JPS62134547A - Apparatus for measuring thermal diffusivity - Google Patents
Apparatus for measuring thermal diffusivityInfo
- Publication number
- JPS62134547A JPS62134547A JP27436085A JP27436085A JPS62134547A JP S62134547 A JPS62134547 A JP S62134547A JP 27436085 A JP27436085 A JP 27436085A JP 27436085 A JP27436085 A JP 27436085A JP S62134547 A JPS62134547 A JP S62134547A
- Authority
- JP
- Japan
- Prior art keywords
- specimen
- thermal diffusivity
- sample
- irradiation
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、レーザーフラッシュ法による無限平板の熱拡
散率の測定法に用いられる熱拡散率測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a thermal diffusivity measuring device used for measuring the thermal diffusivity of an infinite flat plate by a laser flash method.
U発明の技術的背景とその問題点]
従来から厚み一定の平板試料の熱拡散率を測定する方法
として、レーザーフラッシュ法が知られている。Technical background of the invention and its problems] The laser flash method has been known as a method for measuring the thermal diffusivity of a flat plate sample of constant thickness.
この方法では、厚み一様な平板試料にレーデ−光を瞬時
照射して試料背面の温度上昇曲線を測定することにより
試料の熱拡散率が求められる。In this method, the thermal diffusivity of the sample is determined by instantaneously irradiating a flat sample with uniform thickness with radar light and measuring the temperature rise curve on the back side of the sample.
しかしながら、このような従来のレーザーフラッシュ法
では、厚み、形状が一定で比較的薄く、熱拡散率の大き
い試料の場合には、測定値のバラツキが大きくなるとい
う問題があった。However, such a conventional laser flash method has a problem in that when a sample is relatively thin with constant thickness and shape and has a high thermal diffusivity, the measurement values vary widely.
[発明の目的]
本発明はこのような従来の難点を解消すべくなされたも
ので、レーザーフラッシュ法による熱拡散率測定法にお
いて、厚み、形状が変化しても、又熱拡散率が大きい試
料でもバラツキのない熱拡散率の測定値を得られる熱拡
散率測定装置を提供することを目的とする−0
[発明の概要]
すなわち本発明の熱拡散率測定装置は、高エネルギー線
照射装置と、試料を前記高エネルギー線照射装置の照射
軸と直交さけて保持する試料保持装置と、高エネルギー
線照射装置と前記試料保持装置間の高エネルギー線通路
上に配置されたアパーチャーと、前記試料保持装置の背
面に向けて配置された非接触感熱センサーと、前記高エ
ネルギー線照射装置または非接触感熱センサーを前記高
エネルギー線通路と直交する面内で移動させる移動装置
とを備えることにより、厚みおよび形状か変化しても、
又熱拡散率が大きい試料でもバラツキのない熱拡散率の
測定値を得られるようにしたものである。[Purpose of the Invention] The present invention has been made in order to solve these conventional difficulties.In the thermal diffusivity measurement method using the laser flash method, even if the thickness and shape change, the sample with a large thermal diffusivity can be measured. [Summary of the Invention] That is, the thermal diffusivity measuring device of the present invention is a high-energy ray irradiation device. , a sample holding device that holds the sample so as not to be perpendicular to the irradiation axis of the high-energy beam irradiation device; an aperture disposed on the high-energy beam path between the high-energy beam irradiation device and the sample holding device; and the sample holding device. By including a non-contact heat-sensitive sensor disposed toward the back of the device, and a moving device that moves the high-energy ray irradiation device or the non-contact heat-sensitive sensor in a plane orthogonal to the high-energy ray path, thickness and Even if the shape changes,
Moreover, it is possible to obtain a measured value of thermal diffusivity without variation even for a sample having a large thermal diffusivity.
[発明の実施例] 以下図面を参照して本発明の実施例について説明する。[Embodiments of the invention] Embodiments of the present invention will be described below with reference to the drawings.
第2図は本発明を用いたレーザフラッシュ法の原理図で
ある。FIG. 2 is a diagram showing the principle of the laser flash method using the present invention.
同図に示すように、厚さ℃のかなり大きい平板試料1の
一部に、アパーチャー2を用いて一様なエネルギーを持
った半径roのフラッシュ光3を瞬時照射してその試料
1を加熱した場合、フラッシュ光の中心から距2itr
だけ離れたフラッシュ光照射と反対側の試料面上の温度
上昇曲線θは、試料から外部への熱損失と試料外形の影
響を無視して、2次元熱拡散5程式を解けば、
・・・・・・・・・(I)
・・・・・・・・・(n)
で表わされる。As shown in the figure, a portion of a fairly large flat sample 1 with a thickness of °C was instantaneously irradiated with a flash light 3 having a uniform energy and a radius of ro using an aperture 2 to heat the sample 1. If the distance from the center of the flash light is 2itr
The temperature rise curve θ on the sample surface on the opposite side of the flash light irradiation, which is separated by the same distance as the flash light irradiation, can be obtained by solving the five two-dimensional heat diffusion equations, ignoring heat loss from the sample to the outside and the influence of the sample external shape. ......(I) .........(n)
ここでQは単位面積当りのエネルギー、ρは密度、Cp
は熱容量、λは厚み、αは熱拡散率、tはフラッシュ光
が照射されてからの経過時間を表す。Here, Q is energy per unit area, ρ is density, Cp
is the heat capacity, λ is the thickness, α is the thermal diffusivity, and t is the elapsed time after the flash light is irradiated.
なお(I)式においてG=1とおけば従来のレーザーフ
ラッシュ法と同一の式になる。試料厚みが薄い場合には
ごく短時間に 内は1となり、(I)式は
となる。Note that if G=1 is set in equation (I), the equation becomes the same as that of the conventional laser flash method. When the sample thickness is thin, the inside becomes 1 in a very short time, and equation (I) becomes .
r/ro=1.5.2.2.5のとき4αt/r”に対
するGの関係を第3図に示す。FIG. 3 shows the relationship of G to 4αt/r'' when r/ro=1.5.2.2.5.
第1図は本発明の一実施例の熱拡散率測定装置の斜視図
である。FIG. 1 is a perspective view of a thermal diffusivity measuring device according to an embodiment of the present invention.
この図に示すように、この実施例の熱拡散率測定装置は
、レーザー照射装置11と、そのレーザー照射方向に順
に配置された、アパーチャー径3.5龍のアパーチャー
12と、平板状試料13を照射軸と直交させて保持する
試料保持装置14と、照射軸に直交する方向に移動可能
な非接触感熱センサー5、および図示を省略した、非接
触感熱センサー15をレーザー光の光軸と直交する面内
で移動させる移動装置とから構成されている。As shown in this figure, the thermal diffusivity measurement device of this example includes a laser irradiation device 11, an aperture 12 with an aperture diameter of 3.5 mm arranged in order in the laser irradiation direction, and a flat sample 13. A sample holding device 14 held perpendicular to the irradiation axis, a non-contact thermal sensor 5 movable in a direction perpendicular to the irradiation axis, and a non-contact thermal sensor 15 (not shown) are arranged perpendicular to the optical axis of the laser beam. It consists of a moving device that moves within a plane.
なお移動装置は非接触感熱ヒンサー15を移動させずに
、レーザー光の光軸を平行移動させるように構成しても
よい。Note that the moving device may be configured to move the optical axis of the laser beam in parallel without moving the non-contact heat sensitive heat sensitive sensor 15.
この熱拡散率測定装置を用いて平板状試料の熱拡散率を
測定する場合には、試料13上のレーザー光の照射位置
と非接触感熱センサー15の測定位置とを、所定の距離
だけ離しておぎ、レーザー照射装置11から瞬時試料1
1ヘレーザー光を照射する。そしてこの照射箇所から所
定の距離だけ離れた位置の試料11の背面の表面温度の
熱履歴曲線を非接触感熱センサー15により測定して前
述した各式により熱拡散率を求めればよい。When measuring the thermal diffusivity of a flat sample using this thermal diffusivity measurement device, the laser beam irradiation position on the sample 13 and the measurement position of the non-contact thermal sensor 15 are separated by a predetermined distance. Instantaneous sample 1 from the laser irradiation device 11
1. Irradiate laser light. Then, the thermal history curve of the surface temperature of the back surface of the sample 11 at a position a predetermined distance away from the irradiation point is measured by the non-contact heat-sensitive sensor 15, and the thermal diffusivity is determined by each of the above-mentioned formulas.
次にこの実施例の熱拡散率測定装置を用いて熱拡散率を
測定した例について説明する。Next, an example in which thermal diffusivity was measured using the thermal diffusivity measuring device of this embodiment will be described.
試料として厚さ0.5mmの5US304を用いアパー
チャーの中心から5酊離れた位置における温度履歴曲線
を測定した。その結果を第4図に示す。Using 5US304 with a thickness of 0.5 mm as a sample, the temperature history curve was measured at a position 5 mm away from the center of the aperture. The results are shown in FIG.
この試料を標準試料(熱拡散率0.034cイ/S)と
して3iウエハーの熱拡散率を測定した結果は0.79
cf/sとなった。Using this sample as a standard sample (thermal diffusivity 0.034c/S), the thermal diffusivity of the 3i wafer was measured and the result was 0.79.
cf/s.
また試験片の厚さを0.5〜1mmの範囲で代えて測定
を行なったが試料の厚さによる差は認られなかった。Further, measurements were carried out with the thickness of the test piece varied in the range of 0.5 to 1 mm, but no difference was observed depending on the thickness of the sample.
[考案の効果]
以上説明したように、本発明によれば、熱拡散率測定法
により、厚み、形状が一定で比較的薄い板状試料でも測
定値のバラツキを解消させ゛ることかできる。したがっ
て試料の圧延または絞りの具合をチェックしたり、試料
内の亀裂の有無、熱処理条件の設定などに有用な知見を
得ることが可能でおり、品質管理、工程管理等に活用す
ることができる。[Effects of the Invention] As explained above, according to the present invention, it is possible to eliminate variations in measured values even for a relatively thin plate-like sample with constant thickness and shape by the thermal diffusivity measurement method. Therefore, it is possible to obtain useful knowledge for checking the rolling or drawing conditions of the sample, checking for cracks in the sample, setting heat treatment conditions, etc., and can be used for quality control, process control, etc.
第1図は本発明の一実施例を概略的に示す斜視図、第2
図は本発明を用いたレーザフラッシュ法の原理図、第3
図はレーザー照射位置と測定位置との距離を変えたとき
の2次元熱拡散5程式の関数間の関係の変化を示すグラ
フ、第4図は本発明の実施例の装置を使用して測定した
試料の温度履歴曲線を示すグラフである。
11・・・・・・・・・・・・レーザー照射装置12−
・・・・・・・・・・・アパーチャー13・・・・・・
・・・・・・平板状試料14・・・・・・・・・・・・
試料保持装置15・・・・・・・・・・・・非接触感熱
センサー第1図
第2図
4医t/rA
第3図
第4図
手 続 補 正 1ll(自発)1、J件f7
)ti示 特m[1i?60−274360号2、
発明の名称
熱拡散率測定装置
3、補正をする者
事件との関係・特許出願人
神奈川県用崎市幸区堀用町72番地
(307)株式会社 東芝
4、代 理 人 〒 101東京都千代田
区神田多町2丁目1番地
明細書の発明の詳、$l!lな説明の欄6、補正の内容
(1)第4頁5行目の式を以下の通り訂正する。
(2)同上から2行目「短It¥間に 内は」を「短
時間に()内は′」と訂正する。
(3)第6真下から317目「考案の効果」を「発明の
効果」と訂正する。
以 上FIG. 1 is a perspective view schematically showing one embodiment of the present invention, and FIG.
The figure is a diagram of the principle of the laser flash method using the present invention.
The figure is a graph showing the change in the relationship between the functions of the two-dimensional heat diffusion equation when the distance between the laser irradiation position and the measurement position is changed. It is a graph showing a temperature history curve of a sample. 11... Laser irradiation device 12-
・・・・・・・・・・・・Aperture 13・・・・・・
・・・・・・Flat sample 14・・・・・・・・・・・・
Sample holding device 15...Non-contact thermal sensor Fig. 1 Fig. 2 Fig. 4 Doctor t/rA Fig. 3 Fig. 4 Procedure Correction 1ll (voluntary) 1, J case f7
)ti show special m[1i? 60-274360 No. 2,
Name of the invention: Thermal diffusivity measurement device 3, Relationship with the person making the amendment/Patent applicant: 72 Horiyo-cho, Saiwai-ku, Yosaki-shi, Kanagawa (307) Toshiba Corporation 4, Agent: Chiyoda, Tokyo 101 Details of the invention at 2-1 Kanda Tamachi, ward, $l! Explanation column 6, contents of correction (1) The formula on page 4, line 5 is corrected as follows. (2) In the second line from the above, ``Short It¥dama inside wa'' is corrected to ``Shortly in () inside wa'''. (3) 317th line from the bottom of No. 6, ``Effect of invention'' is corrected to ``Effect of invention.''that's all
Claims (1)
照射装置の照射軸と直交させて保持する試料保持装置と
、高エネルギー線照射装置と前記試料保持装置間の高エ
ネルギー線通路に配置されたアパーチャーと、前記試料
保持装置の背面に向けて配置された非接触感熱センサー
と、前記高エネルギー線照射装置または非接触感熱セン
サーを前記高エネルギー線通路と直交する面内で移動さ
せる移動装置とを有することを特徴とする熱拡散率測定
装置。a high-energy beam irradiation device; a sample holding device that holds a sample perpendicular to the irradiation axis of the high-energy beam irradiation device; and an aperture arranged in a high-energy beam passage between the high-energy beam irradiation device and the sample holding device. and a non-contact heat-sensitive sensor disposed toward the back of the sample holding device, and a moving device that moves the high-energy ray irradiation device or the non-contact heat-sensitive sensor in a plane orthogonal to the high-energy ray path. A thermal diffusivity measuring device characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27436085A JPS62134547A (en) | 1985-12-07 | 1985-12-07 | Apparatus for measuring thermal diffusivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27436085A JPS62134547A (en) | 1985-12-07 | 1985-12-07 | Apparatus for measuring thermal diffusivity |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62134547A true JPS62134547A (en) | 1987-06-17 |
Family
ID=17540570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27436085A Pending JPS62134547A (en) | 1985-12-07 | 1985-12-07 | Apparatus for measuring thermal diffusivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62134547A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997027472A1 (en) * | 1996-01-25 | 1997-07-31 | Inrad Corporation | Measuring the thermal conductivity of thin films |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54115182A (en) * | 1978-02-28 | 1979-09-07 | Satoru Fujii | Device for remotely measuring quantity of convective heat transfer |
JPS60155950A (en) * | 1984-01-19 | 1985-08-16 | Ichiro Hatta | Method and apparatus for measuring heat diffusion by intermittent heating |
-
1985
- 1985-12-07 JP JP27436085A patent/JPS62134547A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54115182A (en) * | 1978-02-28 | 1979-09-07 | Satoru Fujii | Device for remotely measuring quantity of convective heat transfer |
JPS60155950A (en) * | 1984-01-19 | 1985-08-16 | Ichiro Hatta | Method and apparatus for measuring heat diffusion by intermittent heating |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997027472A1 (en) * | 1996-01-25 | 1997-07-31 | Inrad Corporation | Measuring the thermal conductivity of thin films |
US5688049A (en) * | 1996-01-25 | 1997-11-18 | Inrad | Method and apparatus for measuring the thermal conductivity of thin films |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59500385A (en) | Methods and means of inspecting the surface quality of solid state materials | |
JPS62134547A (en) | Apparatus for measuring thermal diffusivity | |
US4755049A (en) | Method and apparatus for measuring the ion implant dosage in a semiconductor crystal | |
JPS6358242A (en) | Method and instrument for measuring thermal diffusivity | |
JPH08313458A (en) | X-ray equipment | |
Ambrose | An interference microscope for the study of inhomogeneous media | |
JPS6363945A (en) | Stabilization of optical property measurement | |
Hansen et al. | Specular reflection from mercury vapor | |
Lunazzi et al. | Fabry-Perot laser interferometry to measure refractive index or thickness of transparent materials | |
JPS6258146A (en) | Method for measuring heat diffusivity | |
Panahibakhsh et al. | Laser induced modification of the thermo-optical properties of Nd: YAG crystal determined by thermal lens technique | |
JPS61173171A (en) | Method for measuring resistivity of semiconductor wafer | |
US3504983A (en) | Ellipsoidal mirror reflectometer including means for averaging the radiation reflected from the sample | |
Kocharyan et al. | On the Possibility of Two-Dimensional Focusing of Reflected X-Rays from Quartz Single Crystal in the Presence of External Temperature Gradient | |
Harburn et al. | Details for an optical gate | |
Miyake et al. | Thermal Effusivity Calibration Procedure for Thermal Microscope. | |
SU861936A1 (en) | Method of measuring transverse dimensions and crack depth in objects | |
Thompson et al. | The measurement of the width of a Gaussian light beam | |
JP2715117B2 (en) | Thermal constant measurement device | |
JPS63151843A (en) | Sample holder for x-ray analysis | |
SU1689827A1 (en) | Method for determination of thermal diffusivity of solids | |
SU664496A1 (en) | Interference method of measuring taper of transparent plates | |
SU1711048A1 (en) | Method of determining first invariant value of deformation tensor | |
JPH07130811A (en) | Evaluation of semiconductor wafer | |
JPS6298237A (en) | Method and device for measuring bulk density of porous glass sintered body |