JPS62134509A - Automatic sound-speed correcting type supersonic dimension measuring gate - Google Patents

Automatic sound-speed correcting type supersonic dimension measuring gate

Info

Publication number
JPS62134509A
JPS62134509A JP27459785A JP27459785A JPS62134509A JP S62134509 A JPS62134509 A JP S62134509A JP 27459785 A JP27459785 A JP 27459785A JP 27459785 A JP27459785 A JP 27459785A JP S62134509 A JPS62134509 A JP S62134509A
Authority
JP
Japan
Prior art keywords
distance
measured
ultrasonic
wire
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27459785A
Other languages
Japanese (ja)
Inventor
Sumio Kogure
木暮 澄夫
Kazuhiro Suzuki
一弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP27459785A priority Critical patent/JPS62134509A/en
Publication of JPS62134509A publication Critical patent/JPS62134509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To accomplish temperature correction of a measured distance to a specimen by multiplying a ratio of actual distance from a stylus and a wire and a measuring distance by a supersonic wave by a measured distance from the stylus to the specimen by the supersonic wave. CONSTITUTION:A supersonic wave stylus 10 is arranged corresponding to each measuring point of a specimen, such as a channel box 1, mounting a temperature correcting wire 11 between each stylus and measuring surface and the whole assembly is immersed in the water 12. The water temperature has generally been changed to t' deg.C, a different temperature from the initial temperature condition t deg.C an apparent distance of the wire 11 measured by the No.1 pulse meter 15 assumes a distance of L'W and the corresponding voltage VW is obtained by the No.1 distance voltage generator 16. A reflected wave from the channel box 1 is measured for the distance LS' by the No.2 pulse meter 17 and the corresponding voltage VS is obtained by the No.2 distance voltage generator 18. An arithmetic operation of a correcting coefficient VW/VW' is made from the initial voltage VW stored in a memory 14 through a correcting coefficient calculator 19. A product of the distance voltage VS' and correcting coefficient VW/VW' is obtained for the correction thereof.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は自動音速補正式超音波寸Y−A測定装置に係り
、特に使用中あるいは使用済み核燃料チャンネルボック
ス等の燃料プール水中で超音波を利用して寸法測定を行
う際の水の温度変化による測定値の変動を自動的に補正
するのに好適な自動音速補正式超音波寸法測定装置に関
するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an automatic sound speed correction type ultrasonic dimension Y-A measuring device, and particularly to a device that uses ultrasonic waves in the water of a fuel pool in use or in a spent nuclear fuel channel box. The present invention relates to an automatic speed-of-sound correction type ultrasonic dimension measuring device suitable for automatically correcting fluctuations in measured values due to changes in water temperature when measuring dimensions.

〔発明の背景〕[Background of the invention]

まず、本発明の背景について第7図、第8Mを用いて説
明する。第7図は原子炉内における燃料チャンネルボッ
クスと制御棒の配置を示す斜視間、第8図は第7図のP
方向矢視図で、4本のチャンネルボックス30が1本の
制御棒31を取り囲むように配置されて、制御棒31は
各チャンネルボックス30間の隙間を上下に移動して炉
心の反応度を制御する。
First, the background of the present invention will be explained using FIGS. 7 and 8M. Figure 7 is a perspective view showing the arrangement of the fuel channel box and control rods inside the reactor, and Figure 8 is the P of Figure 7.
In the directional view, four channel boxes 30 are arranged to surround one control rod 31, and the control rod 31 moves up and down in the gap between each channel box 30 to control the reactivity of the reactor core. do.

ところで、チャンネルボックス30は、原子炉の運転中
に受ける熱履歴によって、正方形の断面のふくらみや長
手方向の曲りおよび上端と下端の間の撚れ等の変形を生
ずる。この変形量が大きくなると、各チャンネルボック
ス30間の間隙に小さい部分が生じて、制御棒31の移
動に支障をきたすようになる。このため、使用中のチャ
ンネルボックス30の変形量を定期的に測定して、制御
捧31の駆動に支障がないことを確認することが必要に
なってきている。
By the way, the channel box 30 undergoes deformations such as bulging of the square cross section, bending in the longitudinal direction, and twisting between the upper end and the lower end due to the thermal history received during the operation of the nuclear reactor. If this amount of deformation becomes large, a small portion will appear in the gap between each channel box 30, which will impede movement of the control rod 31. For this reason, it has become necessary to periodically measure the amount of deformation of the channel box 30 during use to confirm that there is no problem in driving the control shaft 31.

ところで、従来は、工場製作時にチャンネルボックスの
仕上り寸法を?IIII定するほかは、この種の変形測
定が行われていないのが現状である。しかし、炉内で使
用後のチャンネルボックスは、放射線を帯びているので
、工場製作時のように直接検査員がスケールを当てて寸
法測定を行うことができず、当然遠隔測定が望ましく、
また、チャンネルボックスの表面に傷をつけないために
も水中で非接触で測定することが有利であり、水中で超
音波を利用して測定することが考えられている。その公
知例としては、潜水盤が使用しているソナーや漁船が備
えている魚群探知器があるが、これらはいずれも上記使
用目的には温度による音速の変ゴ1 化があるのが使用することができない。
By the way, in the past, when manufacturing a channel box at a factory, what were the finished dimensions of the channel box? At present, this type of deformation measurement has not been carried out except for the determination of III. However, since the channel box after being used in the furnace is radioactive, it is not possible for an inspector to measure the dimensions directly by applying a scale to it, as is the case when it is manufactured in a factory, so it is naturally preferable to measure it remotely.
Furthermore, in order to avoid damaging the surface of the channel box, it is advantageous to perform measurements underwater without contact, and it has been considered to perform measurements underwater using ultrasonic waves. Well-known examples include sonar used in diving boards and fish finders equipped on fishing boats, but both of these are used for the above purpose because the speed of sound changes due to temperature. I can't.

〔発明の目的〕 本発明は上記に鑑みてなされたもので、その目的とする
ところは、水の温度による音速の変化を補正して高精度
で能率的に水中で物体の寸法を測定することができる自
動音速補正式超音波寸法測定装置を提供することにある
[Object of the Invention] The present invention has been made in view of the above, and its purpose is to efficiently and accurately measure the dimensions of objects underwater by correcting changes in the speed of sound due to water temperature. An object of the present invention is to provide an automatic sound speed correction type ultrasonic dimension measuring device that can perform the following.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、探触子から被測定物側に既知の距離に
超音波の反射体である針金を配置し、上記探触子から上
記針金までの実際の距離と、超音波による測定距離との
比を上記超音波による上記探触子から上記被測定物まで
の測定距離に乗ずることにより水温の変化および水温変
化による超音波音速変化の計算をすることなしに上記被
測定物までの測定距離の温度補正を可能とする自動音速
補正手段を具備する構成とした点にある。
A feature of the present invention is that a wire serving as an ultrasonic reflector is placed at a known distance from the probe to the object to be measured, and the actual distance from the probe to the wire and the distance measured by the ultrasonic wave are measured. By multiplying the distance measured by the ultrasonic wave from the probe to the object to be measured by the ratio of The present invention is configured to include an automatic speed of sound correction means that enables temperature correction of distance.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第1図、第2図に示した実施例および第3
図〜第6図を用いて詳細に説明する。
Hereinafter, the present invention will be explained by the embodiments shown in FIGS.
This will be explained in detail using FIGS.

まず、本発明の原理について第3図〜第6図を用いて説
明する。第3図は水温の変化による超音波水中音速の変
化を示した線図で、横軸に水温′r。
First, the principle of the present invention will be explained using FIGS. 3 to 6. Figure 3 is a diagram showing changes in ultrasonic underwater sound speed due to changes in water temperature, where the horizontal axis represents water temperature 'r.

縦軸に音速Cを取って示しである。第3図より水温が0
℃から60℃に変化すると、音速が約150m/sec
を変化することがわかる。
The graph shows the speed of sound C on the vertical axis. From Figure 3, the water temperature is 0.
When changing from ℃ to 60℃, the sound speed is about 150m/sec
It can be seen that the

第4図は本発明の超音波寸法測定装置の原理図で、第5
図は第4図の場合のCRT画面への表示例を示した図で
、(a)は水温t℃における超音波探傷Aスコープ波形
、(b)はt”Cにおける超音波探IAスコープ波形を
示している。
Figure 4 is a principle diagram of the ultrasonic dimension measuring device of the present invention;
The figure shows an example of the display on the CRT screen in the case of Fig. 4. (a) shows the ultrasonic flaw detection A scope waveform at water temperature t°C, and (b) shows the ultrasonic flaw detection IA scope waveform at t''C. It shows.

第4図において、23は高周波ケーブル、24は水浸用
超音波探触子、25は水、26は針金、27は被測定物
を示し、水25中において、探触子24から既知の距@
 L wに針金26を配置し、距離Lsの位置にある被
■す宝物27に探触子24から超音波を照射すると、水
温がt℃においては。
In FIG. 4, 23 is a high frequency cable, 24 is a water immersion ultrasonic probe, 25 is water, 26 is a wire, and 27 is an object to be measured. @
When a wire 26 is placed at Lw and an ultrasonic wave is irradiated from the probe 24 to a treasure 27 located at a distance Ls, when the water temperature is t°C.

針金26から超音波Hwが反射し、被測定物27からは
超音波Hsが反射し、第5図(a)に示すように、Lw
の位置に針金26からの反射エコーHIEが表示され、
Lsの位置に被測定物27からの反射エコーH8Eが表
示される6次に、水温がL′℃(t′〉t)になると、
第5図(b)に示すように、L w ’  の位置に針
金26からの反射エコーHwE’ が、Ls’  の位
置に被測定物27からの反射エコーH8巳’ が表示さ
れる。
The ultrasonic wave Hw is reflected from the wire 26, the ultrasonic wave Hs is reflected from the object to be measured 27, and as shown in FIG.
The reflected echo HIE from the wire 26 is displayed at the position,
The reflected echo H8E from the object to be measured 27 is displayed at the position Ls. 6 Next, when the water temperature reaches L'°C (t'>t),
As shown in FIG. 5(b), the reflected echo HwE' from the wire 26 is displayed at the position Lw', and the reflected echo H8' from the object to be measured 27 is displayed at the position Ls'.

ここで、 Lw: Ls=Lw’  : Ls’      −(
1)であるため、これを変形して、 Lw’ が成立する。したがって、Lw/Lw’ を温度補正係
数としてLs/  に乗ずることにより、水温の変化に
関係なく、超音波探触子24から被測定物27までの距
離Lsを正確に測定することができる。
Here, Lw: Ls=Lw': Ls' - (
1), by transforming this, Lw' is established. Therefore, by multiplying Ls/ by Lw/Lw' as a temperature correction coefficient, the distance Ls from the ultrasonic probe 24 to the object to be measured 27 can be accurately measured regardless of changes in water temperature.

第6図はその結果の一例を示す線図で、超音波探触子2
4から被測定物27までの距離Lsが20mmで、水温
Tを20℃から50℃まで変化させた場合の水温Tと測
定距離りとの関係を示しである。第6図の8曲線は第4
図による場合で、5曲線は比較のために示した針金26
を設けない従来の場合で、8曲線の場合は、水温Tが2
0〜50℃に変化しても、針金26により温度補正を行
っであるので、測定誤差は約0.05mm以内に抑えら
れており、b曲線の場合は、温度補正を行っていないの
で、20°Cから50℃への温度変化で約0.9+nm
の測定誤差を生じている。
Figure 6 is a diagram showing an example of the results, and shows the ultrasonic probe 2.
4 shows the relationship between water temperature T and measurement distance when the distance Ls from 4 to the object to be measured 27 is 20 mm and the water temperature T is changed from 20° C. to 50° C. The 8th curve in Figure 6 is the 4th curve.
In the case shown in the figure, the 5th curve is the wire 26 shown for comparison.
In the conventional case where no curve is provided, in the case of 8 curves, the water temperature T is 2
Even if the temperature changes from 0 to 50°C, the temperature is corrected by the wire 26, so the measurement error is suppressed to within about 0.05mm. Approximately 0.9+nm with temperature change from °C to 50 °C
This results in measurement errors.

第1図は本発明の自動音速補正式超音波寸法測定装置の
温度補正機構部の一実施例を示す構造図で、(a)は縦
断面図、(b)は(a)のA−A線断面図で、被測定物
が核燃料チャンネルボックスの場合を例示しである。第
1図(a)において。
FIG. 1 is a structural diagram showing an embodiment of the temperature correction mechanism section of the automatic sound speed correction type ultrasonic dimension measuring device of the present invention, in which (a) is a longitudinal cross-sectional view, and (b) is an A-A in (a). This is a line sectional view illustrating a case where the object to be measured is a nuclear fuel channel box. In FIG. 1(a).

1はチャンネルボックス、2は測定装置で、測定装置2
には、曲り測定用超音波探触子3がチャンネルボックス
1の軸方向に7つ、周の各辺にそれぞれ4つ配置してあ
り、それぞれの探触子3の前には超音波を反射する温度
補正用針金4が張っである。
1 is a channel box, 2 is a measuring device, measuring device 2
, seven ultrasonic probes 3 for measuring bending are arranged in the axial direction of the channel box 1, and four on each side of the periphery. The temperature correction wire 4 is tensioned.

また、第1図(b)に示すように、幅測定用超音波探触
子5が周の各辺に1個づつ、また、ねじれ測定用超音波
探触子6が一辺にだけ2つ配置してあり、それぞれの探
触子5,6の前にそれぞれ温度補正用針金7,8が張っ
である。なお、9は測定装置2を吊っている吊針金であ
机 ところで、実際の測定は、測定装置2をセットしたチャ
ンネルボックス1を軸方向に移動させながら原子力発電
所内の燃料プール水または使用済燃料貯蔵プール水内で
行う。
Further, as shown in FIG. 1(b), one ultrasonic probe 5 for width measurement is arranged on each side of the circumference, and two ultrasonic probes 6 for torsion measurement are arranged only on one side. Temperature correction wires 7 and 8 are stretched in front of the probes 5 and 6, respectively. Note that 9 is a hanging wire that hangs the measuring device 2.In actual measurement, the channel box 1, in which the measuring device 2 is set, is moved in the axial direction while the fuel pool water or spent fuel inside the nuclear power plant is being moved. Performed in storage pool water.

第2図は本発明の自動音速補正式超音波寸法測定装置の
温度補正装置の一実施例を示すブロック図である。被測
定体であるチャンネルボックス1の各測定点に対応して
超音波探触子1oを配列し、それぞれの探触子10とチ
ャンネルボックス1の訓定面との中間に温度補正用針金
(反射体)11を取り付けて、この状態で水12内に浸
水させる。
FIG. 2 is a block diagram showing an embodiment of the temperature correction device of the automatic sound speed correction type ultrasonic dimension measuring device according to the present invention. Ultrasonic probes 1o are arranged corresponding to each measurement point of the channel box 1, which is the object to be measured, and a temperature correction wire (reflective wire) is placed between each probe 10 and the training surface of the channel box 1. body) 11 is attached and submerged in water 12 in this state.

測定を開始する際には、まず、最初に各測定点毎に針金
11からの反射波を測定して、その距離LWに対応した
電圧Vwをマルチプレクサ13を介して記憶装置14に
記憶する。
When starting measurement, first, the reflected wave from the wire 11 is measured for each measurement point, and the voltage Vw corresponding to the distance LW is stored in the storage device 14 via the multiplexer 13.

次に、チャンネルボックス1の測定を行うが、このとき
の水温は一般に初期条件とは異なり、t”Cになってい
るから、第1パルス測定器15で測定される針金11の
見掛上の距離はLw’  となっており、第1距離電圧
発生器16によってLw’  に対応した電圧Vw’ 
 が得られる6一方 チャンネルボックス1からの反射
波は、第2パルス測定器17でキャッチされて距離Ls
’が測定され、第2距離電圧発生器18によってそれに
対応する電圧V s ’  が得られる。
Next, the channel box 1 is measured, but since the water temperature at this time is generally t"C, which is different from the initial condition, the apparent value of the wire 11 measured by the first pulse measuring device 15 is The distance is Lw', and the first distance voltage generator 16 generates a voltage Vw' corresponding to Lw'.
6 On the other hand, the reflected wave from the channel box 1 is caught by the second pulse measuring device 17 and the distance Ls
' is measured and a corresponding voltage V s ' is obtained by the second distance voltage generator 18.

次に、温度が初期条件t’Cからt′℃に変ったことに
よる距離の補正方法について説明する。第1距離電圧発
生器16で得られた距離電圧VW’とそのときの探触子
10に対応して記憶装置14に記憶されている初期電圧
Vwとから補正係数演算器19によって補正係数Vw/
Vw’ を演算する。
Next, a method of correcting the distance when the temperature changes from the initial condition t'C to t'C will be described. A correction coefficient calculation unit 19 calculates a correction coefficient Vw/
Calculate Vw'.

次に、補正演算器20によって、チャンネルボックス2
1までの見掛けの距離に相当する距離電圧Vs’  と
補正係数Vw/Vw’ の積を求め、補正された真の距
離Lsに対応する電圧が出力端子21から出力される。
Next, the correction calculator 20 calculates the channel box 2
The product of the distance voltage Vs' corresponding to the apparent distance up to 1 and the correction coefficient Vw/Vw' is calculated, and the voltage corresponding to the corrected true distance Ls is output from the output terminal 21.

なお、以上の演算処理はアナログ演算によるほかディジ
タル計算機によって演算するようにしてもよく、演算プ
ロセスは変らない。
Note that the above calculation process may be performed by a digital computer in addition to analog calculation, and the calculation process remains unchanged.

なお、第2図の22は超音波パルス発生器である。Note that 22 in FIG. 2 is an ultrasonic pulse generator.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、水の2度による
音速の変化を補正して高精度で能率的に水中で物体の寸
法を測定することができ、しかも。
As described above, according to the present invention, it is possible to correct the change in the speed of sound due to 2 degrees of water and efficiently measure the dimensions of an object underwater with high accuracy.

従来行われていた水温の測定、音速の算出2時間軸の換
算、距離の計算等の一連の操作を省略でき。
A series of conventional operations such as measuring water temperature, calculating sound speed, converting 2 time axes, and calculating distance can be omitted.

高線量放射線雰囲気中での副定か可能であるという効果
がある。
This method has the advantage of being able to perform sub-determination in a high-dose radiation atmosphere.

図面の[−!J−な説明 、 第1図は本発明の自動音速補正式超音波寸法測定装
置の温度補正機構部の一実施例を示す構造図。
[-! J-Explanation, FIG. 1 is a structural diagram showing an embodiment of the temperature correction mechanism section of the automatic sound speed correction type ultrasonic dimension measuring device of the present invention.

第2図は同じく温度補正装置の一実施例を示すブロック
図、第3図は水温の変化による超音波水中音速の変化を
示した線図、第4図は本発明の超音波寸法測定装置の原
理図、第5図は第4図の場合のCRT画面への表示の一
例を示した図、第6図は第4図による場合の測定結果の
一例を示す線図。
FIG. 2 is a block diagram showing an embodiment of the temperature correction device, FIG. 3 is a diagram showing changes in ultrasonic underwater sound speed due to changes in water temperature, and FIG. 4 is a diagram showing the ultrasonic dimension measuring device of the present invention. FIG. 5 is a diagram showing an example of a display on a CRT screen in the case of FIG. 4, and FIG. 6 is a diagram showing an example of measurement results in the case of FIG. 4.

第7図は原子炉内分おける燃料チャンネルボックスと制
御棒の配置を示す斜視図、第8図は第7図のP方向矢視
図である。
FIG. 7 is a perspective view showing the arrangement of fuel channel boxes and control rods within the reactor, and FIG. 8 is a view taken in the direction of arrow P in FIG. 7.

1・・・チャンネルボックス(被測定物)、2・・・測
定装置、3,5,6,1.0・・・超音波探触子、4,
7゜8.11・・・針金、12・・・水、13・・・マ
ルチプレクサ、14・・・記憶′!A置、15・・・第
1パルス測定器、16・・・第1距離電圧発生器、17
・・・第2パルス測定器、18・・第2距離電圧発生器
、19・・・補正係数演算器、2o・・・補正演算器、
22・・・超音波パル(ほか1名) χ)図 (α) 佑2デ 第3図 T  (’C)     −→ 躬5因 (α) (b) 躬60 r  (”c)     □
1... Channel box (object to be measured), 2... Measuring device, 3, 5, 6, 1.0... Ultrasonic probe, 4,
7゜8.11...Wire, 12...Water, 13...Multiplexer, 14...Memory'! A position, 15... first pulse measuring device, 16... first distance voltage generator, 17
...Second pulse measuring device, 18...Second distance voltage generator, 19...Correction coefficient calculator, 2o...Correction calculator,
22...Ultrasonic Pal (and 1 other person) χ) Diagram (α) You 2 De Diagram 3 T ('C) -→ 躬5因(α) (b) 躬60 r (''c) □

Claims (1)

【特許請求の範囲】[Claims] 1、超音波の伝播時間から水中で距離を測定して被測定
物の寸法を求めるものにおいて、探触子から前記被測定
物側の既知の距離に超音波の反射体である針金を配置し
、前記接触子から前記針金までの実際の距離と、超音波
による測定距離との比を前記超音波による前記探触子か
ら前記被測定物までの測定距離に乗ずることにより水温
の測定および水温変化による超音波音速変化の計算をす
ることなしに前記被測定物までの測定距離の温度補正を
可能とする自動音速補正手段を具備することを特徴とす
る自動音測補正式超音波寸法測定装置。
1. When determining the dimensions of an object to be measured by measuring distance underwater from the propagation time of ultrasonic waves, a wire serving as an ultrasonic reflector is placed at a known distance from the probe to the object to be measured. , Measure the water temperature and change the water temperature by multiplying the distance measured by the ultrasonic wave from the probe to the object to be measured by the ratio of the actual distance from the contact to the wire and the distance measured by the ultrasonic wave. 1. An automatic sound measurement correction type ultrasonic dimension measuring device characterized by comprising an automatic sound speed correction means that enables temperature correction of the measurement distance to the object to be measured without calculating changes in ultrasonic sound speed due to the ultrasonic sound speed change.
JP27459785A 1985-12-06 1985-12-06 Automatic sound-speed correcting type supersonic dimension measuring gate Pending JPS62134509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27459785A JPS62134509A (en) 1985-12-06 1985-12-06 Automatic sound-speed correcting type supersonic dimension measuring gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27459785A JPS62134509A (en) 1985-12-06 1985-12-06 Automatic sound-speed correcting type supersonic dimension measuring gate

Publications (1)

Publication Number Publication Date
JPS62134509A true JPS62134509A (en) 1987-06-17

Family

ID=17543955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27459785A Pending JPS62134509A (en) 1985-12-06 1985-12-06 Automatic sound-speed correcting type supersonic dimension measuring gate

Country Status (1)

Country Link
JP (1) JPS62134509A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130254A (en) * 1976-04-21 1976-11-12 Commissariat Energie Atomique Ultrasonic measuring apparatus
JPS59106624A (en) * 1982-12-06 1984-06-20 Mitsui Constr Co Ltd Underground excavator
JPS6199520A (en) * 1984-10-19 1986-05-17 Kawasaki Steel Corp Method and device for measuring roll profile
JPS61138108A (en) * 1984-12-11 1986-06-25 Kawasaki Steel Corp Method and instrument for measuring roll profile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130254A (en) * 1976-04-21 1976-11-12 Commissariat Energie Atomique Ultrasonic measuring apparatus
JPS59106624A (en) * 1982-12-06 1984-06-20 Mitsui Constr Co Ltd Underground excavator
JPS6199520A (en) * 1984-10-19 1986-05-17 Kawasaki Steel Corp Method and device for measuring roll profile
JPS61138108A (en) * 1984-12-11 1986-06-25 Kawasaki Steel Corp Method and instrument for measuring roll profile

Similar Documents

Publication Publication Date Title
US5329561A (en) Device for checking the thickness and the cohesion of the interface of a duplex tube
JPH06502250A (en) Ultrasonic method and device for measuring the outer diameter of tubes
JPH0225145B2 (en)
EP0664435A2 (en) Determining thickness
NO160815C (en) PROCEDURE FOR ACOUSTIC MEASUREMENT OF THE SEA SOUND OR BASIC SURFACE PROFILE.
US5596508A (en) High resolution measurement of a thickness using ultrasound
US4517152A (en) Method of testing fuel element tubes for defects
JPS62134509A (en) Automatic sound-speed correcting type supersonic dimension measuring gate
JP2720077B2 (en) Ultrasonic flaw detector
Flaud et al. Deconvolution process in measurement of arterial velocity profiles via an ultrasonic pulsed Doppler velocimeter for evaluation of the wall shear rate
USH1084H (en) Ultrasonic thickness measuring and imaging system and method
RU2738751C1 (en) Method of ultrasonic inspection of parameters of molding of fuel assemblies of nuclear reactors
JPH0545347A (en) Automatic ultrasonic flaw detecting method
JP3859601B2 (en) Reactor control rod inspection system and inspection method
JPH11101630A (en) Method and apparatus for measuring position of boundary of different substances by ultrasonic wave
JP2816212B2 (en) Ultrasonic testing
JPS62238406A (en) Apparatus for measuring dimension of fuel channel box
JPH1068716A (en) Manual ultrasonic flaw detection skill training device
CN108956777B (en) Pile foundation ultrasonic sensor, ultrasonic tomography observation system and application
GB1589731A (en) Method for determining the thickness of a material between two boundary surfaces thereof
SU534708A1 (en) Method for determining the location of damage and control of wire and cable irregularities
JPH05172789A (en) Ultrasonic flaw detector
JP2740933B2 (en) Channel box dimension measurement method
CN207036219U (en) A kind of device for measuring nuclear reactor vessel liquid level
JPH0536730B2 (en)