JPS62131175A - Heating refrigerating method and device - Google Patents

Heating refrigerating method and device

Info

Publication number
JPS62131175A
JPS62131175A JP27078185A JP27078185A JPS62131175A JP S62131175 A JPS62131175 A JP S62131175A JP 27078185 A JP27078185 A JP 27078185A JP 27078185 A JP27078185 A JP 27078185A JP S62131175 A JPS62131175 A JP S62131175A
Authority
JP
Japan
Prior art keywords
container
heating
heat
containers
hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27078185A
Other languages
Japanese (ja)
Other versions
JPH067030B2 (en
Inventor
大角 泰章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daito Valve Seisakusho Co Ltd
Original Assignee
Daito Valve Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daito Valve Seisakusho Co Ltd filed Critical Daito Valve Seisakusho Co Ltd
Priority to JP60270781A priority Critical patent/JPH067030B2/en
Publication of JPS62131175A publication Critical patent/JPS62131175A/en
Publication of JPH067030B2 publication Critical patent/JPH067030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は加熱冷蔵方法およびvc置に関し、より詳細に
は加熱冷蔵容器と熱発生容器とがらなり、金属水素化物
の水素の吸蔵、放出に伴う発熱、吸熱、を利用して高温
あるいは低温を得る加熱冷蔵方法および装置に閏づる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heating and refrigeration method and a VC device, and more specifically, a heating and refrigeration container and a heat generation container are used to store and release hydrogen from metal hydrides. This article focuses on heating and refrigeration methods and devices that utilize heat generation and absorption to obtain high or low temperatures.

[従来の技術] 従来、加熱冷蔵方法および装置としては、温水などの加
熱源あるいは氷、ドライアイスなどの冷熱源を断熱容器
に収容する熱源方式や液化窒素を利用した低温貯蔵方式
ならびにペルチェ・エレメントを断熱容器に配設した電
気方式が知られている。熱源方式によれば使用するたび
に熱源を用意しなければならない点が非常に不便である
。また、温水などの加熱源は短時間で温度が低下し、氷
やドライアイスなどの冷熱源も時間が経過すれば消費さ
れてしまうので1安定した加熱冷蔵能力を示さない。一
方、液化窒素を利用した低温貯蔵方式では、液化窒素が
容器からバイブを通りスプレー・ヘッダから断熱した冷
蔵・冷凍容器に直接噴射され、良好な低温状態を保つが
、長時間貯蔵の場合、液化窒素を補給する必要があり、
長時間連続して一定の低温を保つことがむづかしく、し
かもコストが高くつくという欠点がある。また、電気方
式によれば長時間にわたって安定に加熱冷蔵することが
できるが、電源のないところでは用いることができない
[Prior Art] Conventionally, heating and refrigeration methods and devices include a heat source method in which a heating source such as hot water or a cold source such as ice or dry ice is housed in an insulated container, a low temperature storage method using liquefied nitrogen, and a Peltier element. An electric method is known in which a heat insulator is placed in a heat insulating container. The heat source method is extremely inconvenient in that a heat source must be prepared each time it is used. Furthermore, heating sources such as hot water drop in temperature in a short period of time, and cold sources such as ice and dry ice are consumed over time, so they do not exhibit stable heating and refrigeration capabilities. On the other hand, in the low-temperature storage method using liquefied nitrogen, liquefied nitrogen is directly injected from the container through a vibrator into an insulated refrigerated/freezer container from the spray header, maintaining a good low temperature condition. Nitrogen needs to be replenished,
The drawback is that it is difficult to maintain a constant low temperature continuously for a long period of time, and it is also expensive. Furthermore, although electric systems can provide stable heating and refrigeration over long periods of time, they cannot be used in places without a power source.

[発明が解決しようとする問題点] 前記の各加熱冷蔵装置は、夫々の特徴を有しているが、
一般に温水などの加熱源は短時間で温度が低下し、氷、
ドライアイス、液化窒素など冷熱源が時間の経過ととも
に消費されるので、連続的に低温を保持するためには、
熱源を補給しなければならず、コストも高くなり、また
電源のないところでは使用できないという問題点がある
[Problems to be Solved by the Invention] Each of the heating and refrigeration devices described above has its own characteristics, but
Generally speaking, the temperature of a heating source such as hot water decreases in a short period of time, causing ice,
Cold heat sources such as dry ice and liquefied nitrogen are consumed over time, so in order to maintain a low temperature continuously,
There are problems in that a heat source must be supplied, the cost is high, and it cannot be used in places without a power source.

[問題点を解決するための手段] 本発明の目的は、従来の加熱冷蔵方法および装置が有す
る諸欠点ならびに問題点を除去、解決した方法および装
置を提供することにある。
[Means for Solving the Problems] An object of the present invention is to provide a method and device that eliminate and solve the various drawbacks and problems of conventional heating and refrigeration methods and devices.

本発明者らは、ある種の合金が速やかに水素を吸蔵し、
その際発熱して金属水素化物を形成し、また、この金属
水素化物が可逆的に水素を放出し、その際吸熱する特性
を利用した熱発生容器を設け、使用に当って加熱あるい
は冷蔵熱源を用意する必要もなく、しかも電源を必要と
せず、長時間にわたって連続的に加熱あるいは冷蔵する
ことができる加熱冷蔵方法および装置を新規に見い出し
、ここに本発明を完成するに至った。
The inventors have discovered that certain alloys quickly absorb hydrogen;
At that time, heat is generated to form a metal hydride, and this metal hydride reversibly releases hydrogen, and a heat-generating container is installed that utilizes the property of absorbing heat. The present inventors have discovered a new heating and refrigeration method and device that can continuously heat or refrigerate over a long period of time without the need for preparation or power supply, and have now completed the present invention.

本発明法は、第1の金属水素化物を装填した第1の容器
が加熱冷蔵容器空間と熱交換し得るよう配設され、第1
の容器と第2の金属水素化物を装填した第2の容器とを
少なくとも−・対連結した熱発生容器を設け、金属水素
化物と水素化物形成合金とが装填される2つの容器に圧
力変化で水素を交互にかつ連続的に充填および排出し、
それによって得られた反応熱を有効に利用して高温ある
いは低温を得ることを特徴とするものである。
In the method of the present invention, a first container loaded with a first metal hydride is arranged to exchange heat with a heated and refrigerated container space;
and a second container loaded with a second metal hydride. filling and discharging hydrogen alternately and continuously;
It is characterized by effectively utilizing the reaction heat obtained thereby to obtain high or low temperatures.

また、第1の金属水素イし物として、ミツシュメタル−
ニツケル系水素化物および第2の金属水素化物としてミ
ツシュメタル−ニツケルーアルミニウム系水素化物を使
用し、その組み合せによって得られた反応熱を利用して
高温あるいは低温を(することを特徴とするものである
In addition, as the first metal hydrogen oxide, Mitshu metal
A nickel-based hydride and a nickel-aluminum-based hydride are used as the second metal hydride, and the heat of reaction obtained by the combination is used to raise the temperature to a high or low temperature. .

また、第1の容器と第2の容器を一対以上連結した熱発
生容器において、第2の容器の合金と水素との反応熱を
他の第2の容器の金属水素化物の加熱に利用できるよう
に熱交換板を設買することに特徴がある。
Furthermore, in a heat generating container in which one or more pairs of a first container and a second container are connected, the reaction heat between the alloy and hydrogen in the second container can be used to heat the metal hydride in the other second container. The unique feature is that a heat exchange plate is installed and purchased.

以下に実施例を示す図面に基づいて本発明を説明する。The present invention will be described below based on drawings showing examples.

[実 施 例1 第1図は本発明方法の実施に直接使用する加熱冷蔵装置
の一実施例を示したものである。本発明の加熱冷蔵装置
は八は断熱した加熱冷蔵容器1と当該加熱冷蔵容器1下
口に内嵌し自由に脱着できる断熱した熱発生容器2から
なっている。
[Example 1] Fig. 1 shows an example of a heating and refrigerating apparatus used directly in carrying out the method of the present invention. The heating and refrigerating device of the present invention consists of an insulated heating and refrigerating container 1 and an insulating heat generating container 2 that fits inside the lower opening of the heating and refrigerating container 1 and can be freely attached and detached.

熱発生容器2内には第1の金属水素化物を装填した第1
の容器3,4と第2の金属水素化物を装填した第2の容
器5.6を配設するとともに、熱発生容器2は断熱隔壁
7を画成して第1の容器3,4の反応熱が第1の容器3
,4相互に伝導しないようにし、一方の第1の容器4の
反応熱が人気と、また残るもう一方の第1の容器3の反
応熱が加熱冷蔵容器1の収容空間8と熱交換できるよう
に、第1の容器3,4の上下両側に精察9,10を開設
し、更に熱発生容器2は断熱外壁11で第2の容器5,
6を囲い第2の容器5,6の反応熱が外部に伝わらない
ようにするとともに、第2の容器5,6の対向面間に熱
伝導率の良好な伝熱板12を介在させ一方の第2の容器
5からの反応熱を残るもう一方の第2の容器6での反応
を起こすための熱源となるようにしである。
Inside the heat generating container 2 is a first container loaded with a first metal hydride.
and a second container 5.6 loaded with a second metal hydride, and the heat generating container 2 defines an insulating partition 7 to prevent the reaction of the first containers 3, 4. Heat is the first container 3
, 4 to prevent mutual conduction, so that the reaction heat in one first container 4 can be exchanged with the remaining reaction heat in the other first container 3 with the accommodation space 8 of the heating/refrigerating container 1. In addition, inspection holes 9 and 10 are provided on both the upper and lower sides of the first containers 3 and 4, and the heat generating container 2 is connected to the second containers 5 and 10 with an insulating outer wall 11.
6 to prevent the reaction heat of the second containers 5, 6 from being transmitted to the outside, and a heat transfer plate 12 with good thermal conductivity is interposed between the opposing surfaces of the second containers 5, 6 to The reaction heat from the second container 5 is made to serve as a heat source for causing a reaction in the remaining second container 6.

前記第1の容器3.4と第2の容器5.6は夫々フィル
ター13.14,15.16を両端に取付けた連通管1
7.18にて接続し、当該連通管17.18には第1の
容器3.4と第2の容器5,6間の水素の流通と停止を
ル1111する連通弁19.20を介設しである。ノイ
ルター13.14.15.16は水素の流通時に金属水
素化物が随伴したり、連通管17.18を詰まらせるの
を防止するしので、例えば孔径10μm以下の多孔性焼
結金属が用いられる。
The first container 3.4 and the second container 5.6 are connected to a communication pipe 1 with filters 13.14 and 15.16 attached at both ends, respectively.
7.18, and the communication pipe 17.18 is provided with a communication valve 19.20 that controls and stops the flow of hydrogen between the first container 3.4 and the second containers 5 and 6. It is. The Noirters 13, 14, 15, 16 are made of porous sintered metal with a pore diameter of 10 μm or less, for example, to prevent metal hydrides from being entrained during hydrogen flow and to prevent clogging of the communication pipes 17, 18.

第1の容器3.4および第2の容器5,6は以下に限定
されるわけではないが、好ましくは複数の筒状容器から
形成され、複数組を一ト下二段並列に配して各対角に連
通管17.18ぐ接続する。また複数組を一段並列に配
し各対1口に連通管17.18で接続しても良い。
The first container 3.4 and the second containers 5, 6 are preferably formed from a plurality of cylindrical containers, although they are not limited to the following, and a plurality of sets are arranged in parallel in two stages. Connect the communicating pipes 17 and 18 to each diagonal. Alternatively, a plurality of sets may be arranged in parallel in one stage and connected to one port of each pair through communication pipes 17 and 18.

第1の容器3,4および第2の容器5,6からなる熱発
生容器2は、1つのセットとして加熱冷蔵容器1に、脱
着自在であり、精察10が加熱冷蔵容器2内に向くよう
に反転しても取り付けできる。
The heat generating container 2 consisting of the first containers 3, 4 and the second containers 5, 6 can be attached to and detached from the heating and refrigerating container 1 as one set, so that the inspection device 10 faces inside the heating and refrigerating container 2. It can be installed even if it is reversed.

断熱した加熱冷蔵容器1内には温度センサー21が配設
され、この温度センサー21の検知する温度によって上
記の夫々の連通弁19.20が開閉できるようにし、連
通弁19.20を通過する水素の流通4が制御される。
A temperature sensor 21 is disposed inside the insulated heating and refrigerating container 1, and the communication valves 19 and 20 are opened and closed according to the temperature detected by the temperature sensor 21, and the hydrogen passing through the communication valves 19 and 20 is opened and closed. The distribution 4 of is controlled.

第1の金属水素化物M11」と第2の金属水素化物M2
1」は、相Uに平衡分解圧特性の異なるものが用いられ
る。具体的には、M 1HとしてはLaNi5.1aN
i5ZAρZ、MmNi5.MmNi5−zAρz、M
mx7iyNi5.MIIIXZryNi5.MmxN
byN15(ただし、0.75 (x <1.2.0<
y <0.25.0 <z≦0.5)などの水素化物と
M2HとしてLa N i 5−Z All 。
"first metal hydride M11" and second metal hydride M2
1", phase U having different equilibrium decomposition pressure characteristics is used. Specifically, as M 1H, LaNi5.1aN
i5ZAρZ, MmNi5. MmNi5-zAρz,M
mx7iyNi5. MIIIXZryNi5. MmxN
byN15 (however, 0.75 (x <1.2.0<
y<0.25.0<z≦0.5) and LaNi5-ZAll as M2H.

MmNi5−ZANZ、MmXTiVNi5−zAff
z、Mmx7ryNi5−zAρl。
MmNi5-ZANZ, MmXTiVNi5-zAff
z, Mmx7ryNi5-zAρl.

MmXNbl/N15−ZAρZ (ただし、0゜75
  <X  <1. 2.0  <V  <0. 25
.0  <Z≦0.5)などの水素化物との組み合せが
用いられる。
MmXNbl/N15-ZAρZ (However, 0゜75
<X <1. 2.0 <V <0. 25
.. A combination with a hydride such as 0<Z≦0.5) is used.

し作  用1 本発明の装置△を冷′ia装置どして用いる場合には、
第2図に示すように、第1の容器3,4にはTH=20
℃で平衡分解圧の高いM 1 t−1が高圧の水素雰囲
気下に充填され、第2の容器5゜6にはTH=20℃で
平衡分解圧の低いM 2 +−1が好ましくは水素を放
出した合金の状態で低圧の水素雰囲気下に充填される。
Function 1 When the device △ of the present invention is used as a cooling device, etc.,
As shown in FIG. 2, the first containers 3 and 4 have TH=20
M 1 t-1, which has a high equilibrium decomposition pressure at TH=20°C, is filled in a high-pressure hydrogen atmosphere, and M 2 +-1, which has a low equilibrium decomposition pressure at TH=20°C, is preferably filled with hydrogen. The released alloy is then filled in a low-pressure hydrogen atmosphere.

即ち、Mll」の状態は点■に、M2Hの状態が点■に
夫々対応するようにしておく。
That is, the state of "Mll" corresponds to point (2), and the state of M2H corresponds to point (2).

温度センサー21の作動温度を断熱した加熱冷蔵容器1
内の所要冷FA温度TL=O℃に設定すると、第2の容
器を空気で冷却してMll」の解離圧を下げて、点■の
状態とする。加熱冷蔵容器1内の温度が設定温度に到達
するまぐ連通弁19が間かれ、第1の容器3と第2の容
器5が連通ずるので、水素は高圧の第1の容器3から低
圧の第2の容器5へと移動し、Ml[]は吸熱して水素
を放出して温度TI−=O℃に至り、加熱冷蔵容器1内
を冷却する。これが点■の状態であり、低温発生工程で
ある。一方、第2の容器5のM2Hは水素を吸熱して発
熱するが、この発熱はアルミニウムあるいは銅イ1どの
伝熱板12を通して残るもう一つの容器6を加熱しなが
ら内部に充填しであるM21」を加熱する。
Heating/refrigerating container 1 insulated from the operating temperature of temperature sensor 21
When the required cold FA temperature TL in the container is set to 0° C., the second container is cooled with air to lower the dissociation pressure of “Mll” and reach the state at point (3). The communication valve 19, which allows the temperature inside the heating and refrigerating container 1 to reach the set temperature, is closed and the first container 3 and the second container 5 are communicated with each other, so hydrogen is transferred from the high pressure first container 3 to the low pressure second container. Ml[ ] absorbs heat and releases hydrogen to reach a temperature of TI-=O<0>C, thereby cooling the inside of the heating/refrigerating container 1. This is the state of point (■) and is a low temperature generation process. On the other hand, the M2H in the second container 5 absorbs heat from hydrogen and generates heat, but this heat is passed through the heat transfer plate 12 such as aluminum or copper 1 and heats the remaining container 6, which is then filled into the M21. ” is heated.

断熱した加熱冷蔵容器1内の温度が設定温度TL=O℃
に達づると、温度センサー21が作動して連通弁19を
閉じ、第1容杢3と第2の容器5間の水素の流通は中断
される。加熱冷蔵容器1内の温度が所定温度より上饗す
ると再び温度セン++−21が作動し、連通弁19を聞
くので水素の流通が起り加熱冷蔵容器1内を所定温度ま
て゛冷u1する。
The temperature inside the insulated heating and refrigerating container 1 is the set temperature TL = O℃
When the temperature sensor 21 is activated to close the communication valve 19, the flow of hydrogen between the first container 3 and the second container 5 is interrupted. When the temperature inside the heating/refrigerating container 1 exceeds a predetermined temperature, the temperature sensor ++-21 is activated again and the communication valve 19 is sensed, so hydrogen flows and the inside of the heating/refrigerating container 1 is cooled to a predetermined temperature u1.

第1の容器3と第2の容器5が前記の低温発生の動作を
行っている間に残る第1の容器4と第2の容器6では再
生の動作を行う。即ち、水素を第2の容器6の低圧側の
M 2 Hに吸Rさせて水素化物を生成させておく。こ
の第2の容器に前記の低温発生の動作で1qられた発熱
が伝熱板12を通して加熱される。この状態が点■に対
応する。連通弁20が聞かれ、第2の容器6と第1の容
器4が連通するので、水素は高圧の第2の容器6から低
圧の第1の容器4へと移動し、第1の容器4のM1ト1
は水素を吸蔵して発熱する。この発熱は第1の容器4か
ら窓10を通して人気中に放散される。これが点■の当
初の状態であり、再生工程である。
While the first container 3 and the second container 5 are performing the above-described low temperature generation operation, the remaining first container 4 and second container 6 are performing a regeneration operation. That is, hydrogen is absorbed into M 2 H on the low pressure side of the second container 6 to generate a hydride. The heat generated by 1q in the above-described low temperature generation operation is heated through the heat transfer plate 12 in this second container. This state corresponds to point ■. The communication valve 20 is opened and the second container 6 and the first container 4 communicate with each other, so that hydrogen moves from the high pressure second container 6 to the low pressure first container 4, and the hydrogen moves from the high pressure second container 6 to the low pressure first container 4. M1to1
absorbs hydrogen and generates heat. This heat is dissipated from the first container 4 through the window 10. This is the initial state of point (■) and is the regeneration process.

熱発生容器2の第1の容器3および第2の容器5の系列
と第1の容器4および第2の容器6の系列が逆になるよ
うに熱発生容器2を入れかえて、低温発生と再成工程の
2系列を交互に運転することで、連続的な加熱冷蔵容器
1の冷2J]が可能である。
The heat generating container 2 is replaced so that the series of the first container 3 and the second container 5 of the heat generating container 2 and the series of the first container 4 and the second container 6 are reversed, and low temperature generation and regeneration are performed. By alternately operating the two lines of the forming process, it is possible to continuously cool the heating/refrigerating container 1 by 2 J].

本発明の加熱冷蔵装置Aを加熱装置として用いる場合に
は、上記とは逆に第2の容器5にはMlHを高圧の水素
雰囲気下に充填し、第1の容器3にはM21」を低圧の
水素雰囲気下に充填する。断熱した加熱冷蔵容器1内が
所定の温度に達するまで連通弁19が聞いて第2の容器
5ど第1の容器3が連通ずるので、水素は高圧の第2の
容器5から低圧の第1容器3へ移動し、第1の容器3内
のM21」は水素を発熱的に吸蔵し、温熱が精察9を通
して加熱冷蔵容器1内に与えられ加熱する。これが高温
発生工程である。
When the heating/refrigerating device A of the present invention is used as a heating device, contrary to the above, the second container 5 is filled with MlH under a high pressure hydrogen atmosphere, and the first container 3 is filled with M21'' under a low pressure. Filled under hydrogen atmosphere. Until the inside of the insulated heating and refrigerating container 1 reaches a predetermined temperature, the communication valve 19 communicates with the second container 5 and the first container 3, so hydrogen is transferred from the high-pressure second container 5 to the low-pressure first container. M21 in the first container 3 exothermically absorbs hydrogen, and heat is applied to the heating/refrigerating container 1 through the inspection 9 to heat it. This is the high temperature generation process.

m1工程では、高温発生工程で(募られた第2の容器5
の吸熱を伝熱板12を通して水素化物形成合金の状態に
した残るもう一つの第2の容器6を冷1!11ると、内
部に充填されたMlHは水素を吸蔵づる。従って連通弁
2oが聞かれると水素は高L[の第1の容器4がら低圧
の第2の容器6へ移動する。この時第1の容器4で発生
する冷熱は精察10を通して大気中に放散する。
In the m1 process, in the high temperature generation process (the collected second container 5
When the remaining second container 6, which has been made into a hydride-forming alloy state through the heat exchanger plate 12, is cooled 1!11, the MlH filled inside absorbs hydrogen. Therefore, when the communication valve 2o is opened, hydrogen moves from the first container 4 at high L[ to the second container 6 at low pressure. At this time, the cold heat generated in the first container 4 is dissipated into the atmosphere through the inspection chamber 10.

熱発生容器2の入れ替えによって連続的な加熱が可能で
ある。
Continuous heating is possible by replacing the heat generating container 2.

[実 験 例] 容器内容積約36βの断熱した加熱冷蔵容器 ・を有す
る小型の加熱冷蔵装置を用い、約I KLjのMraN
i47Aρo3を充填した第1の容器と約1Kgのla
 N i 5を充填した第2の容器を一対配設し、第1
の容器には20℃の温度で水素を約7気圧に加圧してL
a N i 5水素化物に吸蔵させ、一方、第2の容器
は20”Cの温度で約1゜2気圧に減圧して、設定温度
を0℃とし、加熱冷蔵容器内に配したセンサーに接続す
ると、容器内の温度は約O℃に達し、以後連続して加熱
冷蔵容器はほぼ約O℃に保たれた。
[Experimental example] Using a small heating and refrigerating device with an insulated heating and refrigerating container with an internal volume of approximately 36β, MraN of approximately I KLj was used.
The first container filled with i47Aρo3 and about 1Kg of la
A pair of second containers filled with N i 5 are arranged, and the first
In the container, hydrogen is pressurized to about 7 atmospheres at a temperature of 20℃ and L
aN i 5 hydride was occluded, while the second container was depressurized to approximately 1°2 atm at a temperature of 20"C, the set temperature was set to 0°C, and it was connected to a sensor placed in a heated and refrigerated container. Then, the temperature inside the container reached approximately 0.degree. C., and thereafter the heating and refrigerating container was continuously maintained at approximately 0.degree.

[効  果1 本発明は、金属水素化物の水素の吸蔵、放出反応を利用
して加熱あるいは冷n]を行なうため、何ら電源も要せ
ず、しかも従来の加熱冷蔵方法および装置にみられるよ
うに、熱源を消費したり、補給したりすることを要せず
、必要に応じて長時間にわたって安定に所要の温度を取
り出して使用することができるという優れた効果を奏す
る。
[Effect 1] Since the present invention performs heating or cooling using the hydrogen storage and desorption reactions of metal hydrides, it does not require any power source, and it does not require any power source, unlike conventional heating and refrigeration methods and devices. Another advantage is that the required temperature can be stably extracted and used over a long period of time as needed without consuming or replenishing a heat source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の加熱冷蔵装置の一実施例を示す断面図
、第2図はその動作を説明するためのfvlrl−48
よびM21」の平衡分解圧と温度の関係図を示す。 A・・・加熱冷蔵装置 1・・・加熱冷蔵装置    2・・・熱発生容器3.
4・・・第1の容器   5,6・・・第2の容器7・
・・断熱隔壁      8・・・収容空間9.10・
・・精察     11・・・断熱外壁12・・・伝熱
板 13.14,15.16・・・フィルター17.18・
・・連通管   19.20・・・連通弁21・・・温
度センサー
Fig. 1 is a sectional view showing an embodiment of the heating/refrigerating device of the present invention, and Fig. 2 is a fvlrl-48 for explaining its operation.
FIG. A... Heating/refrigerating device 1... Heating/refrigerating device 2... Heat generating container 3.
4... First container 5, 6... Second container 7.
・・Insulating bulkhead 8・Accommodation space 9.10・
...Inspection 11...Insulating outer wall 12...Heat transfer plate 13.14, 15.16...Filter 17.18.
...Communication pipe 19.20...Communication valve 21...Temperature sensor

Claims (1)

【特許請求の範囲】 1、相互を通気連結した第1の容器と第2の容器に平衡
分解圧特性の異なる金属水素化物を夫々装填して前記第
1の容器と第2の容器に圧力変化で水素を交互に充填お
よび排出を連続繰り返すことで前記金属水素化物に水素
の吸蔵と放出を交互に行わしめ、温熱あるいは冷熱を発
生させてなる加熱冷蔵方法 2、第1の容器と第2の容器に夫々装填される金属水素
化物は、ミツシュメタル−ニツケル系水素化物とミツシ
ュメタル−ニツケル−アルミニウム系水素化物である特
許請求の範囲第1項記載の加熱冷蔵方法 3、相互を通気連結した第1の容器と第2の容器は、少
なくとも2組並設し、前記第1の容器間は断熱し前記第
2の容器間では相互に伝熱することで一方の組の前記第
1の容器と前記第2の容器では加熱冷却反応をかつ他方
の組の前記第1の容器と前記第2の容器では当該反応の
可逆反応を夫々同時並行して行ってなる特許請求の範囲
第1項又は第2項記載の加熱冷蔵方法4、平衡分解圧特
性の異なる金属水素化物を夫々装填した一対の第1の容
器と第2の容器を複数組、温度センサーにて開閉制御さ
れる連結弁を介して各対毎に通気自在に相互連結すると
ともに、複数組の隣接する前記第1の容器相互間を断熱
しかつ少なくとも1側を放熱自在に開放する一方、複数
組の隣接する前記第2の容器相互間同志が伝熱自在に設
けかつ外側を断熱した熱発生容器と、当該熱発生容器が
脱着自在な加熱冷蔵容器とからなる加熱冷蔵装置 5、第1の容器と第2の容器に夫々装填される金属水素
化物はミツシュメタル−ニツケル系水素化物とミツシュ
メタル−ニツケル−アルミニウム系水素化物である特許
請求の範囲第4項記載の加熱冷蔵装置 6、熱発生容器は、加熱冷蔵容器に反転脱着自在に形成
してなる特許請求の範囲第4項記載の加熱冷蔵装置
[Scope of Claims] 1. Metal hydrides having different equilibrium decomposition pressure characteristics are charged into a first container and a second container which are connected to each other through ventilation, and the pressure changes in the first container and the second container. Heating and refrigeration method 2, in which the metal hydride is made to alternately absorb and release hydrogen by continuously repeating alternately charging and discharging hydrogen, thereby generating hot or cold heat. The heating and refrigeration method 3 according to claim 1, wherein the metal hydrides respectively charged in the containers are a Mitshu metal-nickel hydride and a Mitshu metal-nickel-aluminum hydride. At least two sets of a container and a second container are arranged side by side, and heat is insulated between the first container and heat is transferred between the second containers, so that the first container and the second container of one set are insulated. Claim 1 or 2, wherein a heating and cooling reaction is carried out in the second container, and a reversible reaction of the reaction is carried out simultaneously in the first container and the second container of the other set, respectively. In heating and refrigeration method 4 described above, a plurality of pairs of first containers and second containers each loaded with metal hydrides having different equilibrium decomposition pressure characteristics are connected to each pair via a connecting valve whose opening/closing is controlled by a temperature sensor. The plurality of adjacent first containers are interconnected to allow ventilation, and the plurality of adjacent first containers are insulated from each other, and at least one side is open to allow heat radiation. A heating and refrigerating device 5 consisting of a heat generating container provided to allow heat transfer and having an insulated outside, and a heating and refrigerating container to which the heat generating container can be freely attached and detached; The heating/refrigerating device 6 according to claim 4, wherein the hydride is a Mitsuhmetal-nickel-based hydride or a Mitshumetal-nickel-aluminum-based hydride, wherein the heat generating container is formed to be reversible and detachable from the heating/refrigerating container. The heating and refrigerating device according to claim 4
JP60270781A 1985-12-03 1985-12-03 Forward and reverse mutual drive type heating and refrigerating method and apparatus Expired - Lifetime JPH067030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60270781A JPH067030B2 (en) 1985-12-03 1985-12-03 Forward and reverse mutual drive type heating and refrigerating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60270781A JPH067030B2 (en) 1985-12-03 1985-12-03 Forward and reverse mutual drive type heating and refrigerating method and apparatus

Publications (2)

Publication Number Publication Date
JPS62131175A true JPS62131175A (en) 1987-06-13
JPH067030B2 JPH067030B2 (en) 1994-01-26

Family

ID=17490905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60270781A Expired - Lifetime JPH067030B2 (en) 1985-12-03 1985-12-03 Forward and reverse mutual drive type heating and refrigerating method and apparatus

Country Status (1)

Country Link
JP (1) JPH067030B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017669A (en) * 1983-07-08 1985-01-29 松下電器産業株式会社 Multiple effect heat pump device
JPS6037395A (en) * 1983-08-09 1985-02-26 川崎重工業株式会社 Collection of seabottom deposited substance
JPS60211272A (en) * 1984-04-05 1985-10-23 松下電器産業株式会社 Intermittent operation type multistage second type heat pumpdevice
JPS60226678A (en) * 1984-04-24 1985-11-11 松下電器産業株式会社 Intermittent operation type multistage second class heat pump device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017669A (en) * 1983-07-08 1985-01-29 松下電器産業株式会社 Multiple effect heat pump device
JPS6037395A (en) * 1983-08-09 1985-02-26 川崎重工業株式会社 Collection of seabottom deposited substance
JPS60211272A (en) * 1984-04-05 1985-10-23 松下電器産業株式会社 Intermittent operation type multistage second type heat pumpdevice
JPS60226678A (en) * 1984-04-24 1985-11-11 松下電器産業株式会社 Intermittent operation type multistage second class heat pump device

Also Published As

Publication number Publication date
JPH067030B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
EP0071271A2 (en) Metal hydride heat pump system
Kim et al. Compressor-driven metal-hydride heat pumps
US5845507A (en) Thermal compressive device
US4697425A (en) Oxygen chemisorption cryogenic refrigerator
EP2391846A1 (en) Continuously-operated metal hydride hydrogen compressor, and method of operating the same
JP3407913B2 (en) Heat transport system using hydrogen storage alloy
JPS62131175A (en) Heating refrigerating method and device
US5857345A (en) Method of managing a solid/gas adsorption or thermochemical reaction
JPS6037395B2 (en) Portable heating or cooling device
JP2642830B2 (en) Cooling device
JPH09324960A (en) Heat generating or heat absorbing method and apparatus using hydrogen storing alloy
JPS642869B2 (en)
Bowman Jr et al. Characterizations of prototype sorption cryocoolers for the periodic formation of liquid and solid hydrogen
JPS642870B2 (en)
JPH02259375A (en) Cooling apparatus using metal hydride
JPS608427B2 (en) heating cooling device
JPS6033239B2 (en) Portable heating and cooling device
JPH10306951A (en) Refrigerating apparatus
JPH0399170A (en) Cooling device utilizing metal hydride
JP2703360B2 (en) Heat-driven chiller using metal hydride
JP3133442B2 (en) Heat driven cold heat generation method and apparatus using metal hydride
JPH0830632B2 (en) Intermittent heater
JPS62158963A (en) Portable thermal shock generator
JPH04366371A (en) Cooling device
JPS6327625B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term