JPS62135003A - Electronic tuning oscillator - Google Patents
Electronic tuning oscillatorInfo
- Publication number
- JPS62135003A JPS62135003A JP27537985A JP27537985A JPS62135003A JP S62135003 A JPS62135003 A JP S62135003A JP 27537985 A JP27537985 A JP 27537985A JP 27537985 A JP27537985 A JP 27537985A JP S62135003 A JPS62135003 A JP S62135003A
- Authority
- JP
- Japan
- Prior art keywords
- transmission line
- dielectric resonator
- electronic tuning
- tuning circuit
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
電子同調発振器において、発振周波数を大幅に変化させ
る為に、誘電体共振子と負性抵抗素子との最適電気的位
相も変える際、電子同調回路の共振周波数がこの誘電体
共振器の誘電率の影響を受け、発振周波数の変化に対応
して変化する様にして電子同調回路の調整の必要性をな
くしたものである。[Detailed Description of the Invention] [Summary] In an electronically tuned oscillator, when changing the optimal electrical phase between the dielectric resonator and the negative resistance element in order to significantly change the oscillation frequency, the resonant frequency of the electronically tuned circuit is changed. is influenced by the dielectric constant of the dielectric resonator and changes in response to changes in the oscillation frequency, thereby eliminating the need for adjustment of the electronic tuning circuit.
本発明は、電子同調発振器の改良に関するものである。 The present invention relates to improvements in electronically tuned oscillators.
電子同調発振器は外部よりの制御電圧で発振周波数を変
化させることができるので、例えばマイクロ波帯で使用
する変調器や電圧制御発振器として用いられるが、この
発振器の発振周波数を大幅に変化させた時でも電子同調
回路の調整が不要であることが要望されている。Electronically tuned oscillators can change their oscillation frequency using an external control voltage, so they are used, for example, as modulators or voltage-controlled oscillators in the microwave band. However, it is desired that no adjustment of the electronic tuning circuit be required.
第3図は従来例の構成図、第4図はトランジスタの負性
電子インピーダンスと負荷インピーダンスの関係図を示
す。但し、電圧可変容量素子のバイアス回路は省略しで
ある。FIG. 3 is a configuration diagram of a conventional example, and FIG. 4 is a diagram showing the relationship between the negative electronic impedance of the transistor and the load impedance. However, the bias circuit for the voltage variable capacitance element is omitted.
第3図において、主共振周波数fOを有する誘電体共振
子1に磁界結合する第1の伝送線路3は、誘電体共振子
と結合した位置より電気的位相がφ1の所に負性抵抗素
子(以下トランジスタと省略する)2が接続され、他端
はこの伝送線路の特性インピーダンスとほぼ等しい抵抗
値を持つ抵抗器4で終端されている。In FIG. 3, the first transmission line 3 magnetically coupled to the dielectric resonator 1 having the main resonance frequency fO has a negative resistance element ( (hereinafter abbreviated as a transistor) 2 is connected, and the other end is terminated with a resistor 4 having a resistance value approximately equal to the characteristic impedance of this transmission line.
この時、トランジスタ2の負性電子インピーダンスZs
と負荷インピーダンスZLが第4図に示す様になったと
すると、fOが6.5GHzでZsとZLのリアクタン
ス分の和が0となるのでこの周波数で発振する。At this time, the negative electronic impedance Zs of transistor 2
Assuming that the load impedance ZL is as shown in FIG. 4, when fO is 6.5 GHz, the sum of the reactance components of Zs and ZL becomes 0, so oscillation occurs at this frequency.
一方、誘電体共振子と磁界結合し、一端に電圧可変容量
素子6が接続された第2の伝送線路5はこの電圧可変容
量素子6とで電子同調回路を構成し、第1及び第2の伝
送線路は誘電体共振子1を介して平行になる様に配置・
固定されている。On the other hand, a second transmission line 5 which is magnetically coupled to the dielectric resonator and has a voltage variable capacitance element 6 connected to one end constitutes an electronic tuning circuit with this voltage variable capacitance element 6. The transmission lines are arranged parallel to each other through the dielectric resonator 1.
Fixed.
とこで、電圧可変容量素子6のノ\イアス電圧を変化さ
せて容贋値を変化させると、電子同調回路の共振周波数
が変化するので主共振周波数foが変化し、電子同調発
振器の発振周波数が、例えば0゜lfo程度変化し、結
合アンテナ7を介して出力される。Now, when the noise voltage of the voltage variable capacitance element 6 is changed to change the capacitance value, the resonant frequency of the electronically tuned circuit changes, so the main resonant frequency fo changes, and the oscillation frequency of the electronically tuned oscillator changes. , for example, changes by about 0°lfo, and is outputted via the coupling antenna 7.
尚、電子同調発振器として良好な直線性を得る為、電子
同調回路の共振周波数は、例えば(0,7〜0.8)f
oに設定される。In addition, in order to obtain good linearity as an electronically tuned oscillator, the resonant frequency of the electronically tuned circuit is set to, for example, (0.7 to 0.8)f.
o.
今、発振周波数を5.5 GHzから例えば6.2 G
Hzに約5%程度下げる場合、電気的位相がψ1のまま
では第4図に示す様にZ−の100点と、Zs・6.2
Gl(Zの点とが離れ、ZLとZsとのりアクタンスの
和が0とならないので6.2GH2で発振しない。Now, change the oscillation frequency from 5.5 GHz to 6.2 G, for example.
When lowering the frequency by about 5% to Hz, if the electrical phase remains at ψ1, the Z-100 point and Zs 6.2 as shown in Figure 4.
Since the point Gl (Z) is far away and the sum of the actances of ZL and Zs does not become 0, it does not oscillate at 6.2GH2.
そこで、第3図に示す様に、φ1をφ2に移動すると、
これに対応して第4図のZ、がZL’に移動し、foが
fo’になり6.2GHzでZsとZこのリアクタンス
分の和が0となり、この周波数で発振させることができ
る。Therefore, as shown in Figure 3, if φ1 is moved to φ2,
Correspondingly, Z in FIG. 4 moves to ZL', fo becomes fo', and at 6.2 GHz, the sum of the reactances of Zs and Z becomes 0, making it possible to oscillate at this frequency.
又、上記の様に、電子同調回路の共振周波数と主共振周
波数は一定の関♂するので、それを満足させる為に電子
同調回路の共振周波数を下げる必要があり、第3図の5
“に示す様に第2の伝送線路を長くしなければならない
。In addition, as mentioned above, the resonant frequency of the electronic tuning circuit and the main resonant frequency have a certain relationship, so in order to satisfy this relationship, it is necessary to lower the resonant frequency of the electronic tuning circuit.
The second transmission line must be made longer as shown in ".
即ち、発振周波数を大幅に変化したい時、電子同調回路
の共振周波数をその都度調整しなければならないと云う
問題点がある。That is, when it is desired to significantly change the oscillation frequency, there is a problem in that the resonant frequency of the electronic tuning circuit must be adjusted each time.
上記の問題点は、第1の伝送線路3の延長線と第2の伝
送線路8の延長線が交差し、且つ誘電体共振子1を該第
1の伝送線路に沿って食性抵抗素子2より遠ざかる方向
に移動させた時、該第2の伝送線路の他O:うが該誘電
体共振子の影響を受け、該第2の伝送線路と電圧可変容
量素子6で構成される電子同調回路の共振周波数が低下
する様に該第1及び第2の伝送線路を配置した本発明の
電子同調発振器により解決される。The above problem is that the extension line of the first transmission line 3 and the extension line of the second transmission line 8 intersect, and the dielectric resonator 1 is connected to the corrosion resistance element 2 along the first transmission line. When the second transmission line is moved away from the other side, the second transmission line is influenced by the dielectric resonator, and the electronic tuning circuit consisting of the second transmission line and the voltage variable capacitance element 6 is affected by the dielectric resonator. This problem is solved by the electronically tuned oscillator of the present invention, in which the first and second transmission lines are arranged so that the resonant frequency is lowered.
本発明は、誘電体共振子の設置位置の変化と、主共振周
波数fOの変化と、電子同調回路の共振周波数の変化と
の間で相関を付ける様にした。In the present invention, a correlation is established between a change in the installation position of the dielectric resonator, a change in the main resonant frequency fO, and a change in the resonant frequency of the electronic tuning circuit.
即ち、電子同調発振器の発振周波数を大幅に変化させる
時、誘電体共振器lの設置位置を変化させなければなら
ないが、この変化に対応して電子同調回路の共振周波数
が、誘電体共振器1の誘電率の影響を受けて変化する様
にしたので、発振周波数を大幅に変化させても電子同調
回路の調整が不要となる。That is, when the oscillation frequency of the electronically tuned oscillator is changed significantly, the installation position of the dielectric resonator 1 must be changed, and in response to this change, the resonant frequency of the electronically tuned circuit is changed to the position of the dielectric resonator 1. Since the change is influenced by the dielectric constant of , there is no need to adjust the electronic tuning circuit even if the oscillation frequency is changed significantly.
第1図は本発明の実施例の構成図を示す。尚、全図を通
じて同一符号は同一対象物を示す。FIG. 1 shows a block diagram of an embodiment of the present invention. Note that the same reference numerals indicate the same objects throughout the figures.
図において、第2の伝送線路8の延長線は第1の伝送線
路3の延長線で交わる様に配置・固定されている。In the figure, the extension line of the second transmission line 8 is arranged and fixed so as to intersect with the extension line of the first transmission line 3.
この電子同調発振器を、例えば6.5GHzで発振させ
る時の誘電体共振子1とトランジスタ2の最適電気的位
相(上記の様にZsとZLのりアクタンス分が0になる
位相)φ1とすると、6.2GHzに変える時は上記の
様にφ2にしなければならない。When this electronically tuned oscillator is caused to oscillate at, for example, 6.5 GHz, the optimum electrical phase between the dielectric resonator 1 and the transistor 2 (the phase in which the actance of Zs and ZL becomes 0 as described above) is φ1, then 6.5 GHz. When changing to .2GHz, it must be set to φ2 as described above.
そこで、誘電体共振子1を第1の伝送線路3に沿って終
端抵抗器4の方に移動させると、誘電体共振子1と第2
の伝送線路8との重なり合う部分(図中の斜線部分)が
徐々に増えるので、第2の伝送線路8の開放端にはこの
誘電体共振子lの高誘電率の影響を受けて容量が負荷さ
れた状態となり、電子同調回路の共振周波数は低くなる
。Therefore, when the dielectric resonator 1 is moved along the first transmission line 3 toward the terminating resistor 4, the dielectric resonator 1 and the second
As the overlapped portion (hatched area in the figure) with the transmission line 8 gradually increases, the open end of the second transmission line 8 is loaded with capacitance due to the high dielectric constant of the dielectric resonator l. The resonant frequency of the electronic tuning circuit becomes low.
第2図は本発明の別の実施例の構成図を示す。FIG. 2 shows a block diagram of another embodiment of the invention.
図に示す様に、第1の伝送線路9に傾斜部を持たせたも
ので動作としては第1図の場合と同しである。As shown in the figure, the first transmission line 9 has a sloped portion, and its operation is the same as that shown in FIG.
即ち、第1及び第2の伝送線路を傾斜させて配置・固定
し、誘電体共振子を移動させる時、第2の伝送線路と重
なり合う部分が移動量に対応して変化する様にしたので
、電子同調回路の共振周波数の調整が不要となる。That is, the first and second transmission lines are arranged and fixed at an angle, and when the dielectric resonator is moved, the portion that overlaps with the second transmission line changes in accordance with the amount of movement. There is no need to adjust the resonant frequency of the electronic tuning circuit.
尚、本例では誘電体共振子は円筒形、トランジスタは電
界効果トランジスタで示しであるが、前者は所定の形状
をしている誘電体共振子、後者は資性抵抗を示す半導体
素子についても同じ効果が得られる。In this example, the dielectric resonator is cylindrical and the transistor is a field effect transistor, but the former is a dielectric resonator with a predetermined shape, and the latter is a semiconductor element that exhibits inherent resistance. Effects can be obtained.
以上詳細に説明した様に、発振周波数を大幅に変化させ
ても電子同調回路の調整が不要であると云う効果がある
。As explained in detail above, there is an advantage that even if the oscillation frequency is changed significantly, there is no need to adjust the electronic tuning circuit.
第1図は本発明の実施例の構成図、
第2図は本発明の別の実施例の構成図、第3図は従来例
の構成図、
第4図はトランジスタの負性インピーダンスと負荷イン
ピーダンスの関係図を示す。
図において、
1は誘電体共振子、
2は負性抵抗素子、
3.9は第1の伝送線路、
4は終端抵抗器、
5.8は第2の伝送線路、
6は電圧可変容量素子、Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a block diagram of another embodiment of the present invention, Fig. 3 is a block diagram of a conventional example, and Fig. 4 shows the negative impedance and load impedance of the transistor. A relationship diagram is shown. In the figure, 1 is a dielectric resonator, 2 is a negative resistance element, 3.9 is a first transmission line, 4 is a terminating resistor, 5.8 is a second transmission line, 6 is a voltage variable capacitance element,
Claims (1)
共振子と磁界結合し、一端に負性抵抗素子(2)が接続
された第1の伝送線路(3)と、該誘電体共振子と磁界
結合し、一端が開放又は短絡され、他端に電圧可変容量
素子(6)が接続された所定の長さを有する第2の伝送
線路(8)とからなる電子同調発振器において、 該第2の伝送線路の該一端と該第2の伝送路との距離が
、該第2の伝送路の他端と該第1の伝送線路との距離よ
り短くなる様に配置し、誘電体共振子を該第1の伝送線
路に沿って該負性抵抗素子より遠ざかる方向に移動させ
た時、 該第2の伝送線路と該電圧可変容量素子で構成される電
子同調回路の共振周波数が低下する様にしたことを特徴
とする電子同調発振器。[Claims] A dielectric resonator (1) having a main resonance frequency; a first transmission line (3) magnetically coupled to the dielectric resonator and having a negative resistance element (2) connected to one end; ) and a second transmission line (8) having a predetermined length, which is magnetically coupled to the dielectric resonator, has one end open or short-circuited, and has a voltage variable capacitance element (6) connected to the other end. In the electronically tuned oscillator, the distance between the one end of the second transmission line and the second transmission line is shorter than the distance between the other end of the second transmission line and the first transmission line. and when the dielectric resonator is moved in a direction away from the negative resistance element along the first transmission line, electronic tuning consisting of the second transmission line and the voltage variable capacitance element An electronically tuned oscillator characterized in that the resonant frequency of the circuit is lowered.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27537985A JPS62135003A (en) | 1985-12-06 | 1985-12-06 | Electronic tuning oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27537985A JPS62135003A (en) | 1985-12-06 | 1985-12-06 | Electronic tuning oscillator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62135003A true JPS62135003A (en) | 1987-06-18 |
Family
ID=17554663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27537985A Pending JPS62135003A (en) | 1985-12-06 | 1985-12-06 | Electronic tuning oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62135003A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07202566A (en) * | 1993-12-29 | 1995-08-04 | Nec Corp | Semiconductor |
-
1985
- 1985-12-06 JP JP27537985A patent/JPS62135003A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07202566A (en) * | 1993-12-29 | 1995-08-04 | Nec Corp | Semiconductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4749963A (en) | Oscillator having stripline loop resonator | |
US4619001A (en) | Tuning systems on dielectric substrates | |
EP0524011B1 (en) | Transverse electromagnetic mode resonator | |
JPS6047764B2 (en) | Integrated circuit microwave oscillator | |
US2485031A (en) | High-frequency transmission system | |
US3869681A (en) | Microwave cavity oscillator having a frequency tuning element | |
JPS62135003A (en) | Electronic tuning oscillator | |
US6369676B2 (en) | High-frequency module | |
US4818956A (en) | Dielectrically stabilized GaAs FET oscillator with two power output terminals | |
US6172577B1 (en) | Oscillator and oscillation apparatus using the oscillator | |
US4155051A (en) | Harmonically tuned high power voltage controlled oscillator | |
JPS61219206A (en) | Integrated microwave oscillator | |
JP2922547B2 (en) | High frequency oscillator | |
JP3191952B2 (en) | IC oscillator | |
JPS63233601A (en) | Voltage controlled oscillator | |
JPS6218101A (en) | Semi-coaxial resonator control oscillator | |
JPS62235805A (en) | Electronic tuning oscillator | |
JP2578829B2 (en) | Dielectric resonator controlled voltage controlled oscillator | |
EP1235343A2 (en) | Microwave oscillator having improved phase noise of oscillation signal | |
JPH11239012A (en) | Resonator circuit and oscillator circuit | |
JP2002171130A (en) | Voltage control oscillator circuit | |
JPH1146116A (en) | Oscillator and oscillation system using the same | |
JPH11234009A (en) | Oscillator device | |
JPH0542163B2 (en) | ||
JPH0542842B2 (en) |