JPH04229541A - Charging-up prevention device in charged particle beam equipment - Google Patents

Charging-up prevention device in charged particle beam equipment

Info

Publication number
JPH04229541A
JPH04229541A JP2414369A JP41436990A JPH04229541A JP H04229541 A JPH04229541 A JP H04229541A JP 2414369 A JP2414369 A JP 2414369A JP 41436990 A JP41436990 A JP 41436990A JP H04229541 A JPH04229541 A JP H04229541A
Authority
JP
Japan
Prior art keywords
voltage
target
signal
charging
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2414369A
Other languages
Japanese (ja)
Inventor
Nobuo Iida
信雄 飯田
Masao Murota
正雄 無漏田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2414369A priority Critical patent/JPH04229541A/en
Publication of JPH04229541A publication Critical patent/JPH04229541A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To prevent target charging-up by applying voltage to a insulating target, differentiating a signal scanned and detected with a charged particle beam, and applying voltage at the time of the largest signal to the target. CONSTITUTION:An insulating target 5 is made a charging-up condition, and voltage varied with a voltage generator 15 is applied to the target 5. Line scanning is made so as to vertically crossing a straight line part of a mark by an electron beam every time the voltage changes, and a generated secondary electron signal is differentiated with a differentiation circuit 12. The peak value of a differentiation signal is memorized and concurrently a voltage value too is memorized in a memory in a maximum value detecting circuit 13. A voltage value, by which the maximum peak can be obtained, is adjusted so as to be applied to the target 5 with a voltage control circuit 14 when the voltage variation in the generator 15 is finished. This can obtain a scanning image having no charging-up.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】  本発明は、自動的及び効果的
に絶縁性ターゲットのチャージアップを防止出来る荷電
粒子線装置におけるチャージアップ防止装置に関す
[Field of Industrial Application] The present invention relates to a charge-up prevention device in a charged particle beam device that can automatically and effectively prevent charge-up of an insulating target.

【0
002】る。
0
002

【従来の技術】  例えば、走査電子顕微鏡で、例えば
、半導体デバイスを観察する場合、半導体デバイスに見
られるレジストを、導電性物質、例えば金、白金−パラ
ジウム、炭素等を蒸着せずに直接観察し、試料最表面を
忠実に再現したい要求が、最近、高まっている。しかし
、電子線を前記レジストの如き絶縁性ターゲットに照射
すると、該絶縁性ターゲット表面に負の電荷が蓄積され
、表面電位が変化する事によって、二次電子の発生や入
射電子の侵入に大きな影響を与える。この様なチャージ
アップが発生すると、情報を大きく損なうばかりか、二
次電子や反射電子像観察に支障を来す。そこで、次に説
明する様な対策が提案されている。
[Prior Art] For example, when observing a semiconductor device using a scanning electron microscope, the resist found in the semiconductor device is directly observed without depositing a conductive substance such as gold, platinum-palladium, carbon, etc. Recently, there has been an increasing demand to faithfully reproduce the outermost surface of a sample. However, when an electron beam is irradiated onto an insulating target such as the above-mentioned resist, negative charges are accumulated on the surface of the insulating target and the surface potential changes, which has a large effect on the generation of secondary electrons and the penetration of incident electrons. give. When such a charge-up occurs, not only does it greatly damage information, but it also impedes observation of images of secondary electrons and backscattered electrons. Therefore, the following measures have been proposed.

【0003】絶縁性ターゲットに電子線を照射した時、
ターゲット表面電位のチャージアップ電位Vは、Zをタ
ーゲットの等価インピーダンス、Ip を照射電流、I
abをターゲット吸収電流、Ibse をターゲット反
射電子による電流、Iseを二次電子による電流、Ib
se ´を対物レンズで反射してターゲットに入る反射
電子による電流、Cを比例定数とすれば、 V=C・Z・{Ip +Ibse ´−(Iab+Ib
se +Ise)}      (1) の関係が成り立つ。この時、Ip +Ibse ´=I
ab+Ibse +Iseの時に、チャージアップ電位
Vが0になり、アースポテンシャルとなる。この様にチ
ャージアップ電位が0となれば、該ターゲット最表面を
忠実に再現した像が得られる。しかし、Ip +Ibs
e ´<Iab+Ibse +Iseの時はチャジアッ
プ電位Vがプラス電位となり、Ip +Ibse ´>
Iab+Ibse +Iseの時はチャジアップ電位V
がマイナス電位となり、何れの場合も、ターゲット最表
面と可成異なった像が得られてしまう。そこで、ターゲ
ットに電圧を印加して、オペレータがターゲット表面像
の状態(コントラスト等)を見ながら、ターゲットに印
加する電圧を調整し、チャージアップ電位が0の時に見
られる像状態にする事にり、チャージアップを防止して
いる。
[0003] When an insulating target is irradiated with an electron beam,
The charge-up potential V of the target surface potential is determined by where Z is the equivalent impedance of the target, Ip is the irradiation current, and I
ab is the target absorption current, Ibse is the current due to target reflected electrons, Ise is the current due to secondary electrons, Ib
If se ' is reflected by the objective lens and the current due to the backscattered electrons enters the target, and C is a proportionality constant, then V=C・Z・{Ip +Ibse '−(Iab+Ib
se + Ise)} (1) holds true. At this time, Ip +Ibse ′=I
When ab+Ibse +Ise, the charge-up potential V becomes 0 and becomes a ground potential. When the charge-up potential becomes 0 in this way, an image that faithfully reproduces the outermost surface of the target can be obtained. However, Ip + Ibs
When e ′<Iab+Ibse +Ise, the charge-up potential V becomes a positive potential, and Ip +Ibse ′>
Iab+Ibse When +Ise, charge up potential V
becomes a negative potential, and in either case, an image that differs considerably from the outermost surface of the target will be obtained. Therefore, a voltage is applied to the target, and the operator adjusts the voltage applied to the target while observing the condition of the target surface image (contrast, etc.) to obtain the image state seen when the charge-up potential is 0. , prevents charge-up.

【0004】0004

【発明が解決しようとする課題】  しかし乍、前記の
操作は、オペレータにとって極めて厄介な操作であり、
正確にチャージアップ電位が0の像状態に調整する事は
極めて困難である。
[Problem to be Solved by the Invention] However, the above operation is extremely troublesome for the operator;
It is extremely difficult to accurately adjust the image state to have a charge-up potential of 0.

【0005】本発明はこの様な問題を解決する事を目的
とする。
[0005] The present invention aims to solve such problems.

【0006】[0006]

【課題を解決するための手段】  本発明の荷電粒子線
装置におけるチャージアップ防止装置は、絶縁性ターゲ
ットに電圧を印加する手段、該絶縁性ターゲット上を荷
電粒子線で走査する手段、該ターゲットから発生した荷
電粒子を検出する手段、該検出された荷電粒子に基づく
信号を微分する手段、及び、該微分信号強度が最大とな
る様に前記電圧印加手段の印加電圧を調整する手段を備
えている。
[Means for Solving the Problems] A charge-up prevention device in a charged particle beam device of the present invention includes a means for applying a voltage to an insulating target, a means for scanning the insulating target with a charged particle beam, and a means for scanning the insulating target with a charged particle beam. The device includes means for detecting generated charged particles, means for differentiating a signal based on the detected charged particles, and means for adjusting the voltage applied by the voltage application means so that the intensity of the differentiated signal is maximized. .

【0007】[0007]

【作用】  絶縁性ターゲットを一旦チャージアップし
た状態にする。そして、該ターゲットに印加する電圧を
変えて行き、その都度、電子線で絶縁性ターゲット上に
存在する直線部を有する箇所を走査し、該走査により発
生した二次電子信号を微分した信号のピークを順次検出
する。この場合、チャージアップが取れた時に直線部を
有する箇所を走査した時、該走査により得られる二次電
子信号のエッジがもっともシャープに成る事から、得ら
れる微分信号のピーク値の内、最も大きいピーク値が発
生した時の印加電圧値を前記絶縁性ターゲットに印加す
れば、絶縁性ターゲットのチャージアップを無くす事が
出来る。
[Operation] Temporarily puts the insulating target in a charged up state. Then, while changing the voltage applied to the target, each time the electron beam is used to scan a location on the insulating target that has a straight line, and the peak of the signal obtained by differentiating the secondary electron signal generated by the scanning is are detected sequentially. In this case, when a point with a straight line is scanned when the charge-up is removed, the edge of the secondary electron signal obtained by this scanning becomes the sharpest, so the peak value of the obtained differential signal is the largest. If the applied voltage value at which the peak value occurs is applied to the insulating target, charge-up of the insulating target can be eliminated.

【0008】[0008]

【実施例】  図1は本発明を、例えば、走査電子顕微
鏡に応用した時の一実施例を示したものである。
Embodiment FIG. 1 shows an embodiment in which the present invention is applied to, for example, a scanning electron microscope.

【0009】図中1は電子銃、2は集束レンズ、3X,
3Yは偏向レンズ、4は対物レンズ、5は絶縁性ターゲ
ット、6は二次電子検出器、7は走査信号発生器、8,
9,10はアンプ、11は陰極線管の如き表示装置、1
2は微分回路、13は最大値検出回路、14は電圧制御
回路、15は電圧発生器である。
In the figure, 1 is an electron gun, 2 is a focusing lens, 3X,
3Y is a deflection lens, 4 is an objective lens, 5 is an insulating target, 6 is a secondary electron detector, 7 is a scanning signal generator, 8,
9 and 10 are amplifiers, 11 is a display device such as a cathode ray tube, 1
2 is a differentiation circuit, 13 is a maximum value detection circuit, 14 is a voltage control circuit, and 15 is a voltage generator.

【0010】斯くの如き装置において、通常、電子銃1
からの電子を集束レンズ2と対物レンズ4によりターゲ
ット5上に集束させると同時に、走査信号発生器7から
の走査信号を受けた偏向レンズ3X,3Yによりターゲ
ット上の適宜な範囲を走査する。該走査によりターゲッ
トから発生した二次電子は二次電子検出器6で検出され
、アンプ10を介して表示装置11に送られる。該表示
装置には、前記走査信号発生器7から走査信号が同期し
て送られているので、該表示装置の表示画面上にはター
ゲット表面状態を表す像が表示される。
[0010] In such a device, usually an electron gun 1
The electrons are focused onto the target 5 by the focusing lens 2 and the objective lens 4, and at the same time, an appropriate range on the target is scanned by the deflection lenses 3X and 3Y which receive the scanning signal from the scanning signal generator 7. Secondary electrons generated from the target by the scanning are detected by a secondary electron detector 6 and sent to a display device 11 via an amplifier 10. Since scanning signals are synchronously sent to the display device from the scanning signal generator 7, an image representing the target surface condition is displayed on the display screen of the display device.

【0011】さて、半導体デバイスの如き表面に絶縁性
物質を有する物を観察する場合、前記電子銃1からの電
子を集束レンズ2と対物レンズ4により絶縁性ターゲッ
ト5上に集束させると同時に走査信号発生器7からの走
査信号を受けた偏向レンズ3X,3Yにより該ターゲッ
ト上の、直線部分を有する部分、例えば、マークが形成
されている範囲を、例えば、1度走査してチャージアッ
プさせる。即ち、絶縁性ターゲットの一部分を観察して
いる時と同一の状態にする。次に、電圧発生器15を作
動させ、所定の範囲で漸次変化する電圧を絶縁性ターゲ
ット5に印加する。そして、この際、印加電圧が変化す
る度に、走査信号発生器7からの走査信号を受けた偏向
レンズ3X,3Yにより電子線で前記マーク上を、該マ
ークの直線分に対し垂直に横切る様にX方向若しくはY
方向にライン走査する。この時、該ターゲット5から発
生した二次電子は二次電子検出器6で検出される。今、
図2に示す様なマークMの上を走査したとすれば、この
時の二次電子検出器の出力信号波形は、図3に示す様な
波形となる。該二次電子検出器の出力信号はアンプ10
を介して、微分回路12に送られ、ここで微分される。 図4は微分された信号波形を示している。最大値検出回
路13は順次送られてくる該微分回路の出力信号のピー
ク値を順次検出して内蔵されたメモリに記憶すると同時
に、各ピーク値が得られた時の電圧値も記憶する。そし
て、前記電圧発生器15からの電圧の変化が一応終了す
ると、該最大値検出回路13はそれまでにメモリに記憶
した各ピーク値の内、最も大きいピークが得られた電圧
値をピックアップする。電圧制御回路14は、該最大ピ
ークが得られた電圧値が前記絶縁性ターゲット5に印加
される様に前記電圧発生器15をコントロールする。こ
の状態で、前記した様に、通常の走査像が得られる様に
操作すれば、チャージアップの無い走査像が表示装置1
1の画面上に得られる。
Now, when observing an object having an insulating material on its surface, such as a semiconductor device, electrons from the electron gun 1 are focused onto an insulating target 5 by a focusing lens 2 and an objective lens 4, and at the same time a scanning signal is The deflection lenses 3X and 3Y that receive the scanning signal from the generator 7 scan a portion of the target having a straight line, for example, a range where a mark is formed, once, for example, to charge up the target. That is, the state is the same as when observing a portion of the insulating target. Next, the voltage generator 15 is activated to apply a voltage that gradually changes within a predetermined range to the insulating target 5. At this time, each time the applied voltage changes, the deflection lenses 3X and 3Y that receive the scanning signal from the scanning signal generator 7 cause the electron beam to cross the mark perpendicularly to the straight line of the mark. in the X direction or Y direction
Scan the line in the direction. At this time, secondary electrons generated from the target 5 are detected by a secondary electron detector 6. now,
If a mark M as shown in FIG. 2 is scanned, the output signal waveform of the secondary electron detector at this time will be a waveform as shown in FIG. 3. The output signal of the secondary electron detector is sent to the amplifier 10.
The signal is sent to the differentiating circuit 12 via the differential circuit 12, where it is differentiated. FIG. 4 shows the differentiated signal waveform. The maximum value detection circuit 13 sequentially detects the peak values of the output signals of the differential circuit that are sequentially sent and stores them in a built-in memory, and also stores the voltage values when each peak value is obtained. When the change in voltage from the voltage generator 15 is completed, the maximum value detection circuit 13 picks up the voltage value at which the largest peak is obtained from among the peak values stored in the memory up to that point. The voltage control circuit 14 controls the voltage generator 15 so that the voltage value at which the maximum peak is obtained is applied to the insulating target 5. In this state, if the operation is performed to obtain a normal scanned image as described above, a scanned image without charge-up will be produced on the display device 1.
1 on the screen.

【0012】尚、前記実施例では印加電圧を所定の範囲
で漸次変化させ、各変化の都度、微分信号のピーク値を
記憶する様にし、該変化後、記憶したピーク値の中から
最大のピーク値をピックアップしたが、そうはせずに、
印加電圧を変化させる度に検出される微分信号のピーク
値を比較し、最大値が得られたら、そこで、印加電圧を
変えるのを停止し、ターゲットに印加される電圧を該最
大値が得られた電圧値にコントロールする様にしても良
い。
In the above embodiment, the applied voltage is gradually changed within a predetermined range, and the peak value of the differential signal is memorized for each change, and after the change, the maximum peak value from among the stored peak values is I picked up the value, but without doing so,
The peak values of the differential signals detected each time the applied voltage is changed are compared, and when the maximum value is obtained, the applied voltage is stopped and the voltage applied to the target is adjusted until the maximum value is obtained. Alternatively, the voltage may be controlled to a certain voltage value.

【0013】又、本発明は、前記の様に走査電子顕微鏡
で絶縁性ターゲットを観察する場合丈ではなく、EPM
AやAuger分析装置等で絶縁性ターゲットを分析す
る場合、荷電粒子線描画装置でレジスト上にパターンを
描く場合、荷電粒子線測長装置でパターンを測長する場
合等にも応用可能である。
Furthermore, as described above, when observing an insulating target with a scanning electron microscope, the present invention does not depend on the height but on the EPM.
It can also be applied to the case where an insulating target is analyzed using an A or Auger analyzer, the pattern is drawn on a resist using a charged particle beam drawing device, and the length of a pattern is measured using a charged particle beam length measuring device.

【0014】[0014]

【発明の効果】  本発明の荷電粒子線装置におけるチ
ャージアップ防止装置は、絶縁性ターゲットに電圧を印
加する手段、該絶縁性ターゲット上を荷電粒子線で走査
する手段、該ターゲットから発生した荷電粒子を検出す
る手段、該検出された荷電粒子に基づく信号を微分する
手段、及び、該微分信号強度が最大となる様に前記電圧
印加手段の印加電圧を調整する手段を備えたので、操作
が極めて簡単化され、且つ正確にチャージアップ電位が
0の像状態に調整する事が可能となる。
Effects of the Invention The charge-up prevention device in the charged particle beam device of the present invention includes means for applying a voltage to an insulating target, means for scanning the insulating target with a charged particle beam, and charged particles generated from the target. The present invention includes a means for detecting a charged particle, a means for differentiating a signal based on the detected charged particle, and a means for adjusting the applied voltage of the voltage applying means so that the intensity of the differentiated signal is maximized, making the operation extremely easy. It becomes possible to easily and accurately adjust the image state in which the charge-up potential is 0.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明を、例えば、走査電子顕微鏡に応用
した時の一実施例を示したものである。
FIG. 1 shows an example in which the present invention is applied to, for example, a scanning electron microscope.

【図2】  本発明の動作の説明を補足する為のもので
ある。
FIG. 2 is for supplementing the explanation of the operation of the present invention.

【図3】  本発明の動作の説明を補足する為のもので
ある。
FIG. 3 is for supplementing the explanation of the operation of the present invention.

【図4】  本発明の動作の説明を補足する為のもので
ある。
FIG. 4 is for supplementing the explanation of the operation of the present invention.

【符号の説明】[Explanation of symbols]

1:電子銃    2:集束レンズ    3X,3Y
:偏向レンズ4:対物レンズ    5:絶縁性ターゲ
ット    6:二次電子検出器    7:走査信号
発生器    8,9,10:アンプ    11:表
示装置    12:微分回路13:最大値検出回路 
   14:電圧制御回路    15:電圧発生器
1: Electron gun 2: Focusing lens 3X, 3Y
: Deflection lens 4: Objective lens 5: Insulating target 6: Secondary electron detector 7: Scanning signal generator 8, 9, 10: Amplifier 11: Display device 12: Differentiator circuit 13: Maximum value detection circuit
14: Voltage control circuit 15: Voltage generator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  絶縁性ターゲットに電圧を印加する手
段、該絶縁性ターゲット上を荷電粒子線で走査する手段
、該ターゲットから発生した荷電粒子を検出する手段、
該検出された荷電粒子に基づく信号を微分する手段、及
び、該微分信号強度が最大となる様に前記電圧印加手段
の印加電圧を調整する手段を備えた荷電粒子線装置にお
けるチャージアップ防止装置。
1. Means for applying a voltage to an insulating target, means for scanning the insulating target with a charged particle beam, means for detecting charged particles generated from the target,
A charge-up prevention device for a charged particle beam device, comprising means for differentiating a signal based on the detected charged particles, and means for adjusting an applied voltage of the voltage application means so that the intensity of the differentiated signal is maximized.
JP2414369A 1990-12-26 1990-12-26 Charging-up prevention device in charged particle beam equipment Withdrawn JPH04229541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2414369A JPH04229541A (en) 1990-12-26 1990-12-26 Charging-up prevention device in charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2414369A JPH04229541A (en) 1990-12-26 1990-12-26 Charging-up prevention device in charged particle beam equipment

Publications (1)

Publication Number Publication Date
JPH04229541A true JPH04229541A (en) 1992-08-19

Family

ID=18522857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2414369A Withdrawn JPH04229541A (en) 1990-12-26 1990-12-26 Charging-up prevention device in charged particle beam equipment

Country Status (1)

Country Link
JP (1) JPH04229541A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745782B2 (en) 2007-02-28 2010-06-29 Hitachi High-Technologies Corporation Electrostatic charge measurement method, focus adjustment method, and scanning electron microscope
JP2010211973A (en) * 2009-03-09 2010-09-24 Hitachi High-Technologies Corp Charged particle beam device
US7851754B2 (en) 2006-03-23 2010-12-14 Hitachi High-Technologies Corporation Charged particle beam system
US8263934B2 (en) 2006-12-19 2012-09-11 Hitachi High-Technologies Corporation Method for detecting information of an electric potential on a sample and charged particle beam apparatus
US8692197B2 (en) 2010-02-26 2014-04-08 Hitachi High-Technologies Corporation Scanning electron microscope optical condition setting method and scanning electron microscope
US9502212B2 (en) 2013-01-23 2016-11-22 Hitachi High-Technologies Corporation Charged particle beam apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851754B2 (en) 2006-03-23 2010-12-14 Hitachi High-Technologies Corporation Charged particle beam system
US8304725B2 (en) 2006-03-23 2012-11-06 Hitachi High Technologies Corporation Charged particle beam system
US8263934B2 (en) 2006-12-19 2012-09-11 Hitachi High-Technologies Corporation Method for detecting information of an electric potential on a sample and charged particle beam apparatus
US8487250B2 (en) 2006-12-19 2013-07-16 Hitachi High-Technologies Corporation Method for detecting information of an electronic potential on a sample and charged particle beam apparatus
US8766182B2 (en) 2006-12-19 2014-07-01 Hitachi High-Technologies Corporation Method for detecting information of an electric potential on a sample and charged particle beam apparatus
US7745782B2 (en) 2007-02-28 2010-06-29 Hitachi High-Technologies Corporation Electrostatic charge measurement method, focus adjustment method, and scanning electron microscope
US8178836B2 (en) 2007-02-28 2012-05-15 Hitachi High-Technologies Corporation Electrostatic charge measurement method, focus adjustment method, and scanning electron microscope
JP2010211973A (en) * 2009-03-09 2010-09-24 Hitachi High-Technologies Corp Charged particle beam device
US8692197B2 (en) 2010-02-26 2014-04-08 Hitachi High-Technologies Corporation Scanning electron microscope optical condition setting method and scanning electron microscope
US9502212B2 (en) 2013-01-23 2016-11-22 Hitachi High-Technologies Corporation Charged particle beam apparatus

Similar Documents

Publication Publication Date Title
US7397031B2 (en) Method of inspecting a circuit pattern and inspecting instrument
JP3456999B2 (en) Detection system for high aspect ratio measurement
JP2602287B2 (en) X-ray mask defect inspection method and apparatus
US6069356A (en) Scanning electron microscope
EP1238405B1 (en) Method and system for the examination of specimen using a charged particle beam
US8410438B2 (en) Charged particle beam device
US20020005484A1 (en) Apparatus and method for defect detection using charged particle beam
US20040256556A1 (en) Multiple electron beam device
JPH04229541A (en) Charging-up prevention device in charged particle beam equipment
US6653632B2 (en) Scanning-type instrument utilizing charged-particle beam and method of controlling same
JP3494068B2 (en) Charged particle beam equipment
JP4095510B2 (en) Surface potential measurement method and sample observation method
JPH08138611A (en) Charged particle beam device
JP3499690B2 (en) Charged particle microscope
WO2016024704A1 (en) Particle beam control apparatus and method for charged particle microscope
JPS6364255A (en) Particle beam radiating device
JPS63119147A (en) Focus condition detecting device of changed corpuscular beams
WO2015190723A1 (en) Method for controlling scanning signal of charged particle microscope, and apparatus using same
JPS6324617Y2 (en)
JPS594298Y2 (en) Sample equipment such as scanning electron microscopes
JPH0261951A (en) Electron microscope with vibration correcting device for filament image
JP5174483B2 (en) Charged particle beam apparatus and method for knowing charged state of sample surface
JPS6119044A (en) Stereoscanning-type electron microscope
JPH0636726A (en) Scanning microscope
JPH09223476A (en) Astigmatism correcting method for charged particle beam apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312