperature of 1220°C and a finishing temperature of 86°C, respectively.
3. Hot rolled under temperature conditions of 0°C and coiling temperature of 560°C.
Finished with a 2-inch thick steel plate.

これを酸洗後通常の冷間圧延により0. 8 mm厚の
冷延鋼板に仕上げた後、昇温速度40℃/hr,冷却速
度40’C/hr,均熱時間1 6 hr, H2とN
2の混合ガス雰囲気の焼鈍条件で均熱温度を500〜8
00℃の間で変化させて箱焼鈍を行った後、昇温速度2
0 ’C/sec,均熱750℃1min,冷却速度
10℃/Secで室温まで冷却というヒートパターンで
連続焼鈍する熱処理試験を行った。
After pickling, this was subjected to normal cold rolling. After finishing a cold-rolled steel plate with a thickness of 8 mm, the heating rate was 40°C/hr, the cooling rate was 40'C/hr, the soaking time was 16 hr, and H2 and N were heated.
Soaking temperature is 500~8 under the annealing condition of mixed gas atmosphere in 2.
After box annealing at a temperature of 0.0°C, the heating rate was increased to 2.
A heat treatment test was conducted in which continuous annealing was performed using a heat pattern of 0'C/sec, soaking at 750°C for 1 min, and cooling to room temperature at a cooling rate of 10°C/sec.

第1図は上記熱処理試験で得た供試鋼板の、JI85号
引張試験片に基くL方向の引張試験の特性値から求めた
降伏比及びr値と箱焼鈍温度の関係を示した図表である
Figure 1 is a chart showing the relationship between the yield ratio and r value obtained from the characteristic values of the tensile test in the L direction based on the JI No. 85 tensile test piece and the box annealing temperature of the test steel plate obtained in the above heat treatment test. .

図中●印および特性曲線Pは供試鋼(4)、○印および
特性曲線Qは供試鋼伯)、▲印および特性曲線Rは供試
鋼(C)のr値と箱焼鈍温度の関係を示し、●印および
特性曲線Sは供試鋼ω、○印および特性曲線Tは供試鋼
(B)、▲印および特性曲線Vは供試鋼(C)の降伏比
と箱焼鈍温度の関係を示す。
In the figure, the ● mark and characteristic curve P indicate the test steel (4), the ○ mark and the characteristic curve The relationship is shown in which the ● mark and characteristic curve S represent the test steel ω, the ○ mark and the characteristic curve T the test steel (B), and the ▲ mark and the characteristic curve V the yield ratio and box annealing temperature of the test steel (C). shows the relationship between

第1図に見る通り、箱焼鈍温度が650〜800℃の範
囲で、r値1.20以上及び降伏比0460以下の両方
を満足する本発明鋼(B)の成績が得られる。
As shown in FIG. 1, the steel (B) of the present invention satisfies both the r value of 1.20 or more and the yield ratio of 0,460 or less when the box annealing temperature is in the range of 650 to 800°C.

次にC0.0 4 〜0.0 s%、S oi3All
0. 0 3 〜0.08%、NO.003〜0.0
08係、P0.010〜0.020φを含有し、これに
Si0.05〜0.25饅添加した低Si分のものと、
SiO.6〜0.8%の高Si分のものと二通りの鋼に
、更にMnを0.2〜3.3%の範囲で変化させて添加
して溶製した各種の供試鋼を、第1図で述べたと同様の
条件で0.8mπ厚の冷延鋼板に仕上げた後、昇温速度
40°C/hr1均熱温度700℃、均熱時間1 6
hr, H2とN2の混合ガス雰囲気の条件で箱焼鈍し
、これを第1図と同様のヒートパターン即ち昇温速度2
0℃/Sec,均熱温度750℃1mi!L%冷却速度
10℃/SeCの条件で連続焼鈍する熱処理試験を行っ
た。
Next, C0.04 to 0.0 s%, Soi3All
0. 0 3 to 0.08%, NO. 003~0.0
Section 08, containing P0.010~0.020φ and having a low Si content with Si0.05~0.25 added,
SiO. Various test steels were prepared by adding Mn in the range of 0.2 to 3.3% to two types of steel, one with a high Si content of 6 to 0.8%, and the other with a high Si content of 6 to 0.8%. After finishing a cold-rolled steel plate with a thickness of 0.8 mπ under the same conditions as described in Figure 1, the heating rate was 40°C/hr, the soaking temperature was 700°C, and the soaking time was 16.
hr, box annealing under the conditions of a mixed gas atmosphere of H2 and N2, and this was performed using the same heat pattern as shown in Fig. 1, that is, a temperature increase rate of 2.
0℃/Sec, soaking temperature 750℃ 1mi! A heat treatment test was conducted in which continuous annealing was performed at a cooling rate of L% of 10° C./SeC.

第2図は上記熱処理試験で得た代表例の、JI85号引
張試験片に基くL方向の引張試験の特性値から求めた降
伏比及びr値とMn量の関係を示す図表である。
FIG. 2 is a chart showing the relationship between the yield ratio and r value determined from the characteristic values of the L-direction tensile test based on the JI No. 85 tensile test piece, which is a representative example obtained in the above heat treatment test, and the Mn content.

図中○印は低Si供試鋼板、●印は高Si供試鋼板を示
し、特性曲線Fはr値とMn量の関係、特性曲線Gは降
伏比とM口量の関係を示す。
In the figure, ○ marks indicate low-Si test steel sheets, ● marks show high-Si test steel sheets, characteristic curve F shows the relationship between the r value and the amount of Mn, and characteristic curve G shows the relationship between the yield ratio and the amount of M.

第2図に見る通り、高Si供試鋼板、低Si供試鋼板共
に、Mn量0.8〜2.5咎の範囲でr値1.20以上
、降伏比0.60以下の両方を満足する成績を示す。
As shown in Figure 2, both the high-Si test steel sheet and the low-Si test steel sheet satisfy both the r value of 1.20 or more and the yield ratio of 0.60 or less when the Mn content is in the range of 0.8 to 2.5. Show your grades.

本発明は上記知見に基いて合金或分と熱処理の両面から
改良を加えた新しい高張力冷延鋼板の製造方法を提供す
るものであって、C0.20φ以下、Sil.O%以下
、M n 0. 8 〜2. 5 %、SoAA70.
01 〜0.20%、NO.00 1 5 〜0.01
50%、P0.10%以下を含有し、残部が実質的に
Feから成る鋼を、熱間圧延および冷間圧延後、650
〜800℃の温度範囲で箱焼鈍し冷却後、6oo℃以上
の加熱帯0ある連続焼鈍炉にて加熱冷却することを要旨
とする。
The present invention provides a new method for producing high-strength cold-rolled steel sheets based on the above findings, with improvements made in terms of both alloy content and heat treatment. 0% or less, M n 0. 8 ~2. 5%, SoAA70.
01 to 0.20%, NO. 00 1 5 ~0.01
After hot rolling and cold rolling, a steel containing 50% P, 0.10% or less of P, and the remainder substantially Fe, was heated to 650
The gist is to perform box annealing in a temperature range of ~800°C, cool it, and then heat and cool it in a continuous annealing furnace with no heating zone at 60°C or higher.

本発明において鋼の成分を上記の如く限定した理由を説
明する。
The reason why the components of the steel are limited as described above in the present invention will be explained.

C:0.20%を越えるとスポット溶接性が劣化すると
共にr値も低下する。
C: If it exceeds 0.20%, spot weldability deteriorates and the r value also decreases.

Si:1.O%を越えると冷延鋼板の表面性状が劣化す
ると共にr値も低下する。
Si:1. If it exceeds 0%, the surface quality of the cold rolled steel sheet deteriorates and the r value also decreases.

SoAAl: 0.0 1%未満では鋼の清浄度が低下
すると共にr値や低下する。
SoAAl: 0.0 If it is less than 1%, the cleanliness of the steel decreases and the r value also decreases.

0. 2 0 %を越えると鋼の溶製が困難となる。0. If it exceeds 20%, it becomes difficult to melt the steel.

Mn:0.80%未満ではMn濃縮部でのMn濃度が不
足し降伏比を低下させる効果が不十分であり、2.5%
を越えるとr値が1.20以下に低下する。
Mn: If it is less than 0.80%, the Mn concentration in the Mn enriched section will be insufficient and the effect of lowering the yield ratio will be insufficient;
If the value exceeds 1.20, the r value decreases to 1.20 or less.

N:0.0015φ以下では箱焼鈍時析出するA7Nの
量が少なく高いr値が得られない。
If N: 0.0015φ or less, the amount of A7N precipitated during box annealing is small and a high r value cannot be obtained.

0.015 0多以上では延性が低下する。If it is more than 0.015, the ductility decreases.

P:安価な硬化元素であるが0.10%以上添加すると
脆性破壊を生じやすい。
P: Although it is an inexpensive hardening element, adding 0.10% or more tends to cause brittle fracture.

必要に応じて0.10優まで添加される。It may be added up to 0.10 Yu if necessary.

本発明方法において箱焼鈍の均熱温度範囲を650〜8
00℃に限定したのは、650℃未満及び800℃を越
えた場合は降伏比0.60以下が得られないからであり
、また連続焼鈍炉の加熱帯の温度を600〜850℃に
限定したのは、600℃未満では、前述したC,Mnが
濃縮したパーライト部がオーステナイト相に変化せずそ
の結果、冷却過程でマルテンサイトが形成されないため
、降伏比が高くなる。
In the method of the present invention, the soaking temperature range of box annealing is 650 to 8
The temperature was limited to 00°C because a yield ratio of 0.60 or less cannot be obtained if the temperature is less than 650°C or exceeds 800°C, and the temperature of the heating zone of the continuous annealing furnace was limited to 600 to 850°C. The reason is that below 600° C., the pearlite portion in which C and Mn are concentrated does not change to the austenite phase, and as a result, martensite is not formed during the cooling process, resulting in a high yield ratio.

一方850°Cを越えると箱焼鈍時に、オーステナイト
中に濃縮したMnが再び拡散均一化して、冷却過程で所
望のマルテンサイトが得られずr値が低くなる。
On the other hand, if the temperature exceeds 850°C, the Mn concentrated in the austenite will diffuse and become uniform again during box annealing, and the desired martensite will not be obtained during the cooling process, resulting in a low r value.

また加熱後の冷却速度は、10゜C/SeC未満では、
フエライト,パーライト組織となり降伏比が上昇し好ま
しくない。
Also, if the cooling rate after heating is less than 10°C/SeC,
A ferrite or pearlite structure is formed, which increases the yield ratio, which is undesirable.

一方1 0 0 ’C/secを越えると多量のマルテ
ンサイトが形或されすぎ、鋼板のr値が低下し、所望の
効果が得られない。
On the other hand, if it exceeds 100'C/sec, a large amount of martensite is formed too much, the r value of the steel sheet decreases, and the desired effect cannot be obtained.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

前記第1表に示した成分の供試鋼(4), (B) ,
(C)をそれぞれ転炉で溶製しスラブとなした後、加
熱温度1220℃、仕上温度860℃、巻取温度560
℃の温度条件で熱間圧延し3.2朋厚の鋼板に仕上げ酸
洗後、通常の冷間圧延により0. 8 mm厚の冷延鋼
板に仕上げ、これを昇温速度40’C/hr,冷却速度
4 0 ′C/hr,均熱温度700℃、均熱時間1
6 hr.H2とN2の混合ガス雰囲気の焼鈍条件で箱
焼鈍し冷却後、昇温速度20℃/sec,均熱温度75
00Cl11li!l1冷却速度10°C/SeCのヒ
ートパターンで連続焼鈍を行った場合と、前記箱焼鈍を
省略して連続焼鈍を行った場合との二通りに分けて熱処
理試験した。
Test steel (4), (B), with the components shown in Table 1 above.
After melting each of (C) into a slab in a converter, the heating temperature is 1220°C, the finishing temperature is 860°C, and the winding temperature is 560°C.
After hot rolling at a temperature of 3.2°C and finishing pickling, a steel plate with a thickness of 3.2°C is subjected to normal cold rolling. A cold-rolled steel plate with a thickness of 8 mm was finished and heated at a heating rate of 40'C/hr, a cooling rate of 40'C/hr, a soaking temperature of 700°C, and a soaking time of 1.
6 hr. After box annealing and cooling under the annealing conditions of a mixed gas atmosphere of H2 and N2, the heating rate was 20°C/sec, and the soaking temperature was 75°C.
00Cl11li! A heat treatment test was conducted in two ways: one in which continuous annealing was performed using a heat pattern with a cooling rate of 10°C/SeC, and the other in which continuous annealing was performed without the box annealing.

上記熱処理試験で得た供試鋼板(4), (B) ,
(C)の引張試験の各特性値及びr値を第2表に示す。
Test steel plates (4), (B), obtained in the above heat treatment test
Table 2 shows each characteristic value and r value of the tensile test of (C).

上記引張特性値はJI85号引張試験片によるL方向の
引張試験結果である。
The above tensile property values are the results of a tensile test in the L direction using a JI No. 85 tensile test piece.

第2表に見る通り、本発明の成分範囲の鋼であって箱焼
鈍したものは降伏比0. 6 0以下r値1.20以上
の両方を満足する戒績を示すが、箱焼鈍をしないものは
降伏比,r値とも必要水準を満足せず、又比較鋼はすべ
て降伏比,r値のいずれか一方又は両方が必要水準を満
足しないことを示す。
As shown in Table 2, box annealed steels having the composition range of the present invention have a yield ratio of 0. 6. It shows a precept that satisfies both the r value of 1.20 or less, but the steel without box annealing does not satisfy the required level for both the yield ratio and the r value, and all comparison steels have a yield ratio and an r value of 1.20 or less. Indicates that one or both do not meet the required level.

C0.04%、sio.ot%、Mn0.85%、PO
.006%、SolAA’ 0. 1 2 1 %、N
O.0088%、残部Feおよび不可避的不純物よりな
る鋼を転炉で溶製し、スラブとなした後加熱温度122
0’C.仕上温度830℃、巻取温度560℃の温度条
件で熱間圧延して、3.2mm厚の鋼板に仕上げた。
C0.04%, sio. ot%, Mn0.85%, PO
.. 006%, SolAA' 0. 1 2 1%, N
O. Steel consisting of 0.088%, balance Fe and unavoidable impurities is melted in a converter to form a slab, and then heated to a temperature of 122
0'C. It was hot rolled at a finishing temperature of 830°C and a winding temperature of 560°C to produce a finished steel plate with a thickness of 3.2 mm.

これを酸洗後通常の冷間圧延により0.8mm厚の冷延
鋼板に仕上げた後、昇温速度20’C/hr,冷却速度
4 0 ′C/hr,均熱温度750℃、均熱時間24
**hr,H2とN2の混合ガス雰囲気中で、箱焼鈍を
行った後、昇温速度40℃/SeC,均熱時間9QSe
Cの条件で、第3表に示すような均熱温度と均熱温度か
ら室温までの冷却速度を変えて連続焼鈍した。
After pickling and finishing it into a 0.8 mm thick cold-rolled steel plate by ordinary cold rolling, the temperature was raised at 20'C/hr, the cooling rate was 40'C/hr, the soaking temperature was 750°C, and the steel was soaked at 750°C. time 24
**hr, after box annealing in a mixed gas atmosphere of H2 and N2, heating rate 40℃/SeC, soaking time 9QSe
Continuous annealing was carried out under conditions C, changing the soaking temperature and the cooling rate from the soaking temperature to room temperature as shown in Table 3.

上記熱処理試験で得た供試鋼板の引張試験の各特性値及
びr値を第3表に示す。
Table 3 shows each characteristic value and r value of the tensile test of the test steel sheets obtained in the above heat treatment test.

第3表に見る通り、/I61は連続焼鈍の均熱温度が本
発明範囲より低いためパーライト相がγ相とならず冷却
後にマルテンサイトが形成されないため降伏比が高い。
As shown in Table 3, /I61 has a high yield ratio because the soaking temperature during continuous annealing is lower than the range of the present invention, so the pearlite phase does not become the γ phase and no martensite is formed after cooling.

/l6.4は、連続焼鈍の均熱温度が高く、AIとは逆
にマルテンサイトが多量に形成されるため、rf直が低
くなる。
/l6.4 has a high soaking temperature during continuous annealing and, contrary to AI, a large amount of martensite is formed, resulting in a low RF directivity.

/465は、連続焼鈍の冷却速度が本発明範囲よりも遅
いため、組織がパーライト変態となり、降伏比が高くな
る。
/465, since the cooling rate of continuous annealing is slower than the range of the present invention, the structure becomes pearlite transformed and the yield ratio becomes high.

/l6IOは/l65とは逆に、冷却速度が本発明範囲
よりも速すぎるため、多量のマルテンサイトが形成され
、降伏比が高く、かつr値も悪くなる。
Contrary to /l65, /l6IO has a cooling rate that is faster than the range of the present invention, so a large amount of martensite is formed, resulting in a high yield ratio and poor r value.

これに対し本発明法の範囲にある熱処理条件のものにつ
いては、降伏比0.6以下、r値1.20以上を満足す
る成績を示している。
On the other hand, heat treatment conditions within the range of the method of the present invention show results satisfying a yield ratio of 0.6 or less and an r value of 1.20 or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は供試鋼板の熱処理試験における降伏比及びr値
と箱焼鈍温度の関係を示した図表、第2図は同じく降伏
比及びr値とMn量の関係を示した図表である。
FIG. 1 is a chart showing the relationship between the yield ratio and r value and the box annealing temperature in a heat treatment test of test steel sheets, and FIG. 2 is a chart showing the relationship between the yield ratio and r value and the Mn content.

Claims (1)

【特許請求の範囲】[Claims] I C0.20%以下、Sil.0%以下、Mn0.
8〜2.5%、SolAll0.01〜0.2 o%、
NO.0015〜0.0150優、P0.10多以下、
を含有し、残部が実質的にFeからなる鋼を、熱間圧延
および冷間圧延後、650〜800℃の温度範囲で箱焼
鈍し冷却後、連続焼鈍炉にて、6oo〜850℃に加熱
し、次いで、冷却速度10〜100′C/SeCで冷却
することを特徴とする絞り性ならびに形状性にすぐれた
高張力冷延鋼板の製造方法。
I C0.20% or less, Sil. 0% or less, Mn0.
8-2.5%, SolAll0.01-0.2 o%,
No. 0015 to 0.0150 excellent, P0.10 or less,
After hot-rolling and cold-rolling, a steel containing Fe, the remainder being substantially Fe, is box annealed in a temperature range of 650 to 800°C, cooled, and then heated to 6oo to 850°C in a continuous annealing furnace. and then cooling at a cooling rate of 10 to 100'C/SeC.
JP849179A 1979-01-27 1979-01-27 Method for manufacturing high-strength cold-rolled steel sheets with excellent drawability and shapeability Expired JPS5849624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP849179A JPS5849624B2 (en) 1979-01-27 1979-01-27 Method for manufacturing high-strength cold-rolled steel sheets with excellent drawability and shapeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP849179A JPS5849624B2 (en) 1979-01-27 1979-01-27 Method for manufacturing high-strength cold-rolled steel sheets with excellent drawability and shapeability

Publications (2)

Publication Number Publication Date
JPS55100934A JPS55100934A (en) 1980-08-01
JPS5849624B2 true JPS5849624B2 (en) 1983-11-05

Family

ID=11694578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP849179A Expired JPS5849624B2 (en) 1979-01-27 1979-01-27 Method for manufacturing high-strength cold-rolled steel sheets with excellent drawability and shapeability

Country Status (1)

Country Link
JP (1) JPS5849624B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI290177B (en) * 2001-08-24 2007-11-21 Nippon Steel Corp A steel sheet excellent in workability and method for producing the same
JP4635525B2 (en) 2003-09-26 2011-02-23 Jfeスチール株式会社 High-strength steel sheet excellent in deep drawability and manufacturing method thereof
US8337643B2 (en) 2004-11-24 2012-12-25 Nucor Corporation Hot rolled dual phase steel sheet
US7959747B2 (en) 2004-11-24 2011-06-14 Nucor Corporation Method of making cold rolled dual phase steel sheet
US7442268B2 (en) 2004-11-24 2008-10-28 Nucor Corporation Method of manufacturing cold rolled dual-phase steel sheet
US11155902B2 (en) 2006-09-27 2021-10-26 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
CA2701903C (en) 2007-10-10 2017-02-28 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
JP4998757B2 (en) 2010-03-26 2012-08-15 Jfeスチール株式会社 Manufacturing method of high strength steel sheet with excellent deep drawability

Also Published As

Publication number Publication date
JPS55100934A (en) 1980-08-01

Similar Documents

Publication Publication Date Title
JPH032224B2 (en)
JPS5849624B2 (en) Method for manufacturing high-strength cold-rolled steel sheets with excellent drawability and shapeability
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
JP3448454B2 (en) High-strength cold-rolled steel sheet with excellent surface properties and formability, and method for producing the same
JPH02194126A (en) Manufacture of steel sheet having baking hardenability
JPS5852441A (en) Production of high strength cold rolled steel plate having good press formability
JPS63243226A (en) Production of cold rolled steel sheet for ultra-deep drawing having excellent resistance to brittleness by secondary operation
JPS6411088B2 (en)
JPS60103128A (en) Production of cold rolled steel sheet having composite structure
JPS5980726A (en) Production of high strength cold rolled steel sheet having excellent deep drawability and small plate anisotropy
JPS59133324A (en) Manufacture of high-tension cold-rolled steel plate with superior formability
JPS63179046A (en) High-strength sheet metal excellent in workability and season cracking resistance and its production
JPH0152452B2 (en)
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JPH0192317A (en) Manufacture of high-strength sheet metal excellent in stretch-flange workability
JPS6119690B2 (en)
JPS6354048B2 (en)
JPH0394020A (en) Production of cold rolled steel sheet for deep drawing excellent in resistance to secondary working brittleness
JPS5980727A (en) Manufacture of cold rolled steel sheet with high drawability by continuous annealing
JPH02170921A (en) Manufacture of high tensile steel sheet with high formability
JPH01177321A (en) Manufacture of cold rolled steel sheet excellent in deep drawability
JPS6039126A (en) Production of cold rolled steel sheet having excellent press formability
JPS58104124A (en) Production of cold-rolled steel plate for working by continuous annealing
JPS6167722A (en) Manufacture of cold rolled steel plate of high intensity and rolling by continuous annealing
JPS62250126A (en) Manufacture of cold rolled steel sheet having superior press formability