JPH05135726A - Electron beam analyzer - Google Patents
Electron beam analyzerInfo
- Publication number
- JPH05135726A JPH05135726A JP3292810A JP29281091A JPH05135726A JP H05135726 A JPH05135726 A JP H05135726A JP 3292810 A JP3292810 A JP 3292810A JP 29281091 A JP29281091 A JP 29281091A JP H05135726 A JPH05135726 A JP H05135726A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- electric field
- secondary electron
- electron detector
- changed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000010894 electron beam technology Methods 0.000 title claims abstract description 15
- 238000001514 detection method Methods 0.000 claims abstract description 5
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 230000005684 electric field Effects 0.000 abstract description 36
- 238000010586 diagram Methods 0.000 description 15
- 239000012212 insulator Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Measurement Of Radiation (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子ビームを試料に照
射することにより試料から放出される2次電子を検出す
る2次電子検出器を備えた電子線分析装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam analyzer equipped with a secondary electron detector for detecting secondary electrons emitted from a sample by irradiating the sample with an electron beam.
【0002】[0002]
【従来の技術】図8は従来の走査型電子顕微鏡に用いら
れている2次電子検出器の構成を示す図であり、1は対
物レンズ、3は絶縁リング、4は静電レンズ、5は多層
シンチレータ、6はコロナリング、8はライトガイド、
9は外筒、10はホトマルチプライヤ、13、13′は
試料、14、14′は試料ホルダを示す。2. Description of the Related Art FIG. 8 is a diagram showing a structure of a secondary electron detector used in a conventional scanning electron microscope. 1 is an objective lens, 3 is an insulating ring, 4 is an electrostatic lens, and 5 is an electrostatic lens. Multi-layer scintillator, 6 corona ring, 8 light guide,
9 is an outer cylinder, 10 is a photomultiplier, 13 and 13 'are samples, and 14 and 14' are sample holders.
【0003】従来、走査型電子顕微鏡に用いられている
2次電子検出器は、図8に示すように2次電子を検出し
て蛍光を発生する多層シンチレータ5、強い電場を出す
ためのコロナリング6、2次電子を多層シンチレータ5
に導くため外筒9に設けた静電レンズ4、多層シンチレ
ータ5で2次電子を検出して発生した蛍光をホトマルチ
プライヤ10に導くライトガイド8、光電変換を行うホ
トマルチプライヤ10等からなり、電子ビームを照射し
て試料から発生した2次電子を静電レンズ4、コロナリ
ング6で作る電界で集めて検出してホトマルチプライヤ
10からアンプで増幅し出力している。従来は、このよ
うなE/T(Everhart Shornley)検出器及びその改良
型が主流であったが、走査型電子顕微鏡が半導体デバイ
スに対して利用されるようになると、一般の絶縁体試料
の表面観察とは別の問題が生じている。Conventionally, a secondary electron detector used in a scanning electron microscope is a multi-layer scintillator 5 for detecting secondary electrons and generating fluorescence, as shown in FIG. 8, and a corona ring for producing a strong electric field. 6, the secondary electron is a multilayer scintillator 5
Is composed of an electrostatic lens 4 provided on the outer cylinder 9 for guiding the light to the photomultiplier 9, a light guide 8 for guiding the fluorescence generated by detecting secondary electrons by the multi-layer scintillator 5 to the photomultiplier 10, a photomultiplier 10 for performing photoelectric conversion. The secondary electrons generated from the sample by irradiating the electron beam are collected and detected by the electric field created by the electrostatic lens 4 and the corona ring 6, and are amplified and output from the photomultiplier 10 by the amplifier. Conventionally, such an E / T (Everhart Shornley) detector and its improved type have been mainly used, but when a scanning electron microscope is used for a semiconductor device, the surface of a general insulator sample is There is another problem than observation.
【0004】絶縁体試料の表面を走査型電子顕微鏡で観
察する場合には、その試料表面が帯電しないように金や
カーボン等の導電性物質を蒸着している。そのため、実
際の表面ではなく蒸着した金やカーボンの表面を観てい
た。しかし、半導体デバイスの表面に一般の絶縁体と同
様にこれらを蒸着すると、物性が変わってしまうため、
半導体デバイスにおいては、蒸着せず、低加速電圧によ
り電流を減らして表面形態を高忠実度で観察することが
求められるようになってきた。When observing the surface of an insulator sample with a scanning electron microscope, a conductive substance such as gold or carbon is vapor-deposited so that the sample surface is not charged. Therefore, I was watching the surface of evaporated gold or carbon, not the actual surface. However, if these are vapor-deposited on the surface of a semiconductor device like a general insulator, the physical properties change,
In semiconductor devices, it has been required to observe the surface morphology with high fidelity by reducing current with a low accelerating voltage without vapor deposition.
【0005】[0005]
【発明が解決しようとする課題】上記のように走査型電
子顕微鏡により無蒸着で観察する機会が増えると、特に
半導体デバイスなどの試料を観察する場合に問題となる
のは、チャージアップでありこれにより観察画像の画質
の劣化を招くことである。As described above, when the chances of observing without vapor deposition with a scanning electron microscope increase, the problem is charge-up, especially when observing a sample such as a semiconductor device. This causes deterioration of the image quality of the observed image.
【0006】さらに、走査型電子顕微鏡では、図8に示
すように対物レンズ1と試料13との間のワークディス
タンスWDがWD1→WD2のように分解能に応じて変
わるため、このワークディスタンスWDの変化に伴って
チャージアップの様子が変わってしまう点も問題であ
る。Further, in the scanning electron microscope, as shown in FIG. 8, the work distance WD between the objective lens 1 and the sample 13 changes according to the resolution as WD1 → WD2, so that the work distance WD changes. It is also a problem that the state of charge-up changes with the change.
【0007】すなわち、走査型電子顕微鏡では、分解能
を上げるにしたがって試料ホルダ14が図示A方向に試
料ホルダ14′のように移動する。そのため、対物レン
ズ1と試料13との間のワークディスタンスWDがWD
1からWD2のように短くなり、試料13、13′に対
して2次電子検出器のつくる電場Eによる誘電作用の影
響が強まる。図示のように2次電子検出器のつくる電場
Eによる誘電作用の影響をほとんど受けない位置にあっ
た試料13が分解能を上げた結果ワークディスタンスW
D2になると、2次電子検出器のつくる電場Eによる誘
電作用の影響が強まり、試料13′の表面にチャージア
ップが生じる。That is, in the scanning electron microscope, the sample holder 14 moves in the direction A in the figure like a sample holder 14 'as the resolution is increased. Therefore, the work distance WD between the objective lens 1 and the sample 13 is WD
The length is shortened from 1 to WD2, and the influence of the dielectric action by the electric field E created by the secondary electron detector on the samples 13 and 13 'is strengthened. As shown in the figure, the work distance W is increased as a result of the increased resolution of the sample 13 located at a position that is hardly affected by the dielectric action by the electric field E created by the secondary electron detector.
At D2, the influence of the dielectric action due to the electric field E created by the secondary electron detector is increased, and charge-up occurs on the surface of the sample 13 '.
【0008】本発明は、上記の課題を解決するものであ
って、2次電子検出器のつくる電場を抑制し、電場をワ
ークディスタンスと自動的に連動させ、チャージアップ
の少ない状態で試料の観察ができる電子線分析装置を提
供することを目的とする。The present invention is to solve the above-mentioned problems, and suppresses the electric field created by the secondary electron detector, automatically links the electric field with the work distance, and observes the sample in a state where charge-up is small. It is an object of the present invention to provide an electron beam analyzer capable of performing the above.
【0009】[0009]
【課題を解決するための手段】そのために本発明は、電
子ビームを試料に照射することにより試料から放出され
る2次電子を検出する2次電子検出器を備えた電子線分
析装置において、2次電子検出器の検出面の前方に先拡
がりの開口を有し上下に2分割したラッパ型の捕集電極
を設け、該上下の捕集電極に印加する電圧を対物レンズ
と試料との間のワークディスタンスの変化に連動して変
えるようにしたことを特徴とする。To this end, the present invention provides an electron beam analyzer including a secondary electron detector for detecting secondary electrons emitted from a sample by irradiating the sample with an electron beam. In front of the detection surface of the secondary electron detector, there is provided a trapper-type collecting electrode which has a divergent opening and is divided into upper and lower parts, and a voltage applied to the upper and lower collecting electrodes is applied between the objective lens and the sample. The feature is that it is changed in conjunction with the change of work distance.
【0010】[0010]
【作用】本発明の2次電子検出器を備えた電子線分析装
置では、2次電子検出器の検出面の前方に先拡がりの開
口を有し上下に2分割したラッパ型の捕集電極を設け、
該上下の捕集電極に印加する電圧を対物レンズと試料と
の間のワークディスタンスの変化に連動して変えるの
で、試料にチャージアップが生じないように2次電子検
出器のつくる電場を制御することができる。In the electron beam analyzer equipped with the secondary electron detector according to the present invention, a trapper-type collecting electrode which has a divergent opening in front of the detection surface of the secondary electron detector and which is divided into two vertically is provided. Provided,
Since the voltage applied to the upper and lower collecting electrodes is changed in association with the change in the work distance between the objective lens and the sample, the electric field created by the secondary electron detector is controlled so that the sample is not charged up. be able to.
【0011】[0011]
【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は本発明の2次電子検出器の1実施例を示
す図、図2は本発明の2次電子検出器を用いた走査型電
子顕微鏡の例を示す図、図3はワークディスタンスと捕
集電極の電圧との関係を説明するための図である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a secondary electron detector of the present invention, FIG. 2 is a diagram showing an example of a scanning electron microscope using the secondary electron detector of the present invention, and FIG. 3 is a work distance and a capture. It is a figure for demonstrating the relationship with the voltage of a collecting electrode.
【0012】図1において、2次電子を検出して蛍光を
発生する多層シンチレータ5、強い電場を出すためのコ
ロナリング6、コロナリング6に10kV±2kVの電
圧を与える電極7、2次電子を多層シンチレータ5に導
くため外筒9に設けた静電レンズ4、多層シンチレータ
5で2次電子を検出して発生した蛍光をホトマルチプラ
イヤ10に導くライトガイド8、光電変換を行うホトマ
ルチプライヤ10は、従来の2次電子検出器に備える構
成と同じものである。In FIG. 1, a multilayer scintillator 5 for detecting secondary electrons to generate fluorescence, a corona ring 6 for producing a strong electric field, an electrode 7 for applying a voltage of 10 kV ± 2 kV to the corona ring 6, and a secondary electron The electrostatic lens 4 provided on the outer cylinder 9 for guiding to the multilayer scintillator 5, the light guide 8 for guiding the fluorescence generated by detecting the secondary electrons by the multilayer scintillator 5 to the photomultiplier 10, and the photomultiplier 10 for photoelectric conversion. Is the same as the configuration provided in the conventional secondary electron detector.
【0013】本発明は、従来の検出器先端の外筒静電レ
ンズ4にさらに絶縁リング3を挟んで上下に2分割した
捕集電極21 、22 を設け、外筒静電レンズ4及びコロ
ナリング6のつくる電場の形状をワークディスタンスの
変化と連動して制御するように構成したものである。こ
の捕集電極21、22 は、図示のように先拡がりの開口
(開口角α)を有する所謂ラッパ形、或いは円錐台形の
電極であって、上側と下側とを分割して絶縁体11で電
気的にも分離しリード線12を介して可変電源(図示省
略)に接続し、電圧を印加して外筒静電レンズ4及びコ
ロナリング6のつくる電場の形状を制御する電場制御静
電レンズである。この2次電子検出器を用いた電子顕微
鏡の構成例を示したのが図2である。According to the present invention, the outer cylindrical electrostatic lens 4 at the tip of the conventional detector is further provided with the collecting electrodes 2 1 , 2 2 which are divided into upper and lower parts with the insulating ring 3 interposed therebetween. The shape of the electric field created by the corona ring 6 is configured to be controlled in conjunction with changes in the work distance. The collecting electrodes 2 1 , 2 2 are so-called trumpet-shaped or frustoconical electrodes having a divergent opening (opening angle α) as shown in the figure, and the upper and lower sides are divided into insulators. An electric field control static control for electrically separating by 11 and connecting to a variable power source (not shown) via a lead wire 12 to apply a voltage to control the shape of the electric field created by the outer cylinder electrostatic lens 4 and the corona ring 6. It is an electric lens. FIG. 2 shows an example of the configuration of an electron microscope using this secondary electron detector.
【0014】走査型電子顕微鏡では、図2に示すように
例えばキーボートやジョイスティック、マウス等の入力
手段、ディスプレイ等の表示手段、分析データの記憶手
段、CPU等からなるデータ処理・分析制御部33を有
し、このデータ処理・分析制御部33より、電子銃2
5、収束レンズ、偏向コイルを含む収束・偏向系26の
電源28、対物レンズ24の電源29、捕集電極21 、
22 の電源30、試料ホルダ23を駆動して試料22の
位置を制御する試料駆動部32を制御しながら、2次電
子検出器27の出力をアンプ31で増幅して取り込み観
察画像をディスプレイに表示するように構成している。In the scanning electron microscope, as shown in FIG. 2, an input means such as a keyboard, a joystick, a mouse, a display means such as a display, a storage means for analysis data, and a data processing / analysis control section 33 including a CPU are provided. The data processing / analysis control unit 33 has an electron gun 2
5, a converging lens, a power supply 28 for the converging / deflecting system 26 including a deflection coil, a power supply 29 for the objective lens 24, a collecting electrode 2 1 ,
2 2 power 30, while controlling the sample drive unit 32 to the sample holder 23 is driven to control the position of the sample 22, the output of the secondary electron detector 27 the observation image acquisition is amplified by the amplifier 31 to the display It is configured to display.
【0015】本発明は、上記構成の走査型電子顕微鏡に
おいて、分解能を調整する際に試料駆動部32を通して
試料22の位置が制御され、ワークディスタンスが変化
した時に、そのワークディスタンスWDの変化に連動し
て捕集電極電源30を制御するものである。この場合の
ワークディスタンスWDと捕集電極21 、22 の電圧V
1 、V2 との関係は、図3に示すようになり、捕集電極
電源30では、ワークディスタンスWDが大きくなるに
したがって2次的な曲線で捕集電極21 、22 の電圧V
1 、V2 を正方向に変化させる。According to the present invention, in the scanning electron microscope having the above-described structure, when the position of the sample 22 is controlled through the sample driving unit 32 when the resolution is adjusted and the work distance is changed, the work distance WD is changed. Then, the collection electrode power supply 30 is controlled. In this case, the work distance WD and the voltage V of the collecting electrodes 2 1 , 2 2
The relationship between V 1 and V 2 is as shown in FIG. 3, and in the collection electrode power source 30, the voltage V of the collection electrodes 2 1 and 2 2 becomes a quadratic curve as the work distance WD increases.
1 , V 2 is changed in the positive direction.
【0016】ラッパ型の捕集電極21 、22 のない電場
の形状は、回転楕円体に近く、長軸は垂直・水平方向で
あり、検出器前にできる電場は、口径が大きく明るい
が、水平方向の電場は弱く、より明るくするためには、
多層シンチレータ5、コロナリング6の電圧を上げる必
要がある。しかし、電場を強くすると、試料表面の帯電
が促進されるためその目的を達成できない。The shape of the electric field without the trumpet-shaped collecting electrodes 2 1 , 2 2 is close to a spheroid and the major axes are vertical and horizontal directions. The electric field formed in front of the detector has a large diameter and is bright. , The horizontal electric field is weak and in order to make it brighter,
It is necessary to increase the voltage of the multilayer scintillator 5 and the corona ring 6. However, if the electric field is strengthened, the charging of the surface of the sample is promoted, and the purpose cannot be achieved.
【0017】そこで、本発明では、上記のようにラッパ
型の捕集電極21 、22 を設けることにより、多層シン
チレータ5、コロナリング6の電圧を変えないで電場の
形状を変えるようにしている。すなわち、ラッパ型の捕
集電極21 、22 に負の電圧(0〜−200V)をかけ
ると、この場合の電場の形状は、ラッパ型の捕集電極2
1 、22 によって圧縮されたように変形される。したが
って、ラッパ型の捕集電極21 、22 を設けることによ
り、回転楕円体の長軸方向を光軸方向に変え、かつ電場
の強弱を変化させることができる。しかも、ラッパ型の
捕集電極21 、22 に負の電圧をかけることによって、
1次電子ビームの照射による試料の帯電の程度を静電的
に中和し抑えることができるし、ラッパ型の捕集電極2
1 、22 で反射される電子は、試料帯電部の低減ないし
は平均化をもたらす。したがって、あたかも検出器全体
を近づけたり遠ざけたりしたかのような操作がラッパ型
の捕集電極21 、22 の電圧制御で電気的に可能とな
る。Therefore, in the present invention, by providing the trapper type collecting electrodes 2 1 , 2 2 as described above, the shape of the electric field can be changed without changing the voltages of the multilayer scintillator 5 and the corona ring 6. There is. That is, when applying a collecting electrode 2 1 a flared, 2 2 to the negative voltage (0 to-200V), the electric field shape in this case, the trumpet-type collecting electrode 2
It is deformed as if it was compressed by 1 , 2 2 . Therefore, by providing the trumpet-type collecting electrodes 2 1 , 2 2 , the major axis direction of the spheroid can be changed to the optical axis direction, and the strength of the electric field can be changed. Moreover, by applying a negative voltage to the trumpet-type collecting electrodes 2 1 , 2 2 ,
The degree of charging of the sample due to the irradiation of the primary electron beam can be electrostatically neutralized and suppressed, and the trumpet-type collecting electrode 2
The electrons reflected by 1 and 2 2 reduce or average the charged portion of the sample. Therefore, it is possible to electrically operate the detector as if the entire detector is moved closer or farther by controlling the voltage of the trumpet-type collecting electrodes 2 1 , 2 2 .
【0018】また、ラッパ型の捕集電極21 、22 に印
加する負の電圧の値を上側と下側で変えることにより電
場の光軸方向の角度を変えることができ、試料の位置や
試料観察目的に応じた電場の形状の制御を行うことがで
きる。The angle of the electric field in the optical axis direction can be changed by changing the value of the negative voltage applied to the trumpet type collecting electrodes 2 1 , 2 2 between the upper side and the lower side. The shape of the electric field can be controlled according to the purpose of observing the sample.
【0019】図4は検出器中心軸に対して非対称の電場
を形成する例を示す図、図5は非対称電場を作る際の電
圧調整を説明するための図である。FIG. 4 is a diagram showing an example of forming an asymmetric electric field with respect to the central axis of the detector, and FIG. 5 is a diagram for explaining voltage adjustment when making the asymmetric electric field.
【0020】ワークディスタンスWDによっては、図4
に示すように検出器中心軸に対して非対称の電場が必要
となる場合もある。例えば図示のように検出器中心軸に
対して下向きの電場を作る場合には、上側の捕集電極2
1 の電圧V1 は、負の電圧側に増加させ、下側の捕集電
極22 の電圧V2 は、正の電圧側に増加させる。これら
の電圧の変化ΔV1 、ΔV2 は、いずれも図5に示すよ
うに2次曲線で近似でき、予め実験もしくは計算により
決めておき、ワークディスタンスWDに応じて捕集電極
電源30で自動的に電圧を変えるようにしておけばよ
い。Depending on the work distance WD, FIG.
In some cases, an electric field asymmetric with respect to the central axis of the detector is required as shown in. For example, when a downward electric field is created with respect to the detector center axis as shown in the figure, the upper collecting electrode 2
Voltage V 1 of the 1 increases to the negative voltage side, the voltage V 2 of the collecting electrode 2 second lower increases to a positive voltage side. Both of these voltage changes ΔV 1 and ΔV 2 can be approximated by a quadratic curve as shown in FIG. You should change the voltage to.
【0021】図6は検出器電場の形と捕集電圧の関係を
計算で求めた例を示す図であり、100V電位の先端ま
での距離Distance(mm)とグローブの半値幅
Width(mm)を捕集電圧Vc(V)に対応させて
示したもので、2次曲線で表せることが判る。図7はワ
ークディスタンスWDと検出器出力との関係の実験例を
示す図である。このようにワークディスタンスWDが変
わったときの検出器出力を一定にするためには、検出器
出力を増幅するアンプにオートゲイン機能を持たせれば
よい。FIG. 6 is a diagram showing an example in which the relationship between the shape of the detector electric field and the trapping voltage is obtained by calculation. The distance Distance (mm) to the tip of 100 V potential and the half width Width (mm) of the globe are shown. It is shown in correspondence with the collection voltage Vc (V), and it can be seen that it can be represented by a quadratic curve. FIG. 7 is a diagram showing an experimental example of the relationship between the work distance WD and the detector output. In order to make the detector output constant when the work distance WD changes in this way, an amplifier for amplifying the detector output may be provided with an auto gain function.
【0022】なお、本発明は、上記の実施例に限定され
るものではなく、種々の変形が可能である。例えば上記
の実施例では、ワークディスタンスの変化に連動して2
次曲線で自動的に上下の捕集電極21 、22 の印加電圧
を変えるようにしたが、全く個別に電圧の値を決定して
電場の形状を変えるようにしてもよい。また、観察目的
によっては、電圧を印加しないモードや正の電圧を印加
したモードで使用してもよい。例えば金属や導電性物質
を蒸着した試料では、ラッパ型の捕集電極の電源をオフ
にし又は正電圧(数V)にする方がよい。また、観察し
ようとする試料の誘電率に応じて前記開口角αの異なっ
た捕集電極を使用してもよい。すなわち、誘電率が小さ
くなるにしたがって帯電度合も小さくなるので、金属や
導電性物質を蒸着した試料を観察する場合は、絶縁体試
料を観察する場合に比べて開口角αの小さな捕集電極を
使用してもよい。The present invention is not limited to the above embodiment, but various modifications can be made. For example, in the above-described embodiment, 2
Although the applied voltage to the upper and lower collecting electrodes 2 1 , 2 2 is automatically changed by the following curve, the shape of the electric field may be changed by individually determining the voltage value. Further, depending on the purpose of observation, it may be used in a mode in which no voltage is applied or in a mode in which a positive voltage is applied. For example, in the case of a sample in which a metal or a conductive substance is vapor-deposited, it is better to turn off the power of the trumpet-type collecting electrode or set it to a positive voltage (several V). Further, collection electrodes having different opening angles α may be used depending on the dielectric constant of the sample to be observed. That is, as the dielectric constant decreases, the degree of charging also decreases. May be used.
【0023】さらに、EPMAやオージェ分析のように
高加速、大電流の場合でも負の電圧をかけることにより
ブレーキをかけ、検出器で得られる信号量を適正にする
ことができる。また、本発明の2次電子検出器は、イオ
ンビーム半導体加工機や電子ビーム描画装置にも適用可
能である。Further, even in the case of high acceleration and large current as in EPMA or Auger analysis, it is possible to apply a negative voltage to apply a brake to make the signal amount obtained by the detector appropriate. The secondary electron detector of the present invention can also be applied to an ion beam semiconductor processing machine and an electron beam drawing apparatus.
【0024】[0024]
【発明の効果】以上に説明したように、本発明によれ
ば、2次電子検出器の検出面の前方に先拡がりの開口を
有し上側と下側に分割したラッパ型の捕集電極を設け、
該捕集電極の上側と下側に印加する電圧を対物レンズと
試料との間のワークディスタンスの変化に連動して変え
るので、試料にチャージアップが生じないように2次電
子検出器のつくる電場を制御することができ、ワークデ
ィスタンスの変化に伴って観察画像の画質が劣化するの
を防ぐことができる。また、捕集電極の印加電圧を変え
て2次電子の捕集電場の形状を変えることができるの
で、観察目的に応じて2次電子検出器の位置を移動させ
ると同様の制御を行うことができる。As described above, according to the present invention, there is provided a trumpet type collecting electrode having a divergent opening in front of the detection surface of the secondary electron detector and divided into an upper side and a lower side. Provided,
Since the voltages applied to the upper and lower sides of the collecting electrode are changed in association with the change in the work distance between the objective lens and the sample, the electric field created by the secondary electron detector is prevented so that the sample is not charged up. Can be controlled, and the image quality of the observed image can be prevented from deteriorating with a change in the work distance. Further, since the shape of the collecting electric field of the secondary electrons can be changed by changing the voltage applied to the collecting electrode, the same control can be performed by moving the position of the secondary electron detector according to the purpose of observation. it can.
【図1】 本発明の2次電子検出器の1実施例を示す図
である。FIG. 1 is a diagram showing an embodiment of a secondary electron detector of the present invention.
【図2】 本発明の2次電子検出器を用いた走査型電子
顕微鏡の例を示す図である。FIG. 2 is a diagram showing an example of a scanning electron microscope using the secondary electron detector of the present invention.
【図3】 ワークディスタンスと捕集電極の電圧との関
係を説明するための図である。FIG. 3 is a diagram for explaining a relationship between a work distance and a voltage of a collection electrode.
【図4】 検出器中心軸に対して非対称の電場を形成す
る例を示す図である。FIG. 4 is a diagram showing an example of forming an electric field asymmetric with respect to the central axis of the detector.
【図5】 非対称電場を作る際の電圧調整を説明するた
めの図である。FIG. 5 is a diagram for explaining voltage adjustment when creating an asymmetric electric field.
【図6】 検出器電場の形と捕集電圧の関係を計算で求
めた例を示す図である。FIG. 6 is a diagram showing an example in which the relationship between the shape of the detector electric field and the trapping voltage is calculated.
【図7】 ワークディスタンスWDと検出器出力との関
係の実験例を示す図である。FIG. 7 is a diagram showing an experimental example of the relationship between the work distance WD and the detector output.
【図8】 従来の走査型電子顕微鏡に用いられている2
次電子検出器の構成を示す図である。FIG. 8 is a schematic diagram of 2 used in a conventional scanning electron microscope.
It is a figure which shows the structure of a secondary electron detector.
1…対物レンズ、21 、22 …ラッパ型の捕集電極、3
…絶縁リング、4…静電レンズ、5…多層シンチレー
タ、6…コロナリング、7…電極、8…ライトガイド、
9…外筒、10…ホトマルチプライヤ、11…絶縁体、
α…開口角1 ... Objective lens, 2 1 , 2 2 ... Trumpet type collecting electrode, 3
... Insulation ring, 4 ... Electrostatic lens, 5 ... Multilayer scintillator, 6 ... Corona ring, 7 ... Electrode, 8 ... Light guide,
9 ... Outer cylinder, 10 ... Photomultiplier, 11 ... Insulator,
α ... Aperture angle
Claims (1)
試料から放出される2次電子を検出する2次電子検出器
を備えた電子線分析装置において、2次電子検出器の検
出面の前方に先拡がりの開口を有し上下に2分割したラ
ッパ型の捕集電極を設け、該上下の捕集電極に印加する
電圧を対物レンズと試料との間のワークディスタンスの
変化に連動して変えるようにしたことを特徴とする電子
線分析装置。1. An electron beam analyzer provided with a secondary electron detector for detecting secondary electrons emitted from a sample by irradiating the sample with an electron beam, in front of a detection surface of the secondary electron detector. A trumpet-type collecting electrode having a divergent opening and divided into upper and lower parts is provided, and the voltage applied to the upper and lower collecting electrodes is changed in association with the change in the working distance between the objective lens and the sample. An electron beam analyzer characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3292810A JPH05135726A (en) | 1991-11-08 | 1991-11-08 | Electron beam analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3292810A JPH05135726A (en) | 1991-11-08 | 1991-11-08 | Electron beam analyzer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05135726A true JPH05135726A (en) | 1993-06-01 |
Family
ID=17786646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3292810A Withdrawn JPH05135726A (en) | 1991-11-08 | 1991-11-08 | Electron beam analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05135726A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100906030B1 (en) * | 2006-06-22 | 2009-07-02 | 주식회사 아도반테스토 | Electron-beam size measuring apparatus and size measuring method with electron beams |
JP2011113776A (en) * | 2009-11-26 | 2011-06-09 | Hitachi High-Technologies Corp | Charged-particle microscope, and control method for charged-particle microscope |
-
1991
- 1991-11-08 JP JP3292810A patent/JPH05135726A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100906030B1 (en) * | 2006-06-22 | 2009-07-02 | 주식회사 아도반테스토 | Electron-beam size measuring apparatus and size measuring method with electron beams |
US7560693B2 (en) | 2006-06-22 | 2009-07-14 | Advantest Corp. | Electron-beam size measuring apparatus and size measuring method with electron beams |
JP2011113776A (en) * | 2009-11-26 | 2011-06-09 | Hitachi High-Technologies Corp | Charged-particle microscope, and control method for charged-particle microscope |
US8934006B2 (en) | 2009-11-26 | 2015-01-13 | Hitachi High-Technologies Corporation | Charged-particle microscope and method for controlling same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020082861A1 (en) | Low-energy scanning electron microscope system, scanning electron microscope system, and specimen detection method | |
JP4215282B2 (en) | SEM equipped with electrostatic objective lens and electrical scanning device | |
JP4037533B2 (en) | Particle beam equipment | |
US5939720A (en) | Scanning electron microscope | |
JP3268583B2 (en) | Particle beam device | |
JP3932894B2 (en) | Electron beam equipment | |
JP3323021B2 (en) | Scanning electron microscope and sample image observation method using the same | |
US12027342B2 (en) | Charged particle beam device and axis adjustment method thereof | |
US6570163B1 (en) | Electron detectors | |
CN208256614U (en) | A kind of objective lens of the scanning electron microscope, system | |
JP2001185066A (en) | Electron beam device | |
US4710632A (en) | Ion microbeam apparatus | |
JP5149387B2 (en) | Charged particle gun and focused ion beam apparatus using the same | |
JPH1064464A (en) | Detection element objective lens device | |
US6232601B1 (en) | Dynamically compensated objective lens-detection device and method | |
US6653632B2 (en) | Scanning-type instrument utilizing charged-particle beam and method of controlling same | |
JPH0636346B2 (en) | Charged particle beam apparatus and sample observation method using the same | |
JPH08138611A (en) | Charged particle beam device | |
JPH08241689A (en) | Beam blanking device of charged particle beam device | |
EP0790634A1 (en) | Electrostatic-magnetic lens arrangement | |
JPH01220352A (en) | Scanning electron microscope and its analogous device | |
JPH05135726A (en) | Electron beam analyzer | |
US5089699A (en) | Secondary charged particle analyzing apparatus and secondary charged particle extracting section | |
JP2000149850A (en) | Charged particle beam device | |
JPH0864163A (en) | Charged particle beam device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990204 |