JPH0261951A - Electron microscope with vibration correcting device for filament image - Google Patents

Electron microscope with vibration correcting device for filament image

Info

Publication number
JPH0261951A
JPH0261951A JP21179688A JP21179688A JPH0261951A JP H0261951 A JPH0261951 A JP H0261951A JP 21179688 A JP21179688 A JP 21179688A JP 21179688 A JP21179688 A JP 21179688A JP H0261951 A JPH0261951 A JP H0261951A
Authority
JP
Japan
Prior art keywords
filament image
image
filament
displacement
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21179688A
Other languages
Japanese (ja)
Inventor
Masahito Tomita
富田 雅人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21179688A priority Critical patent/JPH0261951A/en
Publication of JPH0261951A publication Critical patent/JPH0261951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To provide possibility of micro-analysis of a target part in the order of magnitude of Angstrom precisely by sensing displacement of a filament image from the specified position of a specimen image, and performing vibration correction of the filament. CONSTITUTION:An electron beam 7 generated from an electron gun 6 is shrunk by an irradiative lens system 8 into an order of magnitude of approx. 10Angstrom and irradiated on a specimen 10. The filament image after having penetrated the specimen 10 is enlarged by a focusing lens system 11 and focused on a sensor 12. The center of this sensor 12 is approx. identical with the optical axis in mechanical terms of an electron microscope, and the filament image on this sensor 12 is sensed in the form of electrical or optical signals. When the filament image is displaced by turbulence, etc., a displacement sensor circuit 13 calculates the amount of displacement, and a correction signal is sent to a deflector 9 via a displacement correction circuit 14 to make controls so as to fix the filament image always in the specified place. This allows analysis with a micro-probe with no influence of vibration, etc., of the filament image.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子顕微鏡に係わり、特に微小部分析を行う
に好適なフィラメント像の振動補正装置を備えた電子顕
微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron microscope, and more particularly to an electron microscope equipped with a filament image vibration correction device suitable for performing microscopic analysis.

〔従来の技術・発明が解決しようとする課題〕従来、電
界放射型電子銃のような小さな仮想点光源を用いた電子
顕微鏡では、第3図のように電子銃1から出た電子線2
を、コンデンサーレンズ(図示せず)と対物レンズの前
磁場(図示せず)から形成される照射レンズ系3で試料
5の」二に結ぶ。走査像を得る装置では、スキャニング
コイル4で試料5の上の電子線照射位置を走査する。1
盲記照射レンズ系3で最も集束させるとき、前記試料5
の上に結ばれる電子の強度分布は前記電子銃1のアイラ
メン)・の像である。ここでは上述の最も集束された像
とこれをぼかした像を含めてフィラメント像と呼ぶ。従
来の装置では、10人程度の微小なプローブサイズを得
るため、照射レンズ系3での縮小をl/ l O−1/
20程度としている。このため試料5に入射する集束電
子線の開き角は大きくならざるを得ない。電子銃と試t
1の相対的な機械的振動や浮遊磁場などにより、試料−
ヒに照射されるフィラメント像は1−100 Hz 程
度の振動数で試料に対して相対的に振動している。
[Prior art/problems to be solved by the invention] Conventionally, in an electron microscope using a small virtual point light source such as a field emission type electron gun, the electron beam 2 emitted from the electron gun 1 is
is connected to the specimen 5 by an illumination lens system 3 formed from a condenser lens (not shown) and a front magnetic field of an objective lens (not shown). In the apparatus for obtaining a scanned image, a scanning coil 4 scans an electron beam irradiation position on a sample 5. 1
When the blind irradiation lens system 3 focuses the most, the sample 5
The intensity distribution of electrons focused on is an image of the electron gun 1 (Iramen). Here, the most focused image and the blurred image described above are referred to as a filament image. In conventional equipment, in order to obtain a small probe size for about 10 people, the reduction in the irradiation lens system 3 is reduced to l/l O-1/
It is set at around 20. For this reason, the opening angle of the focused electron beam incident on the sample 5 has to become large. Electron gun and test
Due to relative mechanical vibrations of 1, stray magnetic fields, etc.
The filament image irradiated onto the specimen vibrates at a frequency of about 1-100 Hz relative to the sample.

従来の装置では、縮小によって上記の振動の振幅が軽減
されるために、微小部分析においてフィラメント像の振
動が問題になることは少なかった。
In conventional apparatuses, the amplitude of the above-mentioned vibrations is reduced by reduction, so the vibrations of filament images rarely pose a problem in micro-part analysis.

しかし、縮小率を小さくし、かつ試料に入射する゛1子
線の開き角を1 2  m  rad、程度の小さい値
に抑えると、電子線そのものは集束されていても、試料
上のフィラメント像の振動が顕著になる。このために実
質的な分析領域が広がり、入オーダーの微小部分析を正
確に実施することは困難であった。
However, if the reduction ratio is made small and the opening angle of the 1-satellite beam incident on the sample is kept to a small value of about 1 2 m rad, even though the electron beam itself is focused, the filament image on the sample becomes Vibration becomes noticeable. For this reason, the practical analysis area has expanded, making it difficult to accurately analyze minute parts of incoming orders.

上記従来技術は、上述のように入オーダーの微小プロー
ブで電子線の開き角を小さくしてフィラメント像の振動
を抑えることが困難であったため、このような条件では
用いられることがなかった。
The above-mentioned conventional technology has not been used under such conditions because it is difficult to suppress the vibration of the filament image by reducing the opening angle of the electron beam using a custom-made microprobe as described above.

本発明の目的は、このような条件下でも電界放射型電子
銃のような小さな仮想点光源を持つ電子銃のフィラメン
ト像が、機械的、電磁気的な外乱により振動やドリフト
を起こすことを補償し、正確に目標とする部位の人オー
ダーの微小部分析を可能にすることにある。
The purpose of the present invention is to compensate for vibrations and drifts caused by mechanical and electromagnetic disturbances in the filament image of an electron gun such as a field emission electron gun, which has a small virtual point light source, even under such conditions. The goal is to enable precise, human-order microscopic analysis of targeted areas.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、電子線を発生してそれを試料に照射するため
の照射装置と、該照射装置のフィラメント像の振動を補
正するための電子線偏向装置と、試料像を拡大投影する
ための拡大投影装置と、試料像の所定の位置からの該フ
ィラメント像の変位を検出するための検出装置と、該検
出装置の出力に基づいて該フィラメント像の振動補正量
を計算し、その結果を前記電子線偏向装置に与える補正
装置とを具備してなることを特徴とするものであり、フ
ィラメント像の変位に応じてその補正量を計算し、電子
線偏向装置に補正信号を送るようにしたものである。
The present invention provides an irradiation device for generating an electron beam and irradiating a sample with it, an electron beam deflection device for correcting vibration of a filament image of the irradiation device, and an enlargement device for enlarging and projecting the sample image. a projection device, a detection device for detecting the displacement of the filament image from a predetermined position of the sample image, and a vibration correction amount of the filament image based on the output of the detection device, and the result is transmitted to the electron beam. It is characterized by being equipped with a correction device to be applied to the beam deflection device, and is configured to calculate the amount of correction according to the displacement of the filament image and send a correction signal to the electron beam deflection device. be.

〔実施例〕〔Example〕

以下、本発明によるフィラメント像の振動補正装置を備
えた電子顕微鏡の一実施例を図面を用いて説明する。第
1図において、電子銃6(照射装置)から発生した電子
線7は、集束レンズ(図示せず)と対物レンズの前磁場
(図示せず)より形成された照射レンズ系8により約1
0人の大きさに縮小され、試料10に照射される。試料
10を透過したフィラメント像は結像レンズ系11(拡
大投影装置)により100−100万倍程度に拡大され
、フィラメント像が検出器12(検出装置)に結像され
る。検出器12の中心は電子顕微鏡の機械的な光軸とほ
ぼ一致しており、前記結像レンズ系11の拡大率を適当
に選ぶことで、検出2t12」二のフィラメント像を電
気的あるいは光学的な信号として適当な大きさで検出す
る。外乱などによりフィラメント像が変位すると変位検
出回路13(検出装置)で変位1を計算する。前記変位
検出回路13で得られた前記変位量をもとに、変位補正
回路14(補正装置)が補正量を計算し、その信号を偏
向器9(電子線偏向装置)に送ることで、フィラメント
像を常に所定の部位に固定する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an electron microscope equipped with a filament image vibration correction device according to the present invention will be described below with reference to the drawings. In FIG. 1, an electron beam 7 generated from an electron gun 6 (irradiation device) is emitted by an irradiation lens system 8 formed by a focusing lens (not shown) and a front magnetic field (not shown) of an objective lens.
The sample 10 is reduced to the size of 0 people and irradiated. The filament image transmitted through the sample 10 is magnified approximately 1 to 1 million times by an imaging lens system 11 (enlargement projection device), and the filament image is formed on a detector 12 (detection device). The center of the detector 12 almost coincides with the mechanical optical axis of the electron microscope, and by appropriately selecting the magnification of the imaging lens system 11, the filament image of the detection 2t12'' can be detected electrically or optically. It is detected as a signal with an appropriate magnitude. When the filament image is displaced due to disturbance or the like, a displacement 1 is calculated by a displacement detection circuit 13 (detection device). Based on the amount of displacement obtained by the displacement detection circuit 13, the displacement correction circuit 14 (correction device) calculates the amount of correction, and sends the signal to the deflector 9 (electron beam deflection device). The image is always fixed in place.

偏向器9は、電子顕微鏡の通常の軸調整に用いられるコ
イルか、あるいは別途に設ける。第2図に電子線エネル
ギー損失分光器を装着する場合に適したフィラメント像
検出′a12の一例を示す。16は導体の円盤を4分割
した分割電極からなる電子の4分割電極検出器であり、
中央に01−IQmm程度の穴15を開けている。電子
線の大部分は穴15を通過して電子線エネルギー分光器
(図示せず)に入る。振動によりフィラメント像が変位
すると16の各分割電極に流れる電流か変化するので、
17の電流検出回路でこれを検出する。
The deflector 9 may be a coil used for normal axis adjustment of an electron microscope, or may be provided separately. FIG. 2 shows an example of filament image detection 'a12 suitable for the case where an electron beam energy loss spectrometer is installed. 16 is an electron four-division electrode detector consisting of divided electrodes obtained by dividing a conductor disk into four,
A hole 15 of about 01-IQ mm is made in the center. Most of the electron beam passes through hole 15 and enters an electron beam energy spectrometer (not shown). When the filament image is displaced due to vibration, the current flowing through each of the 16 divided electrodes changes, so
This is detected by the current detection circuit No. 17.

上述のごとく構成された電子銃のフィラメント像の振動
を補正する装置を備えた電子顕微鏡においては、電子顕
微鏡本体の振動やドリフトが生じてもこれをリアルタイ
ムで補正することができるため、従来の電子顕微鏡のよ
うに大きなビーム開き角でなくても、フィラメント像の
振動などの影響なくへオーグーの微小プローブでの分析
が可能になる。また、本装置を従来の電子顕微鏡に用い
ることで、従来得られなかった、より小さな有効集束ビ
ーム径を得ることができる。
In an electron microscope equipped with a device for correcting the vibration of the filament image of the electron gun configured as described above, even if vibration or drift of the electron microscope body occurs, it can be corrected in real time, making it possible to correct it in real time. Even without the large beam aperture angle of a microscope, analysis using Heogoo's tiny probe is possible without the effects of vibrations on the filament image. Furthermore, by using this device in a conventional electron microscope, it is possible to obtain a smaller effective focused beam diameter, which has not been previously possible.

〔発明の効果〕〔Effect of the invention〕

以上、説明したことから明らかなように本発明によるフ
ィラメント像の振動補正装置を備えた電子顕微鏡によれ
ば、入オーダーに集束した微小電子線による分析を行う
ために、ビームの開き角を大きくする必要がなく、また
、外乱の影響を小さくして安定した確実な微小部分析が
可能となる。
As is clear from the above explanation, according to the electron microscope equipped with the filament image vibration correction device according to the present invention, in order to perform analysis using a minute electron beam focused on the input order, the beam aperture angle is increased. Moreover, it is possible to perform stable and reliable analysis of microscopic parts by reducing the influence of disturbances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電子顕微鏡の一実施例を示す概略
構成図、第2図は本発明の電子顕微鏡に用いるフィラメ
ント像検出器の一例を示す概略構成図、第3図は従来の
電子顕微鏡の要部を示す概略構成図である。 6・・・・・・照射装置(電子銃)、9・・・・・・電
子線偏向装置(偏向器)、10・・・・試料、11・・
・・・・拡大投影装置(結像レンズ系)、12・・・・
・・検出装置(アイラメン]・像検出器)、13・・・
・・・検出装置(変位検出回路)、14・・・・・・補
正装置(変位補正回路)。 第1図 第2図 6、照射ぜ置 9、電+線編向緩! )広′に投影!ヒ! 213躬(出穀! 第3図
FIG. 1 is a schematic diagram showing an embodiment of an electron microscope according to the present invention, FIG. 2 is a schematic diagram showing an example of a filament image detector used in the electron microscope of the present invention, and FIG. 3 is a diagram of a conventional electron microscope. FIG. 6... Irradiation device (electron gun), 9... Electron beam deflection device (deflector), 10... Sample, 11...
...Enlargement projection device (imaging lens system), 12...
・Detection device (Iramen)・Image detector), 13...
. . . detection device (displacement detection circuit), 14 . . . correction device (displacement correction circuit). Figure 1 Figure 2 Figure 6, irradiation spacing 9, electric + wire knitting direction loose! ) Wide projection! Hee! 213 grains (grain harvest! Figure 3)

Claims (1)

【特許請求の範囲】[Claims] 電子線を発生してそれを試料に照射するための照射装置
と、該照射装置のフィラメント像の振動を補正するため
の電子線偏向装置と、試料像を拡大投影するための拡大
投影装置と、試料像の所定の位置からの該フィラメント
像の変位を検出するための検出装置と、該検出装置の出
力に基づいて該フィラメント像の振動補正量を計算し、
その結果を前記電子線偏向装置に与える補正装置とを具
備してなることを特徴とするフィラメント像の振動補正
装置を備えた電子顕微鏡。
an irradiation device for generating an electron beam and irradiating the sample with it; an electron beam deflection device for correcting vibration of a filament image of the irradiation device; and an enlargement projection device for enlarging and projecting the sample image; a detection device for detecting displacement of the filament image from a predetermined position of the sample image; and calculating a vibration correction amount of the filament image based on the output of the detection device;
An electron microscope equipped with a filament image vibration correction device, comprising a correction device that applies the result to the electron beam deflection device.
JP21179688A 1988-08-26 1988-08-26 Electron microscope with vibration correcting device for filament image Pending JPH0261951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21179688A JPH0261951A (en) 1988-08-26 1988-08-26 Electron microscope with vibration correcting device for filament image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21179688A JPH0261951A (en) 1988-08-26 1988-08-26 Electron microscope with vibration correcting device for filament image

Publications (1)

Publication Number Publication Date
JPH0261951A true JPH0261951A (en) 1990-03-01

Family

ID=16611751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21179688A Pending JPH0261951A (en) 1988-08-26 1988-08-26 Electron microscope with vibration correcting device for filament image

Country Status (1)

Country Link
JP (1) JPH0261951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814814A (en) * 1995-02-28 1998-09-29 Ebara Corporation Electron microscope
US7633074B2 (en) 2005-10-19 2009-12-15 Ict, Integrated Circuit Testing Gesellschaft Fur Halbleiterpruftechnik Mbh Arrangement and method for compensating emitter tip vibrations
US7939800B2 (en) 2005-10-19 2011-05-10 ICT, Integrated Circuit Testing, Gesellschaft fur Halbleiterpruftechnik mbH Arrangement and method for compensating emitter tip vibrations

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814814A (en) * 1995-02-28 1998-09-29 Ebara Corporation Electron microscope
US7633074B2 (en) 2005-10-19 2009-12-15 Ict, Integrated Circuit Testing Gesellschaft Fur Halbleiterpruftechnik Mbh Arrangement and method for compensating emitter tip vibrations
US7939800B2 (en) 2005-10-19 2011-05-10 ICT, Integrated Circuit Testing, Gesellschaft fur Halbleiterpruftechnik mbH Arrangement and method for compensating emitter tip vibrations
EP1777730B1 (en) * 2005-10-19 2018-05-30 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Arrangement and method for compensating emitter tip vibrations

Similar Documents

Publication Publication Date Title
EP2320217B1 (en) SACP method and particle optical system for performing the method
CN112970088A (en) Particle beam system for adjusting the current of individual particle beams
US5008537A (en) Composite apparatus with secondary ion mass spectrometry instrument and scanning electron microscope
JP4527289B2 (en) Particle optics including detection of Auger electrons
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
US5345080A (en) Method of observing electron microscopic images and an apparatus for carrying out of the same
WO2020115876A1 (en) Charged particle beam device
US6653632B2 (en) Scanning-type instrument utilizing charged-particle beam and method of controlling same
JP3376793B2 (en) Scanning electron microscope
JPH0261951A (en) Electron microscope with vibration correcting device for filament image
US5081354A (en) Method of determining the position of electron beam irradiation and device used in such method
US10636622B2 (en) Scanning transmission electron microscope
US6717141B1 (en) Reduction of aberrations produced by Wien filter in a scanning electron microscope and the like
US6555824B1 (en) Method and device for focusing a charged particle beam
JPH07105888A (en) Scanning electron microscope
US4804840A (en) Apparatus for detecting focused condition of charged particle beam
JP2009129799A (en) Scanning transmission type electron microscope
US2348031A (en) Method of focusing electron microscopes
JPH07307136A (en) Irradiator for charged particle beam
JPS6364255A (en) Particle beam radiating device
JP3383175B2 (en) Image display method of scanning microscope and scanning microscope
JP2004134300A (en) Beam current stabilizer and electrically-charged particle beam device
JPS5945173B2 (en) scanning electron microscope
JP2759791B2 (en) Ion beam equipment
JPH06318443A (en) Ion beam device