JPS60226675A - Intermittent operation type multistage cooling device - Google Patents

Intermittent operation type multistage cooling device

Info

Publication number
JPS60226675A
JPS60226675A JP8220184A JP8220184A JPS60226675A JP S60226675 A JPS60226675 A JP S60226675A JP 8220184 A JP8220184 A JP 8220184A JP 8220184 A JP8220184 A JP 8220184A JP S60226675 A JPS60226675 A JP S60226675A
Authority
JP
Japan
Prior art keywords
cycle
temperature
adsorption
medium
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8220184A
Other languages
Japanese (ja)
Other versions
JPS6331714B2 (en
Inventor
功 竹下
孝治 蒲生
良夫 森脇
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8220184A priority Critical patent/JPS60226675A/en
Priority to EP84107926A priority patent/EP0131869B1/en
Priority to DE8484107926T priority patent/DE3474338D1/en
Priority to US06/629,072 priority patent/US4623018A/en
Publication of JPS60226675A publication Critical patent/JPS60226675A/en
Publication of JPS6331714B2 publication Critical patent/JPS6331714B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、作動気体の可逆的な吸脱着反応での発熱、吸
熱を利用したケミカルヒートポンプ装置に関するもので
あり、優れた性能を生かし、十分低い温度をうるための
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a chemical heat pump device that utilizes heat generation and heat absorption in a reversible adsorption/desorption reaction of a working gas. It is for obtaining.

従来例の構成とその問題点 ヒートポンプ装置は圧縮式、吸収式、ケミカルヒートポ
ンプの3つに大別できる。本発明に係るケミカルヒート
ポンプは、近年エネルギー有効利用の観点から次第に関
心が高まりつ\ある。
Conventional configurations and their problems Heat pump devices can be roughly divided into three types: compression type, absorption type, and chemical heat pump. The chemical heat pump according to the present invention has been attracting increasing attention in recent years from the viewpoint of effective energy utilization.

ケミカルヒートポンプは、物質の吸脱着反応も34ノ しくは相変化反応を利用したヒートポンプであり、作動
媒体としては金属水素化物や、無機水和物。
Chemical heat pumps are heat pumps that use adsorption and desorption reactions of substances or phase change reactions, and the working medium is metal hydrides or inorganic hydrates.

有機物、ゼオライトなどがその材料として考えられてい
る。これらの作動気体としては水素、水蒸気、アンモニ
アなどがある。
Organic substances, zeolites, etc. are considered as such materials. These working gases include hydrogen, water vapor, and ammonia.

従来の一般的々間欠式冷却サイクルは第1図に示す温度
、平衡圧力特性を示す。温度平衡圧力特性の異る2種類
の金属水素化物を用い、同一温度で平衡圧力の低い金属
水素化物(MHl)で十分に水素を吸着したものをTH
度で加熱しくへの状態)、TA度の十分水素を脱着した
同一温度で平衡圧力の高い金属水素化物(MH2)と連
通すると、MHlの水素はMH2に移動する(Bの状態
)0この際MH2は発熱反応により熱を発生するが、こ
れは大気々どのヒートシンクに捨てる。次にMHlを大
気などで冷却し、MH2と連通ずると、MH2の水素は
MHlに移動し、MH2は吸熱するためTc度まで温度
が下る(Cの状態)。一方MHIは発熱するのでこれは
ヒートシンクに捨てる(Dの状態)0このようにA→B
 −) C−+ Dの過程を繰り返すことによって、T
H度の熱源の熱を用いてTcの温度の冷熱を発生するこ
とができる。
A conventional general intermittent cooling cycle exhibits the temperature and equilibrium pressure characteristics shown in FIG. Two types of metal hydrides with different temperature equilibrium pressure characteristics are used, and the metal hydride (MHl) with a lower equilibrium pressure at the same temperature adsorbs hydrogen sufficiently.
When communicating with a metal hydride (MH2) with high equilibrium pressure at the same temperature that has desorbed sufficient hydrogen at TA degrees, the hydrogen in MHL moves to MH2 (state B). MH2 generates heat through an exothermic reaction, which is discarded into the atmosphere or into a heat sink. Next, when MHL is cooled in the atmosphere or the like and communicated with MH2, hydrogen in MH2 moves to MHL, and MH2 absorbs heat, so the temperature drops to Tc degrees (C state). On the other hand, since the MHI generates heat, it is discarded into the heat sink (state D) 0 Like this A→B
−) By repeating the process of C−+D, T
Cold heat at a temperature of Tc can be generated using heat from a heat source at a temperature of H degrees.

このように、熱エネルギーを用いて冷却をすることがで
きる極めて有用なものであるが、ヒートシンク温度と得
られる低温との温度差をさらに大きくしたい時は第2図
に示すごとく、同じ温度での平衡圧が、先に述べたMH
2よりさらに高い、MH3を用い、第2 図+7) A
 ’ −+ B ’ −+ C’−+ I) ノf イ
クルを形成することにより、先述のTOより低いTc′
かえられるが同時に加熱温度THはTH′に上り、高圧
もPHからPF6に上昇することになる。
In this way, it is extremely useful because it can perform cooling using thermal energy, but when you want to further increase the temperature difference between the heat sink temperature and the resulting low temperature, as shown in Figure 2, it is possible to perform cooling using thermal energy. The equilibrium pressure is the MH mentioned earlier
Using MH3, which is even higher than 2, Fig. 2 +7) A
' -+ B' -+ C'-+ I) By forming a nof cycle, Tc' lower than the above-mentioned TO
However, at the same time, the heating temperature TH rises to TH' and the high pressure also rises from PH to PF6.

従って十分な熱源温度かえられない時はこの方法は使用
できない。
Therefore, this method cannot be used when the heat source temperature cannot be changed sufficiently.

そこで第3図に示すごと<、MHl、MH2という同一
の材料の組み合せで、さらにA −+ B→C′l→D
“というサイクルを作り、Bにおける発熱は、A→B 
−+ C−+ Dサイクルと同じくTA度のヒートシン
クに捨てるが、D“における発熱は、先のA→B→C−
+DプサイルのCにおける吸熱によって処理されるよう
にすることにより、加熱温度TH6スジ を高めることなく前記A′→B′→C′→D′サイクル
とはソ同等の低温かえられる方法が発明されている(特
開昭58−99663)。この方法および前記方法によ
ってえられた低温とヒートシンク温度との差は、一段の
冷却サイクルの前記温度差の2倍弱と考えられる。
Therefore, as shown in Fig. 3, with the combination of the same materials <, MHl, MH2, further
``, and the heat generation at B is A→B
-+ C-+ As in the D cycle, it is discarded into a TA degree heat sink, but the heat generated in D" is the same as the previous A→B→C-
A method has been invented which allows the temperature to be changed to a lower temperature equivalent to that of the A'→B'→C'→D' cycle without increasing the heating temperature TH6 streak by processing by the endotherm at C of +D psi. (Japanese Unexamined Patent Publication No. 58-99663). The difference between the low temperatures obtained by this and the previous methods and the heat sink temperature is considered to be less than twice the temperature difference for a single cooling cycle.

このいづれの方法についても実用上の最大の難点は高低
圧の差がPH−PLからPF6−PL又はPHPL′ 
と増大することである(第2図又は第3図参照)。
The biggest practical difficulty with either of these methods is that the difference between high and low pressure is from PH-PL to PF6-PL or PHPL'
(See Figure 2 or Figure 3).

発明の目的 本発明の目的は2つの冷却サイクルを組み合せ加熱温度
は2つのサイクルは同一とし、第1のサイクルで得られ
る低温を用いて第2のサイクルの低温側吸脱着媒体の吸
収による発熱を冷却し、高温側吸脱着媒体の吸収による
発熱は第1のサイクルと同じヒートシンクに捨てるごと
く2つのサイクルを組み合せることにより、1つのサイ
クルの場合とはソ同一の高低圧差で作動し、かつ、ヒー
トシンク温度と低温出力温度との差を1段の場合6・・
2ン のは’;2倍を達成する2段冷却装置を得ることである
Purpose of the Invention The purpose of the present invention is to combine two cooling cycles, make the heating temperature the same in the two cycles, and use the low temperature obtained in the first cycle to reduce the heat generated by absorption of the adsorption/desorption medium on the low temperature side in the second cycle. By combining the two cycles in such a way that the heat generated by the absorption of the adsorption/desorption medium on the high temperature side is discarded into the same heat sink as in the first cycle, the system operates with the same high and low pressure difference as in the case of one cycle, and The difference between the heat sink temperature and the low temperature output temperature is 6 for one stage.
The second step is to obtain a two-stage cooling device that achieves twice the efficiency.

発明の構成 本発明の多段冷却装置は作動気体とその作動気体を可逆
的に吸脱着できる温度・平衡圧力特性の異なる2種類の
媒体を2つの部屋に区画した密閉容器内に各々収納し、
気体の吸脱着反応時の発熱。
Structure of the Invention The multi-stage cooling device of the present invention stores a working gas and two types of media capable of reversibly adsorbing and desorbing the working gas and having different temperature and equilibrium pressure characteristics, respectively, in a closed container divided into two chambers.
Heat generated during gas adsorption/desorption reactions.

吸熱を利用したケミカルヒートポンプ装置であり、ヒー
トポンプサイクルが少なくとも2組から構成の高い低温
側吸脱着媒体に吸着せしめ、その際に発生する吸着熱を
大気などのヒートシンクに捨て、次に前記高温側吸脱着
反応媒体を前記ヒートシンク温度に冷却し、低温側吸脱
着媒体から作動気体を再び高温側吸着媒体に吸着せしめ
ることにより、低温側吸着媒体温度を前記ヒートシンク
温度以下で吸熱せしめる冷却サイクルを形成し、さらに
加熱温度をはソ同一とした第2の冷却サイクルの高温側
吸脱着媒体の吸着による発熱のヒートシンク7 lt 
ノ は第1のサイクルのそれと同一とし、低温側吸脱着媒体
の吸着による発熱を第1のサイクルの低温側吸熱によっ
て除去しうるごとくしたものである。
This is a chemical heat pump device that utilizes heat absorption, in which the heat pump cycle adsorbs the adsorption to a high-temperature side adsorption/desorption medium consisting of at least two sets, discards the adsorption heat generated at that time to a heat sink such as the atmosphere, and then By cooling the desorption reaction medium to the heat sink temperature and causing the working gas from the low temperature side adsorption/desorption medium to be adsorbed again to the high temperature side adsorption medium, a cooling cycle is formed in which the temperature of the low temperature side adsorption medium is made to absorb heat below the heat sink temperature, Furthermore, in the second cooling cycle where the heating temperature is the same as that of
is the same as that of the first cycle, so that the heat generated by the adsorption of the adsorption/desorption medium on the low temperature side can be removed by the heat absorption on the low temperature side of the first cycle.

さらに望ましくはこの2つのサイクルの組み合せにおい
て両サイクルの各吸脱着圧力(高圧および低圧)をはソ
同一となるごとく構成し、さらにふ 望ましくは両サイクルの高温側吸脱着媒体に同一物質な
ど、はソ同一の温度平衡圧力特性を有する物質を使用す
る。
More preferably, in the combination of these two cycles, the adsorption and desorption pressures (high pressure and low pressure) in both cycles are configured to be the same, and even more preferably, the adsorption and desorption media on the high temperature side of both cycles are made of the same substance. Use materials with identical temperature equilibrium pressure characteristics.

まだこのサイクルには金属水素化物を生ずる金属と、水
素の組み合せが容易に実現される。
Still in this cycle, combinations of metal and hydrogen to form metal hydrides are easily realized.

実施例の説明 本発明の多段冷却装置の一実施例を第4図に、そのサイ
クル図を第6図に示す。なお、吸脱着できる媒体として
金属水素化物を例に取って説明する0 第4図に示すように温度・平衡圧力特性の異なる2種類
の金属水素化物を2つの区画された密閉容器内に各々収
容したものを2組作成した。第5図のMHlとMH2で
相対的に高温側で動作する第1の冷却サイクルを形成し
、MH1’とMH2’で相対的に低温側で動作する第2
冷却サイクルを構成した。この2つの冷却サイクルにお
いて、同一温度での平衡圧力の低い高温加熱側はMHl
とMH1’である。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the multistage cooling device of the present invention is shown in FIG. 4, and a cycle diagram thereof is shown in FIG. 6. In addition, an explanation will be given using metal hydride as an example of a medium that can be adsorbed and desorbed. As shown in Figure 4, two types of metal hydrides with different temperature and equilibrium pressure characteristics are housed in two compartmented closed containers. I created two sets. In FIG. 5, MHl and MH2 form a first cooling cycle that operates at a relatively high temperature side, and MH1' and MH2' form a second cooling cycle that operates at a relatively low temperature side.
A cooling cycle was configured. In these two cooling cycles, the high temperature heating side with lower equilibrium pressure at the same temperature is MHL
and MH1'.

次に上記冷却装置の動作について説明する。Next, the operation of the cooling device will be explained.

第1の冷却サイクルの高温加熱側の金属水素化物を熱源
1によりTH度で加熱し、低温発熱側の金属水素化物(
MH2)をTA度の外気などで冷却し、弁2を開放する
と、MHlに吸着していた水素はMH2に移動する。こ
の際MH1では吸熱、MH2では発熱が起る。この発熱
は放熱器4で捨てる(第6図の状態AからBへの水素移
動)0この後、弁2を閉じMHlの加熱を停止し、さら
に放熱器5でTA温度まで冷却し、弁2を再び開くと、
MH2中の水素がMHlに移動し、MH2に吸熱反応が
生ずる。
The metal hydride on the high-temperature heating side of the first cooling cycle is heated at TH degree by heat source 1, and the metal hydride on the low-temperature heating side (
When MH2) is cooled with outside air at TA degree and valve 2 is opened, hydrogen adsorbed in MHL moves to MH2. At this time, MH1 absorbs heat, and MH2 generates heat. This heat generation is discarded in the radiator 4 (hydrogen transfer from state A to B in Figure 6). After that, the valve 2 is closed to stop heating MHL, and the radiator 5 cools it to the TA temperature, and the valve 2 When I reopen the
Hydrogen in MH2 moves to MHL, causing an endothermic reaction in MH2.

第2の冷却サイクルも熱源1で加熱し、高温加熱側温度
THは第1のサイクルのそれと同一温度とする。こ\で
弁2′を開放すると、水素ガスは9ヘーノ MH2’の方に移動し吸着されるがその際発熱する。
The second cooling cycle is also heated by the heat source 1, and the high temperature heating side temperature TH is the same temperature as that of the first cycle. When valve 2' is now opened, hydrogen gas moves toward 9HenoMH2' and is adsorbed, but at this time heat is generated.

このタイミングに合せて、サイクル1のMH2における
吸熱反応が進行するようにしておき、熱搬送手段3をM
H2とMH2’の間に設ければ、MH2’はMH2の冷
却出力温度TCで冷却される。次に弁2′を閉じ、MH
1′を放熱器6によって、大気温度に冷却すると、サイ
クル2の水素はMH2’からMH1′に移り、MH2’
はTCよりさらに低い、107度まで冷却する。これは
出力端7から取出せる0 本発明の具体例として第4図、第6図に示すような構成
ならびに温度圧力サイクルを有、する冷却装置を試作し
、その評価を行った結果についてのべる。
In accordance with this timing, the endothermic reaction in MH2 of cycle 1 is made to proceed, and the heat transfer means 3 is
If provided between H2 and MH2', MH2' is cooled at the cooling output temperature TC of MH2. Next, close valve 2' and MH
1' is cooled to atmospheric temperature by the radiator 6, hydrogen in cycle 2 moves from MH2' to MH1', and MH2'
cools down to 107 degrees, which is even lower than TC. This can be taken out from the output end 7.As a specific example of the present invention, a cooling device having the configuration and temperature-pressure cycle as shown in FIGS. 4 and 6 was prototyped, and the results of its evaluation will be described.

MHlとして T 1 o 、as Z ro 、es Mn1.2 
Cro 、e Coo 、2MH2として T 1 o 、e Z r o 、 4″11.4 C
rO,4CuO,2MH/はMHlと同一 1o / MH2’として T 1 o 、s Z ro 、 2 Mn1.2 C
ro 、6Cuo、 2のTi −Mn系合金を各ts
Kgづつ第4図の構成の装置に充填した。そして各ヒー
トポンプサイクルで約31モルの水素ガスが移動するよ
うな金属水素化物として調整した。
T 1 o as MHL, as Z ro, es Mn1.2
Cro, e Coo, 2MH2 as T 1 o, e Z r o, 4″11.4 C
rO, 4CuO, 2MH/ is the same as MHl 1o / MH2' as T 1 o , s Z ro , 2 Mn1.2 C
ro, 6Cuo, 2 Ti-Mn alloys
Kg each was filled into an apparatus having the configuration shown in Fig. 4. The metal hydride was prepared so that approximately 31 moles of hydrogen gas was transferred in each heat pump cycle.

そして熱源1の温度を95°Cとし、第1の冷却サイク
ルのヒートシンクへの放熱温度を46°Cとすることに
より、約20’Cの低温かえられた。
By setting the temperature of the heat source 1 to 95°C and setting the heat radiation temperature to the heat sink in the first cooling cycle to 46°C, the temperature was reduced to about 20'C.

一方第2の冷却サイクルを同じく96℃で加熱し、低温
側吸脱着媒体の吸着による発熱は前記第1サイクルの冷
出力の温度20′Cで冷却し、高温側吸脱着媒体の吸着
による発熱は第1サイクルと同じく46°Cで放熱させ
ることにより、約2°Cの低温かえられた。
On the other hand, the second cooling cycle is heated at 96°C as well, and the heat generated by the adsorption of the adsorption/desorption medium on the low temperature side is cooled at the cooling output temperature of 20'C in the first cycle, and the heat generated due to the adsorption of the adsorption/desorption medium on the high temperature side is cooled. By dissipating heat at 46°C as in the first cycle, the temperature was reduced to about 2°C.

この実験は比較的低温の熱源と、空冷などの高いヒート
シンク温度という悪い条件で低温をうる実験例であるが
、熱源温度がもつと高ければ、第1サイクルでより低い
温度が得られ、第2サイクルのMH2’にそれに適合す
る材料を選べば、より11 /\−ノ 低い温度を得ることができる。
This experiment is an example of an experiment in which a low temperature is obtained under unfavorable conditions such as a relatively low-temperature heat source and a high heat sink temperature such as air cooling, but if the heat source temperature is high, a lower temperature can be obtained in the first cycle, and a lower temperature can be obtained in the second cycle. By choosing a material that matches the MH2' of the cycle, a lower temperature of 11/\- can be obtained.

又前記実験において出力を入力で除した値、いわゆる成
績係数として0.4を得だ。
Also, in the experiment mentioned above, the value obtained by dividing the output by the input, the so-called coefficient of performance, was obtained as 0.4.

なお原理的にはそれぞれのサイクルの成績係数をC0P
1.C0P2とし、本発明の2段冷却サイクルの成績係
数をCoPとすれば、 で与えられる。
In principle, the coefficient of performance for each cycle is C0P.
1. If C0P2 is assumed and the coefficient of performance of the two-stage cooling cycle of the present invention is CoP, then it is given by:

MHlとMH1’は本実施例では同一物質を用い、高圧
および低圧がもっとも使い易い圧力域になるよう設計し
たが、作動気体に異る物質を使う場合も当然考えられる
。しかしいづれにせよ各ヒートポンプサイクルの少なく
とも一つに、作動気体として水素ガスを用い、吸脱着反
応媒体に金属水素化物を形成し得る金属又はその合金を
用いることが良い。へ金属水素化物を用いたヒートポン
プサイクルは、反応の可逆性や繰返し運転による寿命=
(Q午(てさゐノリツトなと5勺していゐ0なお実施例
で示した冷却サイクルは2段の冷却サイクルであるが、
3段、4段と同一の原理で、加熱温度を上げることなく
、サイクルを重ねることにより、より低い温度を得るこ
とができる。
In this embodiment, MHL and MH1' are made of the same substance and designed so that high pressure and low pressure are the most convenient pressure ranges, but it is of course possible to use different substances as the working gas. However, in any case, it is preferable to use hydrogen gas as the working gas in at least one of each heat pump cycle, and to use a metal or an alloy thereof capable of forming a metal hydride as the adsorption/desorption reaction medium. The heat pump cycle using metal hydrides has a long lifespan due to the reversibility of the reaction and repeated operation.
(The cooling cycle shown in the example is a two-stage cooling cycle,
Using the same principle as the 3rd and 4th stages, a lower temperature can be obtained by repeating the cycle without increasing the heating temperature.

発明の効果 従来、間欠式の冷却サイクルを用いて低温を得ようとす
る場合、より低い温度を得ようとすれば加熱温度をより
高く上げる必要があり、太陽熱などを利用した場合、熱
源温度としてあまり高い温度が期待できないだめ、得ら
れる低温もかぎられ実用性にとぼしかった。
Effects of the Invention Conventionally, when trying to obtain a low temperature using an intermittent cooling cycle, it was necessary to raise the heating temperature higher to obtain a lower temperature, and when using solar heat etc., the heat source temperature Since very high temperatures could not be expected, the low temperatures that could be obtained were limited, making it impractical.

これに対し、2つのサイクルを組み合せる方法が発明さ
れているが、最大の難点は、高圧と低圧の差が増大する
ことである。すなわち従来の方法でサイクルを2段に重
ねると高低圧の圧力比ははソ2乗され、加熱温度とヒー
トシンク温度の差によるが、1段で5〜10倍の圧力比
とな、る。
In response, methods have been invented that combine two cycles, but the biggest drawback is that the difference between high and low pressure increases. That is, when the cycle is stacked in two stages in the conventional method, the pressure ratio between high and low pressure is raised to the square of so, and depending on the difference between the heating temperature and the heat sink temperature, the pressure ratio becomes 5 to 10 times higher in one stage.

ところで低圧は1気圧を大幅に下まわると圧力損失の点
で使用し難く、高圧も10気圧を大幅に上まわると耐圧
容器の設計および、安全性の面で13ベーノ 問題を生ずる。
By the way, if the low pressure is significantly lower than 1 atm, it will be difficult to use due to pressure loss, and if the high pressure is significantly higher than 10 atm, problems will arise in terms of pressure vessel design and safety.

本発明の方法によれば、2つの吸脱着媒体の間の気体の
移動に必要な圧力損失を無視すれば、段数を幾段に増加
させても圧力比は変らない。
According to the method of the present invention, if the pressure loss required for the movement of gas between the two adsorption/desorption media is ignored, the pressure ratio does not change even if the number of stages is increased.

又本発明の2段冷凍サイクルの成績係数は前述したごと
く で与えられるが、従来の第3図に示した2段サイクルの
成績係数は で与えられるが、一般に一段のサイクルのCoPl又は
C0P2は通常1より小さい値となるため、(1)式は
常に(2)式より大きくなる。又第3図のサイクルの2
段目は、それぞれの媒体の上下温度差が大きく成績係数
は1段目より低くなるのに対し本発明の方は1段目と2
段目の成績係数はあまシ変らず、結果的に本発明の方法
は成績係数の面においても従来の2段式より優っている
Also, the coefficient of performance of the two-stage refrigeration cycle of the present invention is given as described above, but the coefficient of performance of the conventional two-stage cycle shown in FIG. Since the value is smaller than 1, equation (1) is always larger than equation (2). Also, cycle 2 in Figure 3
In the second stage, the temperature difference between the top and bottom of each medium is large and the coefficient of performance is lower than in the first stage, whereas in the present invention
The coefficient of performance of each stage remains unchanged, and as a result, the method of the present invention is superior to the conventional two-stage method in terms of coefficient of performance.

14ヘ−ノ14 heno

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の間欠式冷却サイクルの原理図、第2図
は単一サイクルでより低温をうるためのサイクルを示す
図、第3図は従来例の2段冷却サイクルを示す図、第4
図は本発明の一実施例の2段冷却装置の構成図、第6図
は同2段冷却装置における冷却サイクルを示す図である
。 1・・・・・熱源、2,2′・旧・・弁、3・・・・・
・熱輸送手段、4 、.5 、5・・・・放熱器、7・
・・・・・出力端。
Figure 1 is a diagram showing the principle of a conventional intermittent cooling cycle, Figure 2 is a diagram showing a cycle for obtaining a lower temperature in a single cycle, Figure 3 is a diagram showing a conventional two-stage cooling cycle, and Figure 3 is a diagram showing a conventional two-stage cooling cycle. 4
The figure is a block diagram of a two-stage cooling device according to an embodiment of the present invention, and FIG. 6 is a diagram showing a cooling cycle in the two-stage cooling device. 1...Heat source, 2, 2', old...Valve, 3...
・Heat transport means, 4. 5, 5... radiator, 7.
...Output end.

Claims (2)

【特許請求の範囲】[Claims] (1)作動気体を可逆的に吸脱着できる物質で、温度平
衡圧力特性の異る吸脱着反応媒体を2種類用い、この媒
体をそれぞれ容器内に収容し、作動媒体をそれぞれの前
記媒体間を移動せしめる際の発熱吸熱を利用するケミカ
ルヒートポンプサイクルを少くとも第1.第2のサイク
ル用意し、各々同一温度で平衡圧力の低・高温側吸脱着
反応媒体を熱源により加熱し、前記作動媒体を平衡圧力
の高い低温側吸脱着媒体に吸着せしめ、その際に発生す
る吸着熱をヒートシンクに捨て、次に前記高温側吸脱着
反応媒体をヒートシンク温度に冷却し、低温側吸脱着媒
体から作動気体を再び高温側吸脱着媒体に吸着せしめる
ことにより、低温側吸脱着媒体温度をヒートシンク温度
以下で吸熱せしめる冷却サイクルとして使用し、第2の
サイクルの高温側吸脱着媒体の加熱温度および、冷却温
度は前2 。 記第1のサイクルのそれと同一とし、前記第2のサイク
ルの低温側吸脱着媒体の吸着による発熱を前記第1のサ
イクルの低温側の吸熱によって除去可能にした間欠作動
式多段冷却装置。
(1) Two types of adsorption/desorption reaction media, which are substances that can reversibly adsorb and desorb working gases and have different temperature equilibrium pressure characteristics, are used, each medium is housed in a container, and the working medium is connected between the two media. At least the first chemical heat pump cycle utilizes heat generated and absorbed during movement. A second cycle is prepared, in which the low and high-temperature side adsorption/desorption reaction media at the same temperature and equilibrium pressure are heated by a heat source, and the working medium is adsorbed by the low-temperature side adsorption/desorption medium with a high equilibrium pressure. The heat of adsorption is dissipated into the heat sink, the high temperature side adsorption/desorption reaction medium is then cooled to the heat sink temperature, and the working gas from the low temperature side adsorption/desorption medium is adsorbed again to the high temperature side adsorption/desorption medium, thereby reducing the temperature of the low temperature side adsorption/desorption medium. is used as a cooling cycle that absorbs heat below the heat sink temperature, and the heating temperature and cooling temperature of the high temperature side adsorption/desorption medium in the second cycle are 2. An intermittent operating multistage cooling device that is the same as that of the first cycle, and is capable of removing heat generated by adsorption of the adsorption/desorption medium on the low temperature side of the second cycle by heat absorption on the low temperature side of the first cycle.
(2)各サイクルの少くとも1つに作動媒体として水素
ガスを用い、吸脱着反応媒体に金属水素化物を形成しう
る金属又はその合金を用いる特許請求の範囲第1項記載
の間欠作動式多段冷却装置。
(2) The intermittent operating multi-stage according to claim 1, in which hydrogen gas is used as the working medium in at least one of each cycle, and a metal or its alloy capable of forming a metal hydride is used as the adsorption/desorption reaction medium. Cooling system.
JP8220184A 1983-07-08 1984-04-24 Intermittent operation type multistage cooling device Granted JPS60226675A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8220184A JPS60226675A (en) 1984-04-24 1984-04-24 Intermittent operation type multistage cooling device
EP84107926A EP0131869B1 (en) 1983-07-08 1984-07-06 Thermal system based on thermally coupled intermittent absorption heat pump cycles
DE8484107926T DE3474338D1 (en) 1983-07-08 1984-07-06 Thermal system based on thermally coupled intermittent absorption heat pump cycles
US06/629,072 US4623018A (en) 1983-07-08 1984-07-09 Thermal system based on thermally coupled intermittent absorption heat pump cycles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8220184A JPS60226675A (en) 1984-04-24 1984-04-24 Intermittent operation type multistage cooling device

Publications (2)

Publication Number Publication Date
JPS60226675A true JPS60226675A (en) 1985-11-11
JPS6331714B2 JPS6331714B2 (en) 1988-06-24

Family

ID=13767810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8220184A Granted JPS60226675A (en) 1983-07-08 1984-04-24 Intermittent operation type multistage cooling device

Country Status (1)

Country Link
JP (1) JPS60226675A (en)

Also Published As

Publication number Publication date
JPS6331714B2 (en) 1988-06-24

Similar Documents

Publication Publication Date Title
US4623018A (en) Thermal system based on thermally coupled intermittent absorption heat pump cycles
US4637218A (en) Heat pump energized by low-grade heat source
Boubakri A new conception of an adsorptive solar-powered ice maker
US4875346A (en) Two-statge sorption type cryogenic refrigerator including heat regeneration system
KR20010041159A (en) Heat pumps using organometallic liquid absorbents
US4697425A (en) Oxygen chemisorption cryogenic refrigerator
CN107606816B (en) Low-grade heat-driven adsorption type chemical reaction refrigeration heat pump circulating device and method
US8327660B2 (en) Production of very low-temperature refrigeration in a thermochemical device
US4831829A (en) Krypton based adsorption type cryogenic refrigerator
JPS60226675A (en) Intermittent operation type multistage cooling device
Orgaz et al. Thermodynamics of the hydride chemical heat pump: III considerations for multistage operation
JPS60226677A (en) Intermittent operation type multistage double effect coolingdevice
JPH0220912B2 (en)
Vasil’ev et al. Multisalt-carbon chemical cooler for space applications
JPS60226676A (en) Intermittent operation type multistage cooling device
JP2568484B2 (en) Multi-effect heat pump device
JPS638392B2 (en)
JPH0472142B2 (en)
JPS60226678A (en) Intermittent operation type multistage second class heat pump device
JPS5819955B2 (en) Air conditioning equipment
JPH0830632B2 (en) Intermittent heater
JPS6329182B2 (en)
JPS60245974A (en) Multiple effect heat pump device
BOELMAN et al. Close-cycle Solid Sorption Refrigeration
JPH0428984B2 (en)