JPS60226678A - Intermittent operation type multistage second class heat pump device - Google Patents

Intermittent operation type multistage second class heat pump device

Info

Publication number
JPS60226678A
JPS60226678A JP8220484A JP8220484A JPS60226678A JP S60226678 A JPS60226678 A JP S60226678A JP 8220484 A JP8220484 A JP 8220484A JP 8220484 A JP8220484 A JP 8220484A JP S60226678 A JPS60226678 A JP S60226678A
Authority
JP
Japan
Prior art keywords
heat
temperature
medium
heat pump
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8220484A
Other languages
Japanese (ja)
Inventor
功 竹下
孝治 蒲生
良夫 森脇
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8220484A priority Critical patent/JPS60226678A/en
Publication of JPS60226678A publication Critical patent/JPS60226678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、作動気体の可逆的な吸脱着反応での発熱、吸
熱を利用したケミカルヒートポンプ装置に関するもので
あり、優れた性能を生かして低質の熱源を用いて暖房、
給湯、或いは工業用の熱を供給することのできるもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a chemical heat pump device that utilizes heat generation and heat absorption in a reversible adsorption/desorption reaction of a working gas. Heating using
It can supply hot water or industrial heat.

従来例の構成とその問題点 ヒートポンプ装置は圧縮式、吸収式、ケミカルヒートポ
ンプの3つに大別できる。本発明に係るケミカルヒート
ポンプは、近年エネルギー有効利用の観点から次第に関
心が高まりつつある。
Conventional configurations and their problems Heat pump devices can be roughly divided into three types: compression type, absorption type, and chemical heat pump. The chemical heat pump according to the present invention has been attracting increasing attention in recent years from the viewpoint of effective energy utilization.

ケミカルヒートポンプは、物質の吸脱着反応も3ペノ しくけ、相変化反応を利用したヒートポンプであり、作
動媒体としては金属水素化物や、無機水和物、有機物、
ゼオライトなどがその材料として考えられている。これ
らの作動気体としては水素。
Chemical heat pumps are heat pumps that use phase change reactions to adsorb and desorb substances, and the working medium is metal hydrides, inorganic hydrates, organic substances,
Zeolite and other materials are being considered as such materials. Hydrogen is the working gas for these.

水蒸気、アンモニアなどがある。Water vapor, ammonia, etc.

次に、従来のヒートポンプ装置の構成やその問題点を金
属水素化物の場合を例に説明する。
Next, the configuration of a conventional heat pump device and its problems will be explained using a metal hydride as an example.

従来の一般的々ヒートポンプサイクルは第1図に示す温
度・平衡圧力特性を示す。温度・平衡圧力特性の異なる
2種類の金属水素化物を用い、同一温度で平衡圧力の低
い金属水素化物(MHI)で十分に水素を吸着したもの
iTM度で加熱しくAの状態)、TL度の十分水素を脱
着した同一温度で平衡圧力の高い金属水素化物(MH2
)と連通ずると、MHlの水素は’h/iH2に移動す
る(Bの状態)。この際MH2は発熱反応により熱を発
生するが、これは大気などに捨てる。
A typical conventional heat pump cycle exhibits the temperature/equilibrium pressure characteristics shown in FIG. Two types of metal hydrides with different temperature and equilibrium pressure characteristics are used, and the metal hydride (MHI) with low equilibrium pressure at the same temperature adsorbs hydrogen sufficiently. Metal hydrides (MH2) with high equilibrium pressure at the same temperature that have sufficiently desorbed hydrogen
), the hydrogen of MHL moves to 'h/iH2 (state B). At this time, MH2 generates heat due to an exothermic reaction, which is thrown away into the atmosphere.

次にMH2’i温度Tlvlで加熱しくCの状態)、水
素を脱着したMHlと連通するとMH2から水素はMH
lに移動する。この際発熱反応によりMHIは暖められ
TM度からTH度に上昇し、MH2のTM度における平
衡圧力に近い圧力に対応するMHlの平衡温度で熱を発
生する(Dの状態)。
Next, when MH2'i is heated at the temperature Tlvl (C state) and communicated with MHL from which hydrogen has been desorbed, hydrogen is converted from MH2 to MH2.
Move to l. At this time, MHI is warmed by the exothermic reaction and rises from TM degrees to TH degrees, and generates heat at the equilibrium temperature of MHL corresponding to a pressure close to the equilibrium pressure of MH2 at TM degrees (state D).

すなわち、A−、B−、C−Dの過程を繰り返すことに
よって、TMの熱源温度の熱から、これより高いTH温
度の高温の熱を取得することができる。
That is, by repeating the steps A-, B-, and CD, high-temperature heat at a higher TH temperature can be obtained from heat at the TM heat source temperature.

このように第2種のヒートポンプ装置を用いて一次熱源
温度より高い温度の出力を取出すことができるが、さら
にとの出力を用いて第2の第2種ヒートポンプ装置を加
熱することにょシ、より高い温度を得る多段第2種ヒー
トポンプ装置が提案されており、その中でも第2のヒー
トポンプサイクルの低温側媒体の加熱は、第1のヒート
ポンプサイクルと同様の一次熱源により行ない、第2の
サイクルの高温側媒体の加熱は前記第1のサイクルの出
力を用いる。この方法は、多段化において常に問題とな
っていた高低圧差の増大を回避しうるすぐれたものであ
る。
In this way, it is possible to use the second type heat pump device to output an output at a temperature higher than the primary heat source temperature, but it is also possible to use the second type heat pump device to heat the second type 2 heat pump device. A multi-stage type 2 heat pump device that obtains a high temperature has been proposed, in which the low temperature medium in the second heat pump cycle is heated by the same primary heat source as in the first heat pump cycle, and the high temperature medium in the second cycle is heated by the same primary heat source as in the first heat pump cycle. The output of the first cycle is used to heat the side medium. This method is excellent in that it can avoid an increase in the difference between high and low pressures, which has always been a problem in multi-stage systems.

本発明に先行する2段第2種ヒートポンプのサイクル説
明図を第2図に示す。この図において第5 ページ 1のサイクルA、B、C,Dは、AおよびCにおいて1
次熱源で加熱され、Dで出力する。第2のサイクルはA
/ 、 33/ 、 CI 、 D’でC′において1
次熱源で加熱されA′は、第1のサイクルのDにおける
出力によって加熱される。このような2段のサイクルを
実現する具体的構成は第3図のごとくである。
FIG. 2 shows a cycle explanatory diagram of a two-stage second-class heat pump that precedes the present invention. In this figure, cycles A, B, C, D of page 5 1 are 1 in A and C.
It is heated by the secondary heat source and outputted by D. The second cycle is A
/ , 33/ , CI , D' and 1 at C'
A', heated by the secondary heat source, is heated by the output at D of the first cycle. A specific configuration for realizing such a two-stage cycle is shown in FIG.

この構成の動作について説明する。第1のヒートポンプ
サイクルの高温発熱側の金属水素化物(MHl)k熱源
1によりTM度で加熱し、低温発熱側の金属水素化物(
MH2)ITL度の外気などで冷却し弁2を開放すると
、MHlに吸着していた水素はMH2に移動する。この
際MH1では吸熱、MH2では発熱が起る。この発熱は
放熱器3で捨てる。(第4図の状態A−,Bへの水素移
動)、この抜弁2を閉じMHlへの熱源1からの加熱を
停止し、MH2’(i7熱源4(TM度)により加熱す
ると平衡圧力がPHに上昇する。ここで加熱を続けんか
ら弁2を開くと水素ガスはMHlに移る。この際MH2
では吸熱が起り、MHlではTH度の発熱を生ずる。こ
の場合T)I)TMであ6ペノ る0 今MH2’にはMH2と同じ材料を用いTL度でMH2
’を冷却し、MHI’とMH2’を連通ずる配管の弁2
′ヲ開き、MHlで発生した熱を熱輸送手段6によって
MH1′の加熱に用いるとMH1’の水素はMH2’に
移動する。この反応が起るためには勿論、TLとMH2
’できまる平衡圧力PLi示すMHI’の平衡温度TM
’(A/点の温度)はTHより低くなければ々ら々い。
The operation of this configuration will be explained. The metal hydride (MHl) on the high-temperature exothermic side of the first heat pump cycle is heated at TM degrees by k heat source 1, and the metal hydride (MHl) on the low-temperature exothermic side is heated at TM degrees by k heat source 1.
MH2) When the valve 2 is opened after cooling with outside air at an ITL degree, the hydrogen adsorbed in MHL moves to MH2. At this time, MH1 absorbs heat, and MH2 generates heat. This heat is dissipated by the radiator 3. (Hydrogen transfer to states A- and B in Figure 4), close this vent valve 2, stop heating from heat source 1 to MH1, and heat it with MH2' (i7 heat source 4 (TM degree)), the equilibrium pressure will change to PH. At this point, without continuing heating, when valve 2 is opened, the hydrogen gas moves to MHL.At this time, MH2
In MHL, an endotherm occurs, and in MHL, an exotherm of TH degrees is generated. In this case T)
Valve 2 of the piping that cools ' and connects MHI' and MH2'
When '' is opened and the heat generated in MHL is used to heat MH1' by the heat transport means 6, hydrogen in MH1' moves to MH2'. In order for this reaction to occur, of course, TL and MH2 are required.
Equilibrium temperature TM of 'MHI indicated by equilibrium pressure PLi'
'(A/temperature at point) is very different if it is lower than TH.

このようにしてMH1’からMH2’に水素の移動が起
るとMH1′では吸熱、MH2’では発熱を生ずる。後
者は放熱器3′によって大気に捨てる。
When hydrogen transfers from MH1' to MH2' in this way, MH1' absorbs heat and MH2' generates heat. The latter is discharged into the atmosphere by a heat sink 3'.

次に弁2′を閉じ、熱源e(TM度)によりMH2’を
加熱すると圧力はPHに上昇する。ここで弁2′を開け
ばMH1′へ水素が吸着されTH’度での発熱を生ずる
。これを熱輸送十段了により取出すことにより、熱源温
度TMよりはるかに高い温度TH/の熱がえられる。T
 H’−T Mは一段の場合の温度差TH−TMの2倍
近い値かえられる。
Next, valve 2' is closed and MH2' is heated by heat source e (TM degree), and the pressure rises to PH. If the valve 2' is opened here, hydrogen is adsorbed into the MH1' and heat is generated at TH' degrees. By extracting this through the ten-stage heat transport system, heat at a temperature TH/, which is much higher than the heat source temperature TM, can be obtained. T
H'-TM is nearly twice the temperature difference TH-TM in the case of one stage.

さてこの装置において、熱源1.4.6による7ペーノ 加熱は独立の熱源を用いて説明したが、実際には1つの
熱源から熱を取出す時、出来るだけ広い温度幅を利用し
うろことが望ましい。例えは第3図で、熱源1から熱媒
を介してMHl)i加熱しているとすれば、との熱媒の
往き温度と帰り温度の差は大きい方が熱は有効に利用さ
れるが、その場合、MHlはその中に大きな温度分布を
生じ、あまシ加熱されない部分を生ずるか、次第に全体
が最高温に達するかわりに、熱媒の帰り温度が高くなっ
て熱源の有効利用ができなくなるかのいづれかで共に都
合が悪い。
Now, in this device, the 7-peno heating by heat source 1.4.6 was explained using an independent heat source, but in reality, when extracting heat from one heat source, it is desirable to use as wide a temperature range as possible. . For example, in Figure 3, if MHL)i is heated from heat source 1 via a heating medium, the larger the difference between the sending and returning temperatures of the heating medium, the more effectively the heat will be used. In that case, the MHL will have a large temperature distribution within it, and some parts will not be heated, or the whole will gradually reach its maximum temperature, but the return temperature of the heating medium will become high, making it impossible to use the heat source effectively. Both are inconvenient.

第2図のサイクル図かられかるごとく、最終段の発熱温
度TH’をできるだけ高くするためにはこのサイクルの
高圧を高くすることが必要であり、従ってC′の温度を
できるだけ高くする必要がある0一方、AおよびA′の
加熱温度は、TLにおいて放熱ができるかぎりにおいて
は出力温度には影響しない。
As can be seen from the cycle diagram in Figure 2, in order to make the final stage heat generation temperature TH' as high as possible, it is necessary to increase the high pressure in this cycle, and therefore it is necessary to make the temperature of C' as high as possible. On the other hand, the heating temperatures of A and A' do not affect the output temperature as long as heat can be dissipated at TL.

発明の目的 本発明は前記多段第2種ヒートポンプ装置において、1
次熱源を有効に利用し、かつ最終段の高温出力をできる
だけ高くすることを目的とするものである。
Purpose of the Invention The present invention provides the multi-stage second type heat pump device, which includes:
The purpose is to effectively utilize the secondary heat source and to increase the high temperature output of the final stage as much as possible.

発明の構成 本発明の多数第2種ヒートポンプ装置は、作動気体とそ
の作動気体を可逆的に吸脱着できる温度平衡圧力特性の
異なる2種類の媒体を2つの部屋に区画した密閉容器内
に各々収納し、気体の吸脱着反応時の発熱、吸熱を利用
したケミカルヒートポンプ装置であり、ヒートポンプサ
イクルが少なくとも2組から構成され、同一温度で平衡
圧力の高い低温側吸脱着反応媒体を、熱源により加熱し
、平衡圧力の低い高温側吸脱着反応媒体に吸着せしめる
ことにより熱源温度より高い温度を得る第2種ヒートポ
ンプサイクルとして使用し、相対的に低温で作動する前
記第1のサイクルの高温側媒体が作動気体を吸着する際
の吸着反応発熱温度を、相対的に高温で作動する前記第
2のサイクルの高温側媒体の脱着反応加熱温度より高く
シ、第1の第2種ヒートポンプサイクルの前記吸着反応
を用9 ペーノ いて第2の第2種ヒートポンプサイクルの高温側媒体か
らの作動気体の脱着を行わしめると共に、第1および第
2の第2種ヒートポンプサイクルの低温側の発熱をはソ
同一温度で放熱せしめるでとくした2段(多段)第2種
ヒートポンプ装置の1次熱源による加熱を空気、水など
の熱媒体を介して行い、最高温を得るサイクル、すなわ
ち多段のときの終段サイクルの、低温側媒体の1次熱源
による加熱を、前記熱媒体の最高温部を用いて行うよう
にしたものである。
Structure of the Invention In the multiple type 2 heat pump device of the present invention, a working gas and two types of media capable of reversibly adsorbing and desorbing the working gas and having different temperature equilibrium pressure characteristics are each housed in a closed container divided into two chambers. This is a chemical heat pump device that utilizes heat generation and heat absorption during adsorption and desorption reactions of gases, and consists of at least two sets of heat pump cycles, in which the low-temperature side adsorption and desorption reaction medium, which has the same temperature and high equilibrium pressure, is heated by a heat source. , used as a second type heat pump cycle that obtains a temperature higher than the heat source temperature by adsorption to the high temperature side adsorption/desorption reaction medium with low equilibrium pressure, and the high temperature side medium of the first cycle that operates at a relatively low temperature operates. The adsorption reaction exothermic temperature when adsorbing gas is set higher than the desorption reaction heating temperature of the high temperature side medium of the second cycle which operates at a relatively high temperature, and the adsorption reaction of the first type 2 heat pump cycle is performed. 9. The working gas is desorbed from the medium on the high temperature side of the second type 2 heat pump cycle, and the heat generated on the low temperature side of the first and second type 2 heat pump cycles is radiated at the same temperature. A cycle in which heating is performed by the primary heat source of a two-stage (multi-stage) second-class heat pump device via a heat medium such as air or water to obtain the highest temperature, that is, the final stage cycle in the case of a multi-stage, low temperature The side medium is heated by the primary heat source using the hottest part of the heat medium.

実施例の説明 多段第2種ヒートポンプでできるだけ高い温度をうるに
は終段高温サイクルの低温吸脱着媒体を、できるだけ高
温に加熱することが有効であることを見出した。このこ
とを実現するだめの一実施例について説明する。
DESCRIPTION OF EMBODIMENTS In order to obtain the highest possible temperature in a multi-stage second type heat pump, it has been found that it is effective to heat the low-temperature adsorption/desorption medium in the final stage high-temperature cycle to as high a temperature as possible. An embodiment for realizing this will be described.

第4図は本発明の一実施例を示すブロック図である。こ
れは第3図に示した基本構成を3組用いたもので、それ
ぞれの番号にaeb+cffi添字してあり1それぞれ
のa、b、cでとに3つの組み10ペノ となっている。
FIG. 4 is a block diagram showing one embodiment of the present invention. This uses three sets of the basic configuration shown in Fig. 3, with aeb+cffi suffix added to each number, and 1 each of a, b, and c, resulting in three sets of 10 penos.

今ここでMH1用の加熱熱交換器9.MH2用加熱加熱
熱交換器10H2’用加熱熱加熱熱交換器とし、第3図
ではそれぞれ熱源1.4.6がこれに接続しているが、
第4図では9a−10b−110、と直列に熱媒配管1
3aで結ばれており、9bは9b−10cm11 a 
、 9cは9 (+−10a−11bと結ばれている。
Now here is the heating heat exchanger for MH19. MH2 heating heat exchanger 10H2' heating heat heat exchanger, and in FIG. 3, heat sources 1, 4, and 6 are connected to this, respectively.
In Fig. 4, heat medium pipe 1 is connected in series with 9a-10b-110.
3a is connected, 9b is 9b-10cm11 a
, 9c is connected to 9 (+-10a-11b.

これは一つの熱源14と弁12a、12b、12aを介
して結ばれる。
This is connected to one heat source 14 via valves 12a, 12b, 12a.

このようにすると9a、1ob、110の順に熱源が流
れるのでこの順に熱媒の温度が下り、従って又MH1,
MH2、MH2’の順に温度が下り、MHlが一番高い
温度に加熱され、最終的に熱媒温度は十分下げられるか
ら熱源を有効に利用することができる。なお6.b、c
と3組の2段すイクル全用い、9a−1ob−11cと
ずらせて熱媒配管で絡んだ理由は、MH1i加熱し経っ
てMH2,MH2を加熱し終ってMH2’と々るため、
a、b、c(jそれだけ時間をずらせて作動させるよう
にすることにより、との熱媒配管を直列につ11 ペー
ソ ないだもので、9.10i出た後に熱媒溜めを設ければ
3組使用する必要はないが、出力も間欠的にしか出ない
ので、むしろこのように3組用いる方が、出力を連続的
に取出せる点が有利であり、熱媒は弁12a、12b、
12cを切りかえてゆくことにより、熱源14からも熱
は連続的に取出せるので都合がよい。なお上記実施例で
熱媒の流れの順序を9−10−11としたが9−11−
10にしても同じ効果かえられる。
In this way, the heat source flows in the order of 9a, 1ob, and 110, so the temperature of the heat medium decreases in this order, and therefore, MH1,
The temperature decreases in the order of MH2 and MH2', and MH1 is heated to the highest temperature.Finally, the heating medium temperature is sufficiently lowered, so that the heat source can be used effectively. Furthermore, 6. b, c
The reason why all three sets of two-stage cycles were used and 9a-1ob-11c were intertwined with the heating medium piping was because MH1i is heated, then MH2, MH2 is heated, and then MH2' is reached.
a, b, c (j) By making the operation time lag by that amount, the heat medium piping with and are connected in series, and if the heat medium reservoir is installed after 9.10i, 3. Although it is not necessary to use three sets, since the output is only produced intermittently, it is more advantageous to use three sets like this in that the output can be taken out continuously, and the heat medium is used by the valves 12a, 12b,
By switching 12c, heat can be extracted continuously from the heat source 14, which is convenient. In the above example, the flow order of the heat medium was set to 9-10-11, but it was changed to 9-11-
You can get the same effect even if you set it to 10.

発明の詳細 な説明したごとく、例えば2段の第2種ヒートポンプの
4つの媒体の中で、高温発生のサイクルの低温側吸脱着
媒体をもっとも熱源温度に近い温度に加熱できるので、
高温発生サイクルの高圧を可能なかぎり高めることがで
き、出力温度を高めることができ、熱源を有効に利用す
ることができる。
As described in detail of the invention, for example, among the four media of a two-stage second-class heat pump, the low-temperature side adsorption-desorption medium of the high-temperature generation cycle can be heated to a temperature closest to the heat source temperature.
The high pressure of the high temperature generation cycle can be increased as much as possible, the output temperature can be increased, and the heat source can be used effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来から知られている1段第2種ヒートポンプ
サイクル図、第2図は2段第2種ヒートポンプのサイク
ル図、第3図は第2図に示すヒートポンプサイクルを実
現する装置のブロック構成図、第4図は本発明の一実施
例の間欠作動式多段第2種ヒートポンプ装置ブロック構
成図である。 2a 、2b、2c 、2a’、2b’、2c′−用水
素ガス弁、3a 、 3b 、 3c 、 3a’、 
3b’、 3c’−・・・・・放熱器、了a、了す、7
c・・・・・・熱輸送手段、9a。 9b、9c、10a、10b、10c、11a。 11b、11c・・・・・・加熱用熱交換器、12a。 12b 、 12 c−−・−熱媒分配弁、13a、1
3b。 13c・・・・熱媒配管、14・・・・・・熱源。 代理人の氏上 弁理士 中 尾 敏 男 ほか1名・葺
@wo署− 区 憾
Figure 1 is a cycle diagram of a conventionally known one-stage type 2 heat pump, Figure 2 is a cycle diagram of a two-stage type 2 heat pump, and Figure 3 is a block diagram of a device that realizes the heat pump cycle shown in Figure 2. FIG. 4 is a block diagram of an intermittent operating multi-stage second type heat pump device according to an embodiment of the present invention. Hydrogen gas valve for 2a, 2b, 2c, 2a', 2b', 2c', 3a, 3b, 3c, 3a',
3b', 3c'-...heatsink, complete a, complete, 7
c...Heat transport means, 9a. 9b, 9c, 10a, 10b, 10c, 11a. 11b, 11c... Heating heat exchanger, 12a. 12b, 12c---heat medium distribution valve, 13a, 1
3b. 13c... Heat medium piping, 14... Heat source. Agent Ujigami Patent attorney Toshio Nakao and 1 other person, Fuki@wo station - Ward

Claims (1)

【特許請求の範囲】 作動気体を可逆的に吸脱着できるとともに温度平衡圧力
特性の異なる2種類の吸脱着反応媒体をそれぞれ容器内
に収容し、前記作動気体をそれぞれの前記媒体間を移動
せしめる際の発熱吸熱を利用するケミカルヒートポンプ
サイクルを少なくとも2組用意し同一温度で平衡圧力の
高い低温側吸脱着反応媒体を熱源によい加熱し、離脱し
た反応気体を平衡圧力の低い高温側吸脱着反応媒体に吸
着せしめることにより熱源温度より高い温度を得る第2
種ヒートポンプサイクルとして使用し、相対的に低温で
作動する第1のサイクルの高温側媒体が作動気体を吸着
する際の吸着反応発熱温度を、相対的に高温で作動する
第2のサイクルの高温側媒体の脱着反応加熱温度よシ高
くし、前記第1のヒートポンプサイクルの前記吸着反応
熱を用いて、前記第2のヒートポンプサイクルの高温側
媒体の2ペノ 脱着を行わしめ、前記第1と第2のヒートポンプサイク
ル低温側放熱温度をはソ同一とした間欠作動式第2種ヒ
ートポンプ装置の一次熱源による加熱を、熱媒体を介し
て行い、熱媒体の最高温部を、最高温を得るサイクルの
低温側媒体の加熱に使用するようにした間欠作動式多段
第2種ヒートポンプ装置。
[Scope of Claims] Two types of adsorption/desorption reaction media capable of reversibly adsorbing and desorbing a working gas and having different temperature equilibrium pressure characteristics are housed in respective containers, and the working gas is moved between the respective media. Prepare at least two sets of chemical heat pump cycles that utilize the exothermic heat absorption of A second heat source that obtains a temperature higher than the heat source temperature by adsorbing the
The exothermic temperature of the adsorption reaction when the medium adsorbs the working gas is the same as the high temperature side of the second cycle, which operates at a relatively high temperature. The heating temperature for the desorption reaction of the medium is set higher than that of the medium, and the adsorption reaction heat of the first heat pump cycle is used to perform two-peno desorption of the medium on the high temperature side of the second heat pump cycle. Heating is performed by the primary heat source of an intermittent operating type 2 heat pump device with the heat radiation temperature on the low-temperature side being the same, via a heat medium, and the highest temperature part of the heat medium is placed at the low temperature of the cycle that produces the highest temperature. An intermittent operating multi-stage second class heat pump device used to heat the side medium.
JP8220484A 1984-04-24 1984-04-24 Intermittent operation type multistage second class heat pump device Pending JPS60226678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8220484A JPS60226678A (en) 1984-04-24 1984-04-24 Intermittent operation type multistage second class heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8220484A JPS60226678A (en) 1984-04-24 1984-04-24 Intermittent operation type multistage second class heat pump device

Publications (1)

Publication Number Publication Date
JPS60226678A true JPS60226678A (en) 1985-11-11

Family

ID=13767889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8220484A Pending JPS60226678A (en) 1984-04-24 1984-04-24 Intermittent operation type multistage second class heat pump device

Country Status (1)

Country Link
JP (1) JPS60226678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131175A (en) * 1985-12-03 1987-06-13 東京高圧株式会社 Heating refrigerating method and device
US5127470A (en) * 1989-08-11 1992-07-07 Hitachi Ltd. Apparatus for heat recovery and method for operating the apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131175A (en) * 1985-12-03 1987-06-13 東京高圧株式会社 Heating refrigerating method and device
US5127470A (en) * 1989-08-11 1992-07-07 Hitachi Ltd. Apparatus for heat recovery and method for operating the apparatus

Similar Documents

Publication Publication Date Title
Meunier Solid sorption heat powered cycles for cooling and heat pumping applications
Sun et al. Numerical study on coupled heat and mass transfers in an absorber with external fluid heating
US6746515B2 (en) Method and apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption
US4085590A (en) Hydride compressor
US5823003A (en) Process for heat recovery in a sorption refrigeration system
CN107606816B (en) Low-grade heat-driven adsorption type chemical reaction refrigeration heat pump circulating device and method
Kang et al. Performance analysis of a metal-hydride heat transformer for waste heat recovery
Li et al. Performance analysis of an innovative multimode, multisalt and multieffect chemisorption refrigeration system
US20060107674A1 (en) Multi-effect cooling system utilizing heat from an engine
CN105992920B (en) Energy storage device
JPS60226678A (en) Intermittent operation type multistage second class heat pump device
JPH11223411A (en) Adsorption heat pump
Vasil’ev et al. Multisalt-carbon chemical cooler for space applications
KR102272896B1 (en) Adsorption heat pump system using low temperature heat source
Askalany et al. Highly porous activated carbon based adsorption cooling system employing difluoromethane and a mixture of pentafluoroethane and difluoromethane
JP2568484B2 (en) Multi-effect heat pump device
JPS6331715B2 (en)
JPS638392B2 (en)
JPS60243462A (en) Intermittent operation type multistage double effect second class heat pump device
JPH0472142B2 (en)
JPS60226675A (en) Intermittent operation type multistage cooling device
JPH0573984B2 (en)
EP0001496A1 (en) Method and apparatus for the transfer of thermal energy by hydrogen-hydride sorption systems and use for refrigeration and heat pump cycles
Anilkumar et al. Thermodynamic analysis of adsorption cooling system using composite halide salts
JPS61134551A (en) Metallic hydride heat pump device