JPS62133655A - Probe diameter measuring device for charged corpuscular beam - Google Patents

Probe diameter measuring device for charged corpuscular beam

Info

Publication number
JPS62133655A
JPS62133655A JP27147585A JP27147585A JPS62133655A JP S62133655 A JPS62133655 A JP S62133655A JP 27147585 A JP27147585 A JP 27147585A JP 27147585 A JP27147585 A JP 27147585A JP S62133655 A JPS62133655 A JP S62133655A
Authority
JP
Japan
Prior art keywords
probe diameter
probe
measuring device
diameter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27147585A
Other languages
Japanese (ja)
Inventor
Kenichi Yamamoto
健一 山本
Genya Matsuoka
玄也 松岡
Mikio Ichihashi
幹雄 市橋
Takashi Matsuzaka
松坂 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27147585A priority Critical patent/JPS62133655A/en
Publication of JPS62133655A publication Critical patent/JPS62133655A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure a minute probe diameter, so far not possible to measure, by measuring plurally the probe diameter at the points extended from the smallest probe. CONSTITUTION:By placing a probe diameter measuring device variable in the optical axis (height) direction, and the probe diameter at a specific sampling position is computed from plural measurements. First, a sample board 14 is moved to the position where the tip of a knife edge 16 is at the electron beam radiating position, through a controller 25 and a sample board control unit 23. Then, the electron beams 11 are scanned to intersect the knife edge 16, the transmitting beam current is synchronized to a deflecting signal fed by a Faraday cup 18 to a deflector 15, and the value is detected. The detected signal is input to the Y of an XY recorder 24 through a signal multiplier 21 and a differential unit 22, while the deflecting signal is input to the X. The lateral axis of the recorder output indicates the scanning position and the vertical axis shows the differential signal intensity. The distance between two intersecting points of a straight line 1/e of the differential signal intensity and a differential signal wave is measured as the probe diameter d to be found.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は荷電粒子線のプローブ径測定装置に係り、特に
微小なプローブ径を精度よく測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a charged particle beam probe diameter measuring device, and more particularly to a device that accurately measures minute probe diameters.

〔発明の背景〕[Background of the invention]

従来のプローブ径81す定は、特公昭58−4314に
記載のように、試料面と同一高さに設けられたナイフェ
ツジ部を横切るように電子ビームを走査して、上記ナイ
フェツジからの反射・2次電子あるいは吸収電流、透過
電流の変化の割合がらプローブ径を求めいてた。しかし
上記ナイフェツジの汚れ、帯電等のため測定限界があり
、0・1μm程度がその下限値であった。
The conventional probe diameter 81 is determined by scanning an electron beam across a knife section provided at the same height as the sample surface, as described in Japanese Patent Publication No. 58-4314, and measuring the reflection from the knife. The probe diameter was determined from the rate of change in secondary electrons, absorption current, and transmission current. However, there is a limit to measurement due to dirt, electrostatic charge, etc. on the knife, and the lower limit was about 0.1 μm.

〔発明の目的〕[Purpose of the invention]

本発明の目的は荷電粒子線の微小プローブ径を測定する
装置を提供することにある。
An object of the present invention is to provide an apparatus for measuring the diameter of a microprobe of a charged particle beam.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、ナイフェツジ法など既知の方法で、試
料面から光軸方向にずれた複数位置でのプローブ径、あ
るいは複数のフォーカス電流値に対するプローブ径を測
定することにより、試料面でフォーカスさせたビームの
プローブ径を、外挿的に求めるという方法にある。この
方法によれば。
The feature of the present invention is to measure the probe diameter at multiple positions shifted from the sample surface in the optical axis direction or the probe diameter for multiple focus current values using a known method such as the Knifezi method. The method is to extrapolate the probe diameter of the beam. According to this method.

従来のプローブ径測定法で測定できなかったような微小
プローブ径を求めろことができる。
It is possible to obtain minute probe diameters that cannot be measured using conventional probe diameter measurement methods.

第1図により、本発明の詳細な説明する。第1図ま球面
収差と色収差を考慮したときのビームの軌道である。尚
同図でZ方向はビー11光軸方向である。このときプロ
ーブ径最小の位置Zから光軸方向にZが変化するにつれ
てプローブ径は増大していく。この増大の仕方は直線あ
るいは曲線で近似できる。従ってZ=Zoでのプローブ
径を求めるのに、それよりビームの拡がったZくZo領
領域位置Z −ffl、 Z −1!l”l l ・・
・+ Z −1またはZ > Z o領域の位置Zl、
Zi・・・、Znでのプローブ径を、ナイフェツジ法な
ど既知の手段で測定することにより、それぞれ近似曲線
(直線)を求める。これらの曲線のZ = Z oの値
をプローブ径とする。または上記2曲線(直線)交点か
らプローグ径を得る。
The present invention will be explained in detail with reference to FIG. Figure 1 shows the trajectory of the beam when spherical aberration and chromatic aberration are considered. In the figure, the Z direction is the optical axis direction of the beam 11. At this time, the probe diameter increases as Z changes in the optical axis direction from the position Z where the probe diameter is minimum. This increase can be approximated by a straight line or a curve. Therefore, to find the probe diameter at Z=Zo, the position of the Zo area Z -ffl, Z -1! l"l l...
・+Z −1 or Z > Zo position Zl of the o area,
Approximate curves (straight lines) are obtained by measuring the probe diameters of Zi..., Zn by known means such as the Knifezi method. Let the value of Z = Zo of these curves be the probe diameter. Alternatively, the prologue diameter is obtained from the intersection of the two curves (straight lines).

またフォーカス電流工の変化Δ■がフォーカス位置のZ
方向の変化ΔZに等しいとみなせる場合には、フォーカ
ス電流を変化させることによって、Zを変化させたと同
様の効果を生じさせ、上記と同様の方法によりフォーカ
ス時のプローブ径を求めることができる。
Also, the change in the focus current Δ■ is the Z of the focus position.
If the change in direction can be considered to be equal to the change in direction ΔZ, the same effect as changing Z can be produced by changing the focus current, and the probe diameter at the time of focusing can be determined by the same method as described above.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

第2図は荷電粒子線として電子ビームを用いて走査型電
子顕微鏡に本発明のプローブ径f1M定装置を適用した
概略構成図である。同図において、鏡筒部10では電子
銃から発生した電子ビームがレンズ系で収束され、試料
室12内の検鏡試料13上に微小電子ビーム11.が形
成される。該電子ビー1sllは制御器25及び偏向増
幅器19を介して偏向器15に供給される偏向信号によ
って、該検実試料13上を一次元又は二次元的に走査す
る。
FIG. 2 is a schematic configuration diagram in which the probe diameter f1M determining device of the present invention is applied to a scanning electron microscope using an electron beam as a charged particle beam. In the figure, in the lens barrel section 10, an electron beam generated from an electron gun is focused by a lens system, and a minute electron beam 11. is formed. The electron beam 1sll scans the test sample 13 one-dimensionally or two-dimensionally by a deflection signal supplied to the deflector 15 via the controller 25 and the deflection amplifier 19.

本発明による電子ビームのスポット径測定方法及び装置
を以下に説明する。
A method and apparatus for measuring an electron beam spot diameter according to the present invention will be described below.

第2図において光軸下方に向かってZ軸をとり、検実試
料13の面の位置をZ軸の原点(Z=O)とする。この
試料面でフォーカスさせた電子ビームのプローブ径を求
めるのに、以下のようにして求めた。試料台14上に制
御器25及び上下微制御器20を介した上下微動袋[1
7でZ方向に可動となったナイフェツジ1.6を備え、
該ナイフェツジ下方にファラデーカップ]8を備える。
In FIG. 2, the Z-axis is taken downward from the optical axis, and the position of the surface of the test sample 13 is taken as the origin of the Z-axis (Z=O). The probe diameter of the electron beam focused on this sample surface was determined as follows. A vertical fine movement bag [1
Equipped with a knife 1.6 that is movable in the Z direction at 7,
A Faraday cup] 8 is provided below the knife.

このナイフェツジを使ってプローブ径を測定するには、
まず制御器25及び試料台制御器23を介して試料台1
4を、ナイフェツジ16の先端部が電子ビーム照射位置
に来るよう移動する。次に電子ビーム11をナイフェツ
ジ16を横切るよう走査し、透過ビーム電流をファラデ
ーカップ18で偏向器15に供給する偏向信号と同期さ
せて検出する。
To measure the probe diameter using this knife,
First, the sample stage 1 is
4 is moved so that the tip of the knife 16 is at the electron beam irradiation position. Next, the electron beam 11 is scanned across the knife 16, and the transmitted beam current is detected by the Faraday cup 18 in synchronization with the deflection signal supplied to the deflector 15.

この検出信号を信号増幅器21及び微分器22を介して
、XYレコーダー24のYに入力する。Xには偏向信号
を入力する。レコーダー出力は第3図のようになる。第
3図の横軸は走査位置、縦軸が上記微分信号強度に相当
する。この微分信号強度の1 / eの直線と微分信号
波形の2つの交点間の距離をプローブ径dとして求め゛
た。
This detection signal is input to the Y of the XY recorder 24 via the signal amplifier 21 and the differentiator 22. A deflection signal is input to X. The recorder output will be as shown in Figure 3. In FIG. 3, the horizontal axis corresponds to the scanning position, and the vertical axis corresponds to the differential signal intensity. The distance between the two intersections of the 1/e straight line of the differential signal intensity and the differential signal waveform was determined as the probe diameter d.

ナイフェツジの高さZを上下微動装置17で制御し、試
料面以下(Z>O)のZ=20・0μmから100・0
μmまで20μm間隔で、ナイフェツジ法によりプロー
ブ径を測定した。なおZ=0の位置は機械的に定めた。
The height Z of the knife is controlled by the vertical fine movement device 17, and the height Z is adjusted from Z = 20.0 μm below the sample surface (Z>O) to 100.0 μm.
The probe diameter was measured by the Knifezi method at 20 μm intervals. Note that the position of Z=0 was determined mechanically.

その結果を第4図のグラフに示す。横軸がZ、縦軸がプ
ローブ径dである。これらの測定値から最小二乗法によ
り最適直線を求メルト、d=4.8Xi 0−87.+
3X10″″’[m]となり、試料面(z=o)でのビ
ーム径doがdo=:0.03μmと求まった。
The results are shown in the graph of FIG. The horizontal axis is Z and the vertical axis is the probe diameter d. An optimal straight line was found from these measured values using the least squares method, d=4.8Xi 0-87. +
3×10'''' [m], and the beam diameter do at the sample surface (z=o) was found to be do=0.03 μm.

また色収差)球面西収差の場合、ナイフェツジを上下さ
せてビームをフォーカスした位置をZ=Zoとし、z>
Zo及びZ < Z oの各々の領域でプローブ径を測
定し、各領域で最適直線を求め、これらの交点Z=Zo
”からプローブ径を求めるごとももきる。また球面収差
が無視できない場合には、Z > Z o領域では最適
直線を、Z:Zoでは最適曲線d=at (−Z)””
+bxを求め、これらの交点からプローブ径dを求める
こともできる。
In addition, in the case of chromatic aberration) spherical West aberration, the position where the beam is focused by moving the knife up and down is Z = Zo, and z>
Measure the probe diameter in each region of Zo and Z < Zo, find the optimal straight line in each region, and find the intersection point Z = Zo
It is also possible to find the probe diameter from ``.Also, if spherical aberration cannot be ignored, the optimal straight line is determined in the Z > Zo region, and the optimal curve d=at (-Z)'' is determined in the Z:Zo region.
It is also possible to find +bx and find the probe diameter d from their intersection.

さらにフォーカス電流の変化Δ■とフォーカス位置に変
化ΔZがΔZ刀Δ■を満たす領域では、ナイフェツジの
位置を変化させる代りにフォーカス電流■を変化させ、
上記と同様の方法によりプローブ径を求めることができ
る。
Furthermore, in the region where the change in focus current Δ■ and the change in focus position ΔZ satisfy ΔZ sword Δ■, instead of changing the position of the knife, the focus current ■ is changed,
The probe diameter can be determined by the same method as above.

以上のように本実施例によれば、ナイフェツジを可動し
するか、あるいはフォーカス電流値を変化させ、フォー
カスのずれた複数の点でのプローブ径を41す定すると
により、最小プローブ径を算出するので、従来のプロー
ブ径測定法で副室できなかったような微小プローブ径を
求めることができる。
As described above, according to this embodiment, the minimum probe diameter is calculated by moving the knife or changing the focus current value and determining the probe diameters at multiple out-of-focus points by 41. Therefore, it is possible to obtain minute probe diameters that could not be obtained using conventional probe diameter measurement methods.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、最小のプローブより拡がった点でのプ
ローブ径を複数測定するとにより、最小プローブ径を算
出するので、従来のプローブ径測定法で測定できなかっ
たような微小プローブ径を求めることができるしいう効
果がある。
According to the present invention, the minimum probe diameter is calculated by measuring multiple probe diameters at points that are wider than the smallest probe, so it is possible to obtain minute probe diameters that could not be measured using conventional probe diameter measurement methods. It has the effect of allowing you to

図面の[’ttな説明 第1図は球面収差及び色収差を考慮したときのビームの
軌道図、第2図は本発明によるプローブ杼Δ1q定装置
を適用した概略構成図、第3図はナイフェツジの透過電
流の微分信号、第4図は高さとビー11径の要係を示す
一測定例のグラフである。
['tt explanation of the drawings] Fig. 1 is a beam trajectory diagram when spherical aberration and chromatic aberration are taken into account, Fig. 2 is a schematic configuration diagram to which the probe shed Δ1q determining device according to the present invention is applied, and Fig. 3 is a diagram of the trajectory of the beam when spherical aberration and chromatic aberration are taken into account. FIG. 4 is a graph of an example of measurement showing the relationship between the height and the diameter of the bead 11.

1・・・対物レンズ主平面、2・・・球面収差、;3・
・色収差、10・・・電子鏡筒部、11・・・電子ビー
ム、12・・・試料室、13・・・試料、14・・・試
料台、]5・・・偏向器、16・・・ナイフェツジ、1
7・・・上下微動装置、18・・・ファラデーカップ、
19・・・偏向増幅器、20・・・上下微動装置制御器
、21・・・信号増幅器。
1...Objective lens principal plane, 2...Spherical aberration,;3.
・Chromatic aberration, 10...Electron lens barrel section, 11...Electron beam, 12...Sample chamber, 13...Sample, 14...Sample stage, ]5...Deflector, 16...・Naifetsuji, 1
7... Vertical fine movement device, 18... Faraday cup,
19... Deflection amplifier, 20... Vertical fine movement device controller, 21... Signal amplifier.

22・・・微分器、23・・・試料制御器、24・・・
xyし第 l  凹 Z  (、&俄) 第 2 目
22... Differentiator, 23... Sample controller, 24...
xy th l concave Z (, & 俄) 2nd

Claims (1)

【特許請求の範囲】 1、荷電粒子線を所定の試料上で細のプローブに集束す
る集束手段、該荷電粒子線を前記試料面で走査する偏向
手段と、該プローブ径を測定するためのプローブ径測定
装置とを有する荷電粒子線装置において、プローブ径測
定装置を光軸(高さ)方向に位置可動として、複数の測
定値より所定の試料位置におけるプローブ径を算出する
ことを特徴として荷電粒子線のプローブ径測定装置。 2、プローブ径測定装置を固定し、複数のフォーカス電
流値を対するプローブ径を測定することにより、最小プ
ローブ径を求める荷電粒子線のプローブ径測定装置。
[Scope of Claims] 1. A focusing means for focusing a charged particle beam onto a thin probe on a predetermined sample, a deflection means for scanning the charged particle beam on the sample surface, and a probe for measuring the diameter of the probe. A charged particle beam apparatus having a probe diameter measuring device is characterized in that the probe diameter measuring device is movable in the optical axis (height) direction and the probe diameter at a predetermined sample position is calculated from a plurality of measured values. Wire probe diameter measuring device. 2. A charged particle beam probe diameter measuring device that determines the minimum probe diameter by fixing the probe diameter measuring device and measuring the probe diameter for a plurality of focus current values.
JP27147585A 1985-12-04 1985-12-04 Probe diameter measuring device for charged corpuscular beam Pending JPS62133655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27147585A JPS62133655A (en) 1985-12-04 1985-12-04 Probe diameter measuring device for charged corpuscular beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27147585A JPS62133655A (en) 1985-12-04 1985-12-04 Probe diameter measuring device for charged corpuscular beam

Publications (1)

Publication Number Publication Date
JPS62133655A true JPS62133655A (en) 1987-06-16

Family

ID=17500552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27147585A Pending JPS62133655A (en) 1985-12-04 1985-12-04 Probe diameter measuring device for charged corpuscular beam

Country Status (1)

Country Link
JP (1) JPS62133655A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699935A (en) * 1992-09-25 1994-04-12 Showa Phoenix Kogyo Kk Content average-arranging device for bagged package substance
CN113203378A (en) * 2021-03-31 2021-08-03 成都飞机工业(集团)有限责任公司 Method for selecting measuring head of three-coordinate measuring machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699935A (en) * 1992-09-25 1994-04-12 Showa Phoenix Kogyo Kk Content average-arranging device for bagged package substance
CN113203378A (en) * 2021-03-31 2021-08-03 成都飞机工业(集团)有限责任公司 Method for selecting measuring head of three-coordinate measuring machine
CN113203378B (en) * 2021-03-31 2022-04-08 成都飞机工业(集团)有限责任公司 Method for selecting measuring head of three-coordinate measuring machine

Similar Documents

Publication Publication Date Title
US7271396B2 (en) Method and device for aligning a charged particle beam column
US4936968A (en) Ion-beam machining method and apparatus
TW202349430A (en) Charged particle beam system and method
CN104040676B (en) Charged particle line apparatus and oblique view method for displaying image
US7714289B2 (en) Charged particle beam apparatus
US3702398A (en) Electron beam apparatus
JP2006253156A (en) Alignment method for charged particle beam column, and device
US6677585B2 (en) Scanning charged particle microscope, and focal distance adjusting method and astigmatism correction method thereof
US7847267B2 (en) Scanning electron microscope having multiple detectors and a method for multiple detector based imaging
US4382182A (en) Method of displaying an image of phase contrast in a scanning transmission electron microscope
KR100416200B1 (en) Scanning electron microscope
JPS62133655A (en) Probe diameter measuring device for charged corpuscular beam
US10636622B2 (en) Scanning transmission electron microscope
JPH0234139B2 (en)
KR100518812B1 (en) Reduction of aberrations produced by Wien filter in a scanning electron microscope and the like
JPH04229541A (en) Charging-up prevention device in charged particle beam equipment
JPH07245075A (en) Automatic focusing device
JPH0652650B2 (en) Alignment method of charged beam
JPH0963937A (en) Charged beam drawing system
JPH06290726A (en) Charged particle beam converging apparatus
JPH05135726A (en) Electron beam analyzer
JP5174483B2 (en) Charged particle beam apparatus and method for knowing charged state of sample surface
JPH08148109A (en) Focusing in charged particle beam device and its device
JPS6252838A (en) Scanning type electron microscope
JPH09190788A (en) Measuring method for focusing beam