JPH067030B2 - Forward and reverse mutual drive type heating and refrigerating method and apparatus - Google Patents

Forward and reverse mutual drive type heating and refrigerating method and apparatus

Info

Publication number
JPH067030B2
JPH067030B2 JP60270781A JP27078185A JPH067030B2 JP H067030 B2 JPH067030 B2 JP H067030B2 JP 60270781 A JP60270781 A JP 60270781A JP 27078185 A JP27078185 A JP 27078185A JP H067030 B2 JPH067030 B2 JP H067030B2
Authority
JP
Japan
Prior art keywords
container
heat
heating
refrigerating
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60270781A
Other languages
Japanese (ja)
Other versions
JPS62131175A (en
Inventor
泰章 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAITO BARUBU SEISAKUSHO KK
TOKYO KOATSU KK
Original Assignee
DAITO BARUBU SEISAKUSHO KK
TOKYO KOATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAITO BARUBU SEISAKUSHO KK, TOKYO KOATSU KK filed Critical DAITO BARUBU SEISAKUSHO KK
Priority to JP60270781A priority Critical patent/JPH067030B2/en
Publication of JPS62131175A publication Critical patent/JPS62131175A/en
Publication of JPH067030B2 publication Critical patent/JPH067030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は加熱冷蔵方法および装置に関し、より詳細には
加熱冷蔵容器と熱発生容器とからなり、金属水素化物の
水素の吸蔵、放出に伴う発熱、吸熱、を利用して、前記
発熱・吸熱反応とその反応の可逆反応を交互に繰り返し
て絶え間なく高温あるいは低温を連続的に得る正逆相互
駆動式加熱冷蔵方法および装置に関する。
Description: TECHNICAL FIELD The present invention relates to a heating and refrigerating method and apparatus, and more particularly to a heating and refrigerating container and a heat generating container, which accompanies storage and release of hydrogen in a metal hydride. The present invention relates to a forward-reverse mutual drive type heating and refrigerating method and apparatus which utilize heat generation and heat absorption to alternately repeat the heat generation / heat absorption reaction and the reversible reaction of the reaction to continuously obtain high temperature or low temperature continuously.

[従来の技術] 従来、加熱冷蔵方法および装置としては、温水やヒータ
などの加熱源あるいは氷、ドライアイスなどの冷熱源を
断熱容器に収容する熱源方式や液化窒素を利用した低温
貯蔵方式ならびにペルチェ・エレメントを断熱容器に配
設した電気方式が知られている。熱源方式によれば使用
するたびに熱源を用意しなければならない点が非常に不
便である。また、温水などの加熱源は短時間で温度が低
下し、氷やドライアイスなどの冷熱源も時間が経過すれ
ば消費されてしまうので、安定した加熱冷蔵能力を示さ
ない。それらを収納・排出するための機構とスペースを
必要とするため大型で複雑な構成になる一方、液化窒素
を利用した低温貯蔵方式では、液化窒素が容器からパイ
プを通りスプレー・ヘッダから断熱した冷蔵・冷凍容器
に直接噴射され、良好な低温状態を保つが、長時間貯蔵
の場合、液化窒素を補給する必要があり、長時間連続し
て一定の低温を保つことがむづかしく、しかもコストが
高くつくという欠点がある。また、電気方式によれば長
時間にわたって安定に加熱冷蔵することができるが、電
源のないところでは用いることができない。これらはま
すます複雑で高価な機構とスペースと、運転監視機能を
必要とするため大型で複雑な構成になる。
[Prior Art] Conventionally, as a heating and refrigerating method and apparatus, a heat source method in which a heat source such as hot water or a heater or a cold heat source such as ice or dry ice is housed in an adiabatic container, a low temperature storage method using liquefied nitrogen, and a Peltier device are used. An electric system is known in which the element is arranged in a heat insulating container. According to the heat source method, it is very inconvenient that a heat source must be prepared each time it is used. Further, the temperature of a heating source such as hot water drops in a short time, and the cooling source such as ice or dry ice is consumed over time, so that it does not exhibit stable heating and refrigerating capacity. While a large and complicated structure is required because a mechanism and space for storing and discharging them are required, the low-temperature storage method that uses liquefied nitrogen allows liquefied nitrogen to pass through a pipe from a container and be insulated from a spray header to be refrigerated.・ It is directly injected into the freezing container and maintains a good low temperature state, but in the case of long-term storage, it is necessary to replenish liquefied nitrogen, and it is difficult to maintain a constant low temperature continuously for a long time, and the cost is high. It has the drawback of being expensive. Further, according to the electric method, it is possible to stably heat and refrigerate for a long time, but it cannot be used in a place without a power source. These require larger and more complex and expensive mechanisms and space, as well as operation monitoring functions, resulting in large and complex configurations.

[発明が解決しようとする問題点] 前記の各加熱冷蔵装置は、夫々の特徴を有しているが、
一般に温水などの加熱源は短時間で温度が低下し、氷、
ドライアイス、液化窒素など冷熱源が時間の経過ととも
に消費されるので、連続的に低温を保持するためには、
熱源を補給しなければならず、コストも高くなり、また
ヒータや冷蔵庫等は電源のないところでは使用できない
という問題点がある。
[Problems to be Solved by the Invention] Each of the heating and refrigerating devices described above has its own characteristics.
Generally, the temperature of a heating source such as hot water decreases in a short time, and ice,
Cold heat sources such as dry ice and liquefied nitrogen are consumed over time, so in order to maintain a low temperature continuously,
There is a problem that the heat source must be replenished, the cost becomes high, and the heater and the refrigerator cannot be used in a place without a power source.

[問題点を解決するための手段] 本発明の目的は、従来の加熱冷蔵方法および装置が有す
る諸欠点ならびに問題点を除去、解決した正逆相互駆動
式加熱冷蔵方法および装置を提供することにある。本発
明者らは、ある種の合金が速やかに水素を吸蔵し、その
際発熱して金属水素化物を形成し、また、この金属水素
化物が可逆的に水素を放出し、その際吸熱する特性を利
用した熱発生容器を設け、使用に当って加熱あるいは冷
蔵熱源を用意する必要もなく、しかも電源を必要とせ
ず、長時間にわたって連続的に加熱あるいは冷蔵するこ
とができる加熱冷蔵方法および装置を新規に見い出し、
ここに本発明を完成するに至った。
[Means for Solving Problems] An object of the present invention is to provide a forward-reverse mutual drive type heating and refrigerating method and device which eliminates and solves various drawbacks and problems of the conventional heating and refrigerating method and device. is there. The present inventors have found that certain alloys rapidly occlude hydrogen, generate heat to form metal hydride, and this metal hydride reversibly releases hydrogen and absorbs heat. A heating and refrigerating method and device capable of continuously heating or refrigerating for a long time without providing a heating or refrigerating heat source for use by providing a heat generating container utilizing Newly found,
The present invention has been completed here.

本発明法は、第1の金属水素化物を装填した第1の容器
が加熱冷蔵容器空間と熱交換し得るよう配設され、第1
の容器と第2の金属水素化物を装填した第2の容器とを
少なくとも一対連結した熱発生容器を設け、金属水素化
物と水素化物形成合金とが装填される2つの容器に圧力
変化で水素を交互にかつ連続的に充填および排出し、そ
れによって得られた反応熱を有効に利用して高温あるい
は低温を得るために、これらの反応とこの可逆反応に要
するエネルギーを迅速無駄なく交互に伝達交換しあうと
ともに、相手の正反応を自分の逆反応による温度変化で
この各対の容器間の温度差を広げてその反応を互いに促
進することを特徴とするものである。
According to the method of the present invention, the first container loaded with the first metal hydride is arranged so as to exchange heat with the heating and refrigerating container space.
And a second container loaded with the second metal hydride are connected to each other to provide a heat generation container, and the two containers loaded with the metal hydride and the hydride-forming alloy are charged with hydrogen by a pressure change. The energy required for these reactions and this reversible reaction is exchanged and exchanged quickly and without waste in order to charge and discharge alternately and continuously, and to effectively utilize the heat of reaction obtained thereby to obtain high temperature or low temperature. Along with this, the positive reaction of the other party is widened by the temperature change caused by the reverse reaction of the other party to widen the temperature difference between each pair of containers to promote the reaction.

また、第1の金属水素化物として、ミツシュメタル−ニ
ッケル系水素化物および第2の金属水素化物としてミツ
シュメタル−ニッケル−アルミニウム系水素化物を使用
し、その組み合せによって得られた反応熱を利用して高
温あるいは低温を得ることを特徴とするものである。
Further, as the first metal hydride, a misch metal-nickel hydride is used, and as the second metal hydride, a misch metal-nickel-aluminum hydride is used, and the reaction heat obtained by the combination is used to obtain high temperature or It is characterized by obtaining a low temperature.

また、第1の容器と第2の容器を一対以上連結した熱発
生容器において、第2の容器の合金と水素との反応熱を
他の第2の容器の金属水素化物の加熱に利用できるよう
に熱交換板を設置することに特徴がある。
In addition, in a heat generation container in which a pair of first and second containers are connected, the heat of reaction between the alloy in the second container and hydrogen can be used for heating the metal hydride in another second container. It is characterized by installing a heat exchange plate.

以下に実施例を示す図面に基づいて本発明を説明する。The present invention will be described below with reference to the drawings illustrating an embodiment.

[実施例] 第1図は本発明方法の実施に直接使用する加熱冷蔵装置
の一実施例を示したものである。本発明の加熱冷蔵装置
Aは断熱した加熱冷蔵容器1と当該加熱冷蔵容器1下口
に内嵌し自由に脱着できる断熱した熱発生容器2からな
っている。
[Example] FIG. 1 shows an example of a heating and refrigerating apparatus used directly for carrying out the method of the present invention. The heating and refrigerating apparatus A of the present invention comprises a heat insulating and refrigerating container 1 and a heat insulating and heat generating container 2 which is fitted into the lower opening of the heating and refrigerating container 1 and can be freely detached.

熱発生容器2内には第1の金属水素化物を装填した第1
の容器3,4と第2の金属水素化物を装填した第2の容
器5,6を配設するとともに、熱発生容器2は断熱隔壁
7を画成して第1の容器3,4の反応熱が第1の容器
3,4相互に伝導しないようにし、一方の第1の容器4
の反応熱が大気と、また残るもう一方の第1の容器3の
反応熱が加熱冷蔵容器1の収容空間8と熱交換できるよ
うに、第1の容器3,4の上下両側に網窓9,10を開
設し、更に熱発生容器2は断熱外壁11で第2の容器
5,6を囲い第2の容器5,6の反応熱が外部に伝わら
ないようにするとともに、第2の容器5,6の対向面間
に熱伝導率の良好な伝熱板12を介在させ一方の第2の
容器5からの反応熱を残るもう一方の第2の容器6での
可逆反応を起こすための熱源となるように迅速無駄なく
伝達交換するとともに、各組の容器間の温度差を広げ、
お互いの反応を促進することによって、ヒータやドライ
アイス等の冷熱源の配置スペースを設けずに簡易に、し
かも交互に運転するので見かけ上連続的に発熱・吸熱を
行いながら容器6の水素圧を高める。
In the heat generation container 2, a first metal hydride loaded first
2 and 3 and the second containers 5 and 6 loaded with the second metal hydride are arranged, and the heat generation container 2 defines an adiabatic partition 7 to allow the reaction of the first containers 3 and 4. The heat is prevented from conducting between the first containers 3 and 4, and the first container 4
So that the reaction heat of the first container 3 can be exchanged with the atmosphere and the reaction heat of the remaining first container 3 can be exchanged with the accommodation space 8 of the heating and refrigerating container 1. , 10 are further opened, and the heat generation container 2 surrounds the second containers 5 and 6 with a heat insulating outer wall 11 to prevent the heat of reaction of the second containers 5 and 6 from being transferred to the outside. , 6 for interposing a heat transfer plate 12 having a good thermal conductivity between the opposite surfaces of the second container 5 and the heat source for causing a reversible reaction in the other second container 6 which remains. As soon as possible, the transmission and exchange are performed without waste, and the temperature difference between the containers of each group is widened,
By accelerating the reaction of each other, the hydrogen pressure of the container 6 is maintained while apparently continuously generating heat and absorbing heat because it operates simply and alternately without providing a space for placing a cold heat source such as a heater or dry ice. Increase.

前記第1の容器3,4と第2の容器5,6は夫々フィル
ター13,14,15,16を両端に取付けた連通管1
7,18にて接続し、当該連通管17,18には第1の
容器3,4と第2の容器5,6間の水素の流通と停止を
制御する連通弁19,20を介設してある。フィルター
13,14,15,16は水素の流通時に金属水素化物
が随伴したり、連通管17,18を詰まらせるのを防止
するもので、例えば孔径10μm以下の多孔性焼結金属
が用いられる。
The first container 3 and 4 and the second container 5 and 6 are communication pipes 1 having filters 13, 14, 15 and 16 attached to both ends, respectively.
7, 18 and connecting valves 19 and 20 for controlling the flow and stop of hydrogen between the first containers 3 and 4 and the second containers 5 and 6 are provided in the communication pipes 17 and 18, respectively. There is. The filters 13, 14, 15 and 16 prevent metal hydrides from being entrained during the flow of hydrogen and block the communication pipes 17 and 18, and for example, a porous sintered metal having a pore diameter of 10 μm or less is used.

第1の容器3,4および第2の容器5,6は以下に限定
されるわけではないが、好ましくは複数の筒状容器から
形成され、複数組を上下二段並列に配して各対毎に連通
管17,18で接続する。また複数組を一段並列に配し
各対毎に連通管17,18で接続しても良い。この第2
の容器は熱伝導を迅速無駄なく行うためになるべく接近
並設する。
The first container 3 and 4 and the second container 5 and 6 are preferably, but not limited to, formed of a plurality of tubular containers, and a plurality of sets are arranged in parallel in upper and lower two stages. The communication pipes 17 and 18 are connected to each other. Alternatively, a plurality of sets may be arranged in parallel in one stage and each pair may be connected by the communication pipes 17 and 18. This second
The containers should be placed side by side as close as possible so that heat can be transferred quickly and without waste.

第1の容器3,4および第2の容器5,6からなる熱発
生容器2は、1つのセットとして加熱冷蔵容器1に、脱
着自在であり、網窓10が加熱冷蔵容器2内に向くよう
に反転しても取り付けできる。
The heat generating container 2 including the first container 3 and 4 and the second container 5 and 6 is detachable from the heating and refrigerating container 1 as one set so that the mesh window 10 faces the inside of the heating and refrigerating container 2. It can be installed by reversing.

断熱した加熱冷蔵容器1内には温度センサー21が配設
され、この温度センサー21の検知する温度によって上
記の夫々の連通弁19,20が開閉できるようにし、連
通弁19,20を通過する水素の流通量が制御される。
A temperature sensor 21 is arranged in the heat-insulated refrigerating container 1 so that the respective communication valves 19 and 20 can be opened and closed by the temperature detected by the temperature sensor 21, and the hydrogen passing through the communication valves 19 and 20 can be opened and closed. The distribution volume of is controlled.

第1の金属水素化物MHと第2の金属水素化物M
は、相互に平衡分解圧特性の異なるものが用いられる。
具体的には、MHとしてはLaNi,LaNi
Az,MmNi,MmNi−zAz,MmxT
iyNi,MmxZryNi,MmxNbyNi
(ただし、0.75<x<1.2,0<y<0.25,
0<z≦0.5)などの水素化物とMHとしてLaN
−zAz,MmNi−zAz,MmxTiy
Ni−zAz,MmxZryNi−zAz,M
mxNbyNi−zAz(ただし、0.75<x<
1.2,0<y<0.25,0<z≦0.5)などの水
素化物との組み合せが用いられる。
First metal hydride M 1 H and second metal hydride M 2 H
Are used that have different equilibrium decomposition pressure characteristics.
Specifically, as M 1 H, LaNi 5 , LaNi 5 z are used.
Az, MmNi 5 , MmNi 5 -zAz, MmxT
iyNi 5 , MmxZryNi 5 , MmxNbyNi 5
(However, 0.75 <x <1.2, 0 <y <0.25,
0 <z ≦ 0.5) and LaN as M 2 H
i 5 -zAz, MmNi 5 -zAz, MmxTiy
Ni 5 -zAz, MmxZryNi 5 -zAz, M
mxNbyNi 5 -zAz (where 0.75 <x <
A combination with a hydride such as 1.2,0 <y <0.25, 0 <z ≦ 0.5) is used.

[作用] 本発明の装置Aを冷蔵装置として用いる場合には、第2
図に示すように、第1の容器3,4にはT=20℃で
平衡分解圧の高いMHが高圧の水素雰囲気下に充填さ
れ、第2の容器5,6にはT=20℃で平衡分解圧の
低いMHが好ましくは水素を放出した合金の状態で低
圧の水素雰囲気下に充填される。即ち、MHの状態は
点に、MHの状態が点に夫々対応するようにして
おく。
[Operation] When the device A of the present invention is used as a refrigerating device,
As shown in the figure, the first containers 3 and 4 are filled with M 1 H having a high equilibrium decomposition pressure at T M = 20 ° C. under a high-pressure hydrogen atmosphere, and the second containers 5 and 6 are filled with T M. = M 2 H having a low equilibrium decomposition pressure at 20 ° C. is preferably filled in a hydrogen-releasing alloy state under a low-pressure hydrogen atmosphere. That is, the state of M 1 H corresponds to the point, and the state of M 2 H corresponds to the point.

温度センサー21の作動温度を断熱した加熱冷蔵容器1
内の所要冷却温度T=0℃に設定すると、第2の容器
を空気で冷却してMHの解離圧を下げて、点の状態
とする。加熱冷蔵容器1内の温度が設定温度に到達する
まで連通弁19が開かれ、第1の容器3と第2の容器5
が連通するので、水素は高圧の第1の容器3から低圧の
第2の容器5へと移動し、MHは吸熱して水素を放出
して温度T=0℃に至り、加熱冷蔵容器1内を冷却す
る。これが点の状態であり、低温発生工程である。一
方、第2の容器5のMHは水素を吸蔵して発熱する
が、この発熱はアルミニウムあるいは銅などの伝熱板1
2を通して残るもう一つの容器6を加熱しながら内部に
充填してあるMHを加熱する。断熱した加熱冷蔵容器
1内の温度が設定温度T=0℃に達すると、温度セン
サー21が作動して連通弁19を閉じ、第1容器3と第
2の容器5間の水素の流通は中断される。加熱冷蔵容器
1内の温度が所定温度より上昇すると再び温度センサー
21が作動し、連通弁19を開くので水素の流通が起り
加熱冷蔵容器1内を所定温度まで冷却する。
A heating / refrigerating container 1 insulating the operating temperature of the temperature sensor 21.
When the required cooling temperature T L inside is set to 0 ° C., the second container is cooled by air to lower the dissociation pressure of M 1 H, and the state is set to a point. The communication valve 19 is opened until the temperature inside the heating / refrigerating container 1 reaches the set temperature, and the first container 3 and the second container 5 are opened.
, The hydrogen moves from the high-pressure first container 3 to the low-pressure second container 5, and M 1 H absorbs heat and releases hydrogen to reach the temperature T L = 0 ° C., thereby heating and refrigerating. The inside of the container 1 is cooled. This is the point state, which is the low temperature generation step. On the other hand, M 2 H in the second container 5 absorbs hydrogen to generate heat, which is generated by the heat transfer plate 1 made of aluminum or copper.
While heating the other container 6 remaining through 2 , heat the M 2 H filled inside. When the temperature in the heat-insulated heating and refrigerating container 1 reaches the set temperature T L = 0 ° C., the temperature sensor 21 operates to close the communication valve 19, and the flow of hydrogen between the first container 3 and the second container 5 is prevented. Suspended. When the temperature in the heating / refrigerating container 1 rises above a predetermined temperature, the temperature sensor 21 is activated again and the communication valve 19 is opened, so that the flow of hydrogen occurs and the inside of the heating / refrigerating container 1 is cooled to the predetermined temperature.

第1の容器3と第2の容器5が前記の低温発生の動作を
行っている間に残る第1の容器4と第2の容器6では水
素吸蔵金属の性質である可逆反応を用いた再生の動作を
行う。即ち、水素を第2の容器6の低圧側のMHに吸
蔵させて水素化物を生成させておく。この第2の容器に
前記の低温発生の動作で得られた発熱が伝熱板12を通
して加熱される。この状態が点に対応する(M2Hの
平衡分圧がM1Hよりも高くなった状態)。連通弁20
が開かれ、第2の容器6と第1の容器4が連通するの
で、水素は高圧の第2の容器6から低圧の第1の容器4
へと移動し、第1の容器4のMHは水素を吸蔵して発
熱する。この発熱は第1の容器4から窓10を通して大
気中に放散される。これが点の当初の状態であり、再
生工程である。
In the first container 4 and the second container 6 that remain while the first container 3 and the second container 5 perform the above-described low temperature generation operation, regeneration using a reversible reaction that is a property of a hydrogen storage metal. The operation of. That is, hydrogen is stored in M 2 H on the low pressure side of the second container 6 to generate a hydride. The heat generated by the operation of generating the low temperature is heated in the second container through the heat transfer plate 12. This state corresponds to the point (the state where the equilibrium partial pressure of M2H is higher than that of M1H). Communication valve 20
Is opened and the second container 6 and the first container 4 communicate with each other, so that hydrogen is transferred from the high-pressure second container 6 to the low-pressure first container 4
And M 1 H in the first container 4 absorbs hydrogen to generate heat. This heat is dissipated into the atmosphere from the first container 4 through the window 10. This is the initial state of the point, the regeneration process.

熱発生容器2の第1の容器3および第2の容器5の系列
と第1の容器4および第2の容器6の系列が逆になるよ
うに熱発生容器2を入れかえて、低温発生と再成工程の
2系列を交互に運転することで、連続的な加熱冷蔵容器
1の冷却が可能であるとともに、今まで別途設けた冷熱
源の収納スペースやヒータ等の運転を管理する機構もい
らなく装置自体の発生する熱を有効に利用できる。
The heat generation container 2 is replaced so that the series of the first container 3 and the second container 5 of the heat generation container 2 and the series of the first container 4 and the second container 6 are reversed, and low temperature generation and re-generation are performed. By alternately operating the two series of formation processes, it is possible to continuously cool the heating and refrigerating vessel 1, and there is no need for a mechanism to control the operation of the storage space for the cold heat source, the heater, etc. The heat generated by the device itself can be effectively used.

このような化学反応は、平衡状態になるまで続けられる
が、各時間の反応速度と強度は平衡状態から遠い、つま
り温度差があるほど速く強く行われる。よって各容器間
の温度差を広げるほど良好であり、本発明ではこれを正
逆反応を行う各第2の容器から発生する冷熱と発熱を迅
速に相互伝達することによって、相手の容器の温度低下
を他方の発熱で、その温度上昇をその他方の冷熱反応を
用いることによって抑制し、相互の反応を促進してい
る。
Such a chemical reaction is continued until an equilibrium state is reached, but the reaction rate and intensity at each time are farther from the equilibrium state, that is, faster and stronger as there is a temperature difference. Therefore, it is better to increase the temperature difference between the respective containers, and in the present invention, the temperature reduction of the other container is achieved by rapidly transmitting the cold heat and the heat generated from the respective second containers which carry out the forward and reverse reactions. The other exothermic heat is used to suppress the temperature increase by using the other cold heat reaction to promote the mutual reaction.

本発明の加熱冷蔵装置Aを加熱装置として用いる場合に
は、上記とは逆に第2の容器5にはMHを高圧の水素
雰囲気下に充填し、第1の容器3にはMHを低圧の水
素雰囲気下に充填する。断熱した加熱冷蔵容器1内が所
定の温度に達するまで連通弁19が開いて第2の容器5
と第1の容器3が連通するので、水素は高圧の第2の容
器5から低圧の第1容器3へ移動し、第1の容器3内の
Hは水素を発熱的に吸蔵し、温熱が網窓9を通して
加熱冷蔵容器1内に与えられ加熱する。これが高温発生
工程である。再生工程では、高温発生工程で得られた第
2の容器5の吸熱を伝熱板12を通して水素化物形成合
金の状態にした残るもう一つの第2の容器6を冷却する
と、内部に充填されたMHは水素を吸蔵する。従って
連通弁20が開かれると水素は高圧の第1の容器4から
低圧の第2の容器6へ移動する。この時第1の容器4で
発生する冷熱は網窓10を通して大気中に放散する。
When the heating and refrigerating apparatus A of the present invention is used as a heating apparatus, conversely to the above, the second container 5 is filled with M 1 H under a high-pressure hydrogen atmosphere, and the first container 3 is filled with M 2 Fill with H under a low pressure hydrogen atmosphere. The communication valve 19 is opened until the inside of the insulated heat-refrigerating container 1 reaches a predetermined temperature, and the second container 5 is opened.
And the first container 3 communicate with each other, hydrogen moves from the high-pressure second container 5 to the low-pressure first container 3, and M 2 H in the first container 3 absorbs hydrogen exothermically, Heat is applied to the heating and refrigerating container 1 through the mesh window 9 to heat it. This is the high temperature generation process. In the regenerating process, the heat absorption of the second container 5 obtained in the high temperature generating process is converted into a hydride-forming alloy through the heat transfer plate 12, and the other second container 6 is cooled and filled therein. M 1 H absorbs hydrogen. Therefore, when the communication valve 20 is opened, hydrogen moves from the high pressure first container 4 to the low pressure second container 6. At this time, the cold heat generated in the first container 4 is dissipated into the atmosphere through the mesh window 10.

熱発生容器2の入れ替えによって連続的な加熱が可能で
ある。
Continuous heating is possible by replacing the heat generation container 2.

[実施例] 容器内容積約36の断熱した加熱冷蔵容器を有する小
型の加熱冷蔵装置を用い、約1KgのMmNi4.7
0.3を充填した第1の容器と約1KgのLaNiを充
填した第2の容器を一対配設し、第1の容器には20℃
の温度で水素を約7気圧に加圧してLaNi水素化物
に吸蔵させ、一方、第2の容器は20℃の温度で約1.
2気圧に減圧して、設定温度を0℃とし、加熱冷蔵容器
内に配したセンサーに接続すると、容器内の温度は約0
℃に達し、以後連続して加熱冷蔵容器はほぼ約0℃に保
たれた。
[Example] A small heating and refrigerating apparatus having an insulated heating and refrigerating vessel having an inner volume of about 36 was used, and about 1 kg of MmNi 4.7 A was used.
A pair of a first container filled with 0.3 and a second container filled with about 1 Kg of LaNi 5 are arranged, and the first container is 20 ° C.
Hydrogen at a temperature of about 7 atm was occluded in LaNi 5 hydride while the second container was at a temperature of 20 ° C. of about 1.
When the pressure is reduced to 2 atm, the set temperature is set to 0 ° C, and the temperature in the container is about 0 when connected to the sensor placed in the heating and refrigerating container.
C., and the heating and refrigerating container was continuously kept at about 0.degree. C. thereafter.

[効果] 本発明は、金属水素化物の水素の吸蔵、放出反応を利用
して加熱あるいは冷却を行なうため、何ら電源も要せ
ず、しかも従来の加熱冷蔵方法および装置にみられるよ
うに、熱源を消費したり、補給したりすることを要せ
ず、この冷熱源を収納するスペースも要らず小型がで
き、ヒータ等の高価な機構も必要ないので安価で、しか
も装置自体の発冷熱を再利用して相互の容器間の反応を
促進しているので高能率な運転が行え、さらに必要に応
じて長時間にわたって安定に所要の温度を取り出して使
用することができるという優れた効果を奏する。
[Effect] In the present invention, since heating or cooling is carried out by utilizing the hydrogen absorption / desorption reaction of metal hydride, no power source is required, and moreover, as seen in the conventional heating / cooling method and apparatus, a heat source is used. It does not need to be consumed or replenished, it does not need a space to store this cold heat source, it can be downsized, and it does not require expensive mechanisms such as heaters, so it is inexpensive, and the heat generated by the device itself can be regenerated. Since the reaction between the vessels is promoted by utilizing it, a highly efficient operation can be performed, and further, a required temperature can be taken out and used stably for a long period of time as needed, which is an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の加熱冷蔵装置の一実施例を示す断面
図、第2図はその動作を説明するためのMHおよびM
Hの平衡分解圧と温度の関係図を示す。 A…加熱冷蔵装置 1…加熱冷蔵容器、2…熱発生容器 3,4…第1の容器、5,6…第2の容器 7…断熱隔壁、8…収容空間 9,10…網窓、11…断熱外壁 12…伝熱板 13,14,15,16…フィルター 17,18…連通管、19,20…連通弁 21…温度センサー
FIG. 1 is a sectional view showing an embodiment of the heating and refrigerating apparatus of the present invention, and FIG. 2 is M 1 H and M for explaining the operation.
The relationship diagram of the equilibrium decomposition pressure of 2 H and temperature is shown. A ... Heating / refrigerating device 1 ... Heating / refrigerating container 2, 2 ... Heat generating container 3, 4 ... First container, 5, 6 ... Second container 7 ... Insulating partition wall, 8 ... Storage space 9, 10 ... Net window, 11 ... Insulation outer wall 12 ... Heat transfer plate 13,14,15,16 ... Filter 17,18 ... Communication pipe, 19,20 ... Communication valve 21 ... Temperature sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】相互を通気連結した各対の第1の容器と第
2の容器を少なくとも2組並設し、当該各対の第1の容
器と第2の容器に平衡分解圧特性の異なる金属水素化物
を夫々装填して分解圧の差による圧力変化で前記各対の
前記第1の容器と前記第2の容器に水素を交互に充填お
よび排出を連続繰り返すことで前記金属水素化物に水素
の吸蔵と放出を交互に行わしめるに当たり、 前記組相互の前記第1の容器間は当該第1の容器群同士
による伝熱を遮断するとともに一方の容器を外気と放熱
・吸熱自在に接触し、他方の容器を外気と断熱した加熱
冷蔵容器の収容空間内気と放熱・吸熱自在に接触し、 前記第2の容器群同士を接近並設し、かつ当該第2の容
器間では当該第2の容器群同士のみ無駄なく相互伝熱す
るとともに外部と断熱し、 前記対の第1の容器と第2の容器の各対間毎に通気連通
し所定温度で第1の容器と第2の容器に貯蔵される気体
の流通量を制御し、 一方の組の対の当該第1の容器と当該第2の容器では加
熱冷却反応をさせ、 かつ他方の組の対の当該第1の容器と当該第2の容器で
は前記加熱冷却反応の可逆再生反応を夫々同時平行して
遂行させるとともに、 当該各組相互の第1と第2の容器間の温度差を広げて反
応を促進し、温熱あるいは冷熱を連続して発生させるこ
とを特徴とする正逆相互駆動式加熱冷蔵方法
1. A pair of at least two pairs of a first container and a second container, each pair of which are connected to each other by aeration, are arranged in parallel, and the first container and the second container of each pair have different equilibrium decomposition pressure characteristics. Hydrogen is added to the metal hydride by alternately loading and discharging hydrogen into the first container and the second container of each pair due to a pressure change due to a difference in decomposition pressure. In alternately carrying out the occlusion and release of the, between the first containers of the pair, while blocking heat transfer by the first container group, one container is in contact with the outside air to radiate and absorb heat, The other container is in contact with the inside air of the accommodation space of the heating and refrigerating container, which is insulated from the outside air, so as to radiate and absorb heat, the second container groups are closely arranged side by side, and the second container is located between the second containers. Heat is efficiently exchanged between the groups only and is also insulated from the outside. The first container and the second container of the pair are ventilated and communicated with each other to control the flow rate of the gas stored in the first container and the second container at a predetermined temperature. The heating and cooling reaction is performed in the first container and the second container, and the reversible regeneration reaction of the heating and cooling reaction is performed in parallel in the other pair of the first container and the second container, respectively. Forward and reverse mutual drive type heating and refrigerating, characterized in that the temperature difference between the first and second containers of each pair is widened to promote the reaction and continuously generate hot or cold heat. Method
【請求項2】第1の容器と第2の容器に夫々装填される
金属水素化物は、ミツシュメタル−ニッケル系水素化物
とミツシュメタル−ニッケル−アルミニウム系水素化物
であることを特徴とする特許請求の範囲第1項記載の正
逆相互駆動式加熱冷蔵方法
2. A metal hydride loaded in each of the first container and the second container is a mischmetal-nickel hydride and a mischmetal-nickel-aluminum hydride. Forward / reverse mutual drive type heating / refrigerating method according to item 1.
【請求項3】断熱した収容空間を内設する加熱冷蔵容器
と、 平衡分解圧特性の異なる金属水素化物を夫々装填した一
対の第1の容器と第2の容器を複数組、前記収容空間内
設置の温度センサーにて開閉制御される連結弁を介して
各対毎に通気自在に相互連結するとともに、複数組の隣
接する前記第1の容器相互間を断熱しかつ当該隣接する
一つを外気と他の一つを前記収容空間内気とそれぞれ放
熱・吸熱自在に開放接触する一方、複数組の隣接する前
記第2の容器相互間同志が伝熱自在に伝熱板を介在しか
つ他外側を断熱して加熱冷蔵容器1側に差し換え自在に
内嵌した熱発生容器とからなることを特徴とする正逆相
互駆動式加熱冷蔵装置
3. A heating / refrigerating container having a heat-insulated accommodation space therein, a plurality of pairs of a first container and a second container respectively loaded with metal hydrides having different equilibrium decomposition pressure characteristics, and a plurality of sets in the accommodation space. Each pair is interconnected so as to be freely ventilated through a connection valve that is controlled to be opened and closed by a temperature sensor installed, and a plurality of sets of adjacent first containers are insulated from each other and the adjacent one is exposed to the outside air. While the other one is in open contact with the air in the accommodation space so that it can radiate and absorb heat, the plurality of sets of adjacent second containers mutually interpose a heat transfer plate and transfer the other outside. A forward-reverse mutual drive type heating and refrigerating apparatus, which comprises a heat generating container that is heat-insulated and is fitted in the heating and refrigerating container 1 side so as to be freely replaceable.
【請求項4】第1の容器と第2の容器に夫々装填される
金属水素化物はミツシュメタル−ニッケル系水素化物と
ミツシュメタル−ニッケル−アルミニウム系水素化物で
あることを特徴とする特許請求の範囲第3項記載の正逆
相互駆動式加熱冷蔵装置
4. The metal hydride loaded in the first container and the second container, respectively, is a mischmetal-nickel hydride or a mischmetal-nickel-aluminum hydride. Forward-reverse mutual drive type heating and refrigerating apparatus according to item 3.
【請求項5】熱発生容器は、加熱冷蔵容器に反転差し換
え自在に形成したことを特徴とする特許請求の範囲第3
または4項記載の正逆相互駆動式加熱冷蔵装置
5. The heat generating container is formed in a heating / refrigerating container so that it can be reversed and replaced.
Alternatively, the forward / reverse mutual drive type heating / refrigerating apparatus according to item 4.
JP60270781A 1985-12-03 1985-12-03 Forward and reverse mutual drive type heating and refrigerating method and apparatus Expired - Lifetime JPH067030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60270781A JPH067030B2 (en) 1985-12-03 1985-12-03 Forward and reverse mutual drive type heating and refrigerating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60270781A JPH067030B2 (en) 1985-12-03 1985-12-03 Forward and reverse mutual drive type heating and refrigerating method and apparatus

Publications (2)

Publication Number Publication Date
JPS62131175A JPS62131175A (en) 1987-06-13
JPH067030B2 true JPH067030B2 (en) 1994-01-26

Family

ID=17490905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60270781A Expired - Lifetime JPH067030B2 (en) 1985-12-03 1985-12-03 Forward and reverse mutual drive type heating and refrigerating method and apparatus

Country Status (1)

Country Link
JP (1) JPH067030B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2568484B2 (en) * 1983-07-08 1997-01-08 松下電器産業株式会社 Multi-effect heat pump device
JPS60211272A (en) * 1984-04-05 1985-10-23 松下電器産業株式会社 Intermittent operation type multistage second type heat pumpdevice
JPS6037395A (en) * 1983-08-09 1985-02-26 川崎重工業株式会社 Collection of seabottom deposited substance
JPS60226678A (en) * 1984-04-24 1985-11-11 松下電器産業株式会社 Intermittent operation type multistage second class heat pump device

Also Published As

Publication number Publication date
JPS62131175A (en) 1987-06-13

Similar Documents

Publication Publication Date Title
EP0015106B1 (en) Absorption-desorption system
EP0168062B1 (en) Metal hydride heat pump assembly
US5497630A (en) Method and apparatus for hydride heat pumps
EP0071271A2 (en) Metal hydride heat pump system
EP0053737B1 (en) Heat pump device
JPH067030B2 (en) Forward and reverse mutual drive type heating and refrigerating method and apparatus
JP3934738B2 (en) Method for managing solid / gas adsorption and thermochemical reactions
JP3126086B2 (en) Compression metal hydride heat pump
JPH0121432B2 (en)
JPS5890A (en) Structure of heat exchanger utilizing metal hydride
US7624584B2 (en) Installation and method for producing cold by a reversible sorption system
JPH09324960A (en) Heat generating or heat absorbing method and apparatus using hydrogen storing alloy
JPH02259374A (en) Cooling apparatus using metal hydride
JP2642830B2 (en) Cooling device
JPS6037395B2 (en) Portable heating or cooling device
JPH0634230A (en) Cold generator
JPS642869B2 (en)
JP2703361B2 (en) Cooling device using metal hydride
JP3133442B2 (en) Heat driven cold heat generation method and apparatus using metal hydride
Bowman Jr et al. Characterizations of prototype sorption cryocoolers for the periodic formation of liquid and solid hydrogen
JPH03105172A (en) Cooling device utilizing metal hydride
JPH0722370U (en) Cooling device with metal hydride
JPS642870B2 (en)
JPS6249165A (en) Low-temperature transport method and device
JPH01197301A (en) Hydrogen storage vessel

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term