JPS6213067B2 - - Google Patents

Info

Publication number
JPS6213067B2
JPS6213067B2 JP16928579A JP16928579A JPS6213067B2 JP S6213067 B2 JPS6213067 B2 JP S6213067B2 JP 16928579 A JP16928579 A JP 16928579A JP 16928579 A JP16928579 A JP 16928579A JP S6213067 B2 JPS6213067 B2 JP S6213067B2
Authority
JP
Japan
Prior art keywords
resin
film
weight
heat
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16928579A
Other languages
Japanese (ja)
Other versions
JPS5694689A (en
Inventor
Shigenori Yamaoka
Akinobu Kusuhara
Toshinaga Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP16928579A priority Critical patent/JPS5694689A/en
Publication of JPS5694689A publication Critical patent/JPS5694689A/en
Publication of JPS6213067B2 publication Critical patent/JPS6213067B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気絶縁性フイルムもしくは繊維質基
材等を用いずに、直接金属板乃至箔上に電気絶縁
性皮膜を形成せしめて、耐熱性のある樹脂皮膜金
属張板乃至箔を製造する方法に関するものであ
る。 最近通信機器、民生機器、電算機器、音響機器
の実装方式の簡略化、小型化、高信頼性、高性能
化が要求されつつあり、その機器の内部に用いら
れる印刷配線板にも同様の要求が強く望まれてい
る。 そこで印刷配線板の中でも軽量でコンパクト
で、かつ折り曲げて立体配線ができるフレキシブ
ル印刷配線板はこれらの要求にマツチし、最近広
範囲の機器の印刷配線板として用いられている。 この様なフレキシブル印刷配線用基板として
は、従来よりポリエステル樹脂フイルム、ポリイ
ミド樹脂フイルム、フツ素樹脂フイルム等の電気
絶縁性フイルムを接着剤を介して金属箔と接着せ
しめるか、ガラスクロス、ガラス不織布等の繊維
質基材にポリイミド樹脂、エポキシ樹脂等の耐熱
性樹脂を含浸せしめたプリプレグを金属箔と接着
せしめて得られた、いわゆるフレキシブル銅張板
が用いられてきた。しかしながらこれらの材料で
は、フイルムベースの場合はそのフイルム自体の
性質の他にこれに用いる接着剤の性質が大きく性
能に関与し、特にポリイミドフイルムの様な高耐
熱性、寸法安定性等に優れたフイルムをベースと
した場合は、このフイルムの有する耐熱性等の性
能が接着剤によつて減殺され、フイルム本来の性
質が生かされない。又接着剤を用いない樹脂含浸
繊維質基板を用いたものは厳しい折り曲げを必要
とする用途には折れが生じ、用いることができな
い。又接着剤を用いずに熱融着によつてプラスチ
ツクフイルム又は樹脂の粉体等を金属箔に接着せ
しめる方法もあるが、高度の耐熱性を有するフイ
ルム又は粉体はそれ自身高融点で熱融着しにく
く、特殊な処理を施すとか、非常に高温の圧着設
備を要するとか制約が多く工業的に製造すること
は容易でなく又非常にコスト高にもなる。 これに対し金属箔面上に絶縁性樹脂を湿式の状
態で塗布して乾燥により皮膜を形成せしめ、その
皮膜自体をフレキシブル印刷回路の絶縁層及び支
持体として使用できれば上記の様な従来の材料に
比べて、 接着剤を用いないので樹脂自体の性質がその
まま印刷配線板の性質として生かされる。 金属箔との圧着工程が不要となり生産性がア
ツプする。 絶縁層、支持体としての厚みのコントロール
が自由にでき極薄基板の製造が可能となる。 連続的な製造が容易になる。 等の種類の利点があり、工業的に極めて魅力ある
材料となる。この様な材料の製法として従来より
溶液キヤスト法が知られており、例えばエポキ
シ、ウレタン、アルキツド等の樹脂のワニスは金
属箔の表面に塗布して乾燥したのち、金属箔面に
塗膜を形成し得る事が知られている。 しかしながらこの様な樹脂を前記の様な目的で
フレキシブル印刷回路用基板に適用した場合、 塗布乾燥して得られた皮膜は多くの場合機械
的強度が不足し、フレキシブル印刷回路の支持
フイルムとはなり得ず、引き続くプリント板加
工工程及び使用時の機械応力に耐えられない。 通常溶液キヤスト法でフイルムを形成し易い
熱可塑性樹脂では、フレキシブル印刷回路とし
ての加工及び実装時での耐熱性が不足している
等の欠点がある。 又最近これらの欠点を補うため、樹脂としてポリ
イミド、ポリアミドイミド、ポリエステルイミド
等複素環を有する耐熱性樹脂を用いて溶液キヤス
ト法でフレキシブル印刷回路板を作る方法が述ら
れている。このような樹脂を用いると耐熱性は優
れたものになるが、しかし一方極性基が少ないた
め金属箔との接着性に欠け、又樹脂を金属箔面上
に塗布し、乾燥により硬化する際、硬化収縮が生
じ、金属箔の反対面即ち樹脂のフイルム面の方へ
基板が大きくカールし、印刷配線板としての実用
性を満たさない。この傾向は高分子の樹脂を用い
る程カールが大きくなる。又高分子の樹脂を用い
ないと分子結合が弱くフイルム形成性が乏しくな
り、機械的強度が弱くもろいものとなる。そこ
で、これらの欠点を補い耐熱性樹脂の特性を生か
す方法として本発明者らは複素環を形成する耐熱
性樹脂とエポキシ樹脂、フエノキシ樹脂等の熱硬
化性樹脂を反応させることを既に提唱した。この
方法により印刷配線板として必要な基板支持性に
係わるフイルム形成性、金属箔との接着性、カー
ルをいずれも良好なものにするバランスのとれた
ものを提供するに至つたが、しかしこの方法は熱
硬化性樹脂による三次元化反応であるのでどうし
ても可撓性に欠け、又ノツチが入ると引裂れ易す
いというもろさも生じてくる。 本発明はこの難点をも克服するものである。即
ち、本発明は接着剤を用いずに基板樹脂の特性を
そのまま生かし、かつ接着性、フイルムの可撓性
及び機械的強度、カールのない等実用上極めて優
れた特性を有する新しい印刷配線板用材料を提供
するものである。 即ち本発明は複素環を形成する耐熱性樹脂と高
弾性を有する樹脂とを反応させて得たフイルムを
フレキシブル印刷配線板に使用することに特徴が
ある。複素環を有する耐熱性樹脂だけでは前述し
たように耐熱性には優れているが、極性基が少な
いため金属箔との接着性に乏しい。又硬化時の収
縮によるカール、シワが発生する。又熱硬化性樹
脂と反応させることにより、これらの欠点を一応
解決することができるが、前述した様に熱硬化性
樹脂の三次元化反応による生成物であるので、可
撓性を損こね、又引裂き強度が低下する。そこで
この樹脂の耐熱性を生かし、これらの欠点を補う
ため鋭意研究した結果、高弾性を有する樹脂を反
応させることによりこれらの難点を一挙に解決す
ることができた。 高弾性を有する樹脂と反応させた樹脂は、高弾
性を有する樹脂の有する非常に多くの極性基の数
が増加するので、耐熱性樹脂単独では得られなか
つた金属箔との接着性を強いものにする。又線状
の高分子の耐熱性樹脂だけでは硬化時の収縮が大
きく生じ、得られた金属張板はカール、シワ等が
発生するが、本願発明の耐熱ゴムを反応させるこ
とにより、硬化時にゴム自身の加硫による架橋が
生じ、三次元化が起こり、硬化収縮を抑えること
ができ、実験例でも驚くべきことにほとんどシ
ワ、カール等が生じなかつた。更に特長としてゴ
ムを用いることにより周知の通り弾性が向上し、
硬化物は可撓性に富み、そのため硬化物をフイル
ム状にしても引裂き強度等低下せずフイルムは丈
夫なものとなる。又フイルム形成性の面では低分
子の樹脂を用いるよりも高分子の樹脂を用いる方
が、形成性は速くかつ得られたフイルムの機械強
度は強いものになることが判つた。これは樹脂を
高分子化する過程において、加熱下で撹拌して
動的状態で行う方法、加熱下で静置した状態で
行う方法での分子間結合力の違いによるもので、
明らかにの方が強固なものとなる。本発明では
は樹脂を合成する段階に当たり、は金属箔上
でキヤストする段階に当たる。 ところで本発明者等は金属箔上にキヤストする
樹脂は予め高分子化したものを用いることにより
強い機械的強度のフイルムを得ることを見出し
た。前述したように耐熱性樹脂だけの線状高分子
化物を用いると、硬化による収縮がより大きくな
ることは指摘した通りであるが、本発明は耐熱ゴ
ムとの反応によりフイルムを可塑化させることに
より、これを抑制することに成功した。 以上のように本発明の樹脂を用いることにより
樹脂の耐熱性を生かしながら、その大きな欠点で
あつた接着強度、カール、シワ等の難問題を解決
することができ、更に印刷配線板として優れた可
撓性を有する極めて実用性に富むものを得ること
ができた。 本発明に使用する金属板乃至箔は銅箔、アルミ
箔、ニクロム箔、ニツケル箔、チタン箔等の通常
の導電性良好な金属箔又はそれらの板である。厚
さは1〜150μが好ましく、必要によつては金、
ニツケル、半田等の表面メツキを施すこともあ
る。又接着強度をより一層向上させるために金属
箔面上を研磨等により機械的粗化、クロム酸―硫
酸液等による化学薬品処理を施してもよい。 複素環を有する耐熱性樹脂としては、ポリイミ
ド、ポリアミドイミド、ポリエステルイミド、ポ
リエステルアミドイミド、ポリビダントイン、ポ
リイミダゾピロロン、ポリベンズイミダゾール、
ポリパラバン酸イミド、ポリパラパニツクアシツ
ド、ポリキアゾール、ポリベンゾチアゾール、ポ
リキノキサリン、ポリオキサジアゾール等及びこ
れらの共重合体等の複素環を有するものである。
複素環を有さない耐熱性樹脂としては、フツ素樹
脂、シリコーン樹脂等があるが、いずれも高分子
化したものは極性基がほとんどなく、他樹脂と反
応することは難かしく、そのためこれらの樹脂を
用いると金属箔との接着性に欠け、又金属張板と
してもカール、シワ等が生じ、実用性に乏しい。
本願の耐熱性樹脂の分子量は約5000以上のものを
用いることである。該耐熱性樹脂の分子量の上限
は、特に制限はないが、好ましくは約5000〜
200000、更に好ましくは、約8000〜100000であ
る。これは前述した様に高分子量のものはフイル
ム形成性に富み、特に約5000以上の分子量のもの
は得られたフイルムの引張り強度等の機械的強度
に優れる。約5000未満のものではフイルムがもろ
くなり、印刷配線板としての支持体として不充分
である。 高弾性を有する樹脂としてはブタジエン―スチ
レン共重合体、ブタジエン―アクリルニトリル共
重合体、クロロプレン重合体、アクリル酸エステ
ル重合体又は主鎖中に二重結合を有しないアルキ
ルシロキサン縮合体、フツ化ビニリデン―3フツ
化エチレン共重合体、フツ化ビニリデン―6フツ
化プロピレン共重合体、クロロスルホン化ポリエ
チレン、アルキレン―スルフイド重合体、エチレ
ン―プロピレン共重合体、プロピレンオキシド重
合体、エピクロルヒドリン重合体、エピクロルヒ
ドリン―エチレンオキシド共重合体等を用いるこ
とができる。これらの樹脂はムーニー粘度が150
以下のものを用いる。ムーニー粘度が150以上の
ものは、溶剤に溶け難くく、溶かすには多量の溶
剤が必要であり、生産性が悪くなる。又耐熱性樹
脂との相溶性も非常に悪く、通常の混合では均一
にならず実用性に欠ける。又、これらの樹脂は主
鎖を形成する炭素原子に対する不飽和原子の割合
が40%以下のものを用いる。40%以上では主鎖内
の二重結合の割合が多くなるので、二重結合の隣
りの分子の結合は弱いので高温で熱分解が生じ易
のく、耐熱性が損われる。更に酸素が存在すると
二重結合自身が酸化され、高温ではこの酸化劣化
が急速に生じ、耐熱性が低下する。 以上の高弾性を有する樹脂の中でも、アクリロ
ニトリル分が25重量%以上のアクリロニトリル―
ブタジエン共重合体を用いることが好ましい。一
般的に主鎖中に二重結合を有するものは酸化によ
る熱劣化が生じ易すいが、本願で用いるアクリロ
ニトリル分が25重量%以上のアクリロニトリル―
ブタジエン共重合体は、通常高ニトリルゴムと呼
ばれているものであり、耐熱性に優れているの
で、ブタジエン成分の劣化による耐熱性の低下を
防ぐ。さらには、アクリロニトリル分が多くなる
ことにより、CN―基などの極性基が増えて強固
な接着性を与えると共に可撓性を増大せしめる。 これらに加えて硫黄、金属酸化物、過酸化物な
どの加硫剤及びアルデヒド―アンモニア、アルデ
ヒド―アミン、グアニジン、チオウレア、チアゾ
ール等の加硫促進剤の少量を加えてもよく、又ポ
リサルフアドイド、ポリエステル等の可撓性賦与
剤、ジフエニルアミン、ブチルフエノール等の酸
化防止剤、タルク、クレー、マイカ、長石粉末、
石英粉末、酸化マグネシウム等の充填剤、カーボ
ンブラツク、フエロシアニンブルー等の着色剤、
トリブチルフオスフエート、テトラブロモジフエ
ニルメタン等の難燃剤、三酸化アンチモン、メタ
ホウ酸バリウムの難燃助剤の少量を加えてもよ
く、これらを添加することにより印刷配線板とし
ての特殊な用途への適用が計れる。 以上記述した各樹脂の配合割合は、複素環を有
する耐熱性樹脂100重量部に対し、好ましくは高
弾性を有する樹脂0.1〜40重量部、更に好ましく
は複素環を有する耐熱性樹脂100重量部に対し、
高弾性を有する樹脂1〜30重量部混合したもので
ある。更に好ましくはこれらの樹脂を単に混合す
るだけではなく、金属箔面上にキヤストする前に
15℃〜150℃の温度で30分から10時間加熱撹拌し
たものを用いると良い。この範囲で混合反応した
樹脂はフイルム形成性に富むと同時に、得られた
フイルムは印刷配線板としての支持体としてより
一層機械的強度に優れたものとなる。又接着性に
も優れ、外観上カール、シワ等の発生もない。更
に接着剤を用いない事から耐熱性樹脂の性能がそ
のまま生かされ、従来の接着剤を用いたものに比
べ高温での機械的性質、化学的性質、物理的性質
のあらゆる点で優れたものとなる。特に接着強度
の熱劣化が非常に少ないことは、この印刷配線板
を各種機器に実装する応用範囲が大巾に拡大され
る画期的なものである。高弾性を有する樹脂が
0.1重量部以下では、硬化した時に収縮が生じ、
カール、シワが発生し、印刷配線板としての重大
な欠点となる。又40重量部以上では耐熱性樹脂と
の混ざりが悪く均一になりにくく、そのため却つ
てフイルム形成性が悪くなる。 本発明の樹脂組成物は適当な有機溶剤、例えば
ジメチルアセトアミド、ジメチルホルムアミド、
ジメチルスルフオキシド、N―メチルピロリド
ン、γ−ブチルラクトン、カプロラクタム、ピリ
ジン、ピペリジン、フエノール、クレゾール、ジ
クロロメタン、ジオキサン、テトラヒドロフラ
ン、トルエン、キシレン、ソルベントナフサ、ケ
トン類、アルコール類等の1種もしくはその混合
物に溶ける。 印刷配線板用基板を製造する方法の一例として
は、樹脂組成物を溶剤で溶かし、濃度3〜70%に
し、金属箔面上に流延し、厚さ0.5〜300μの範囲
で均一な厚みに塗布し、次に乾燥機中で50〜450
℃の温度で、必要により2段階もしくはそれ以上
のステツプで2分〜25時間乾燥して樹脂皮膜(フ
イルム)を形成せしめる。塗布あるいは流延の装
置としてはロールコーター、ドクターブレード、
ギーサ、ホイーラ、フローコーター等を用い又乾
燥には赤外線、蒸気、高周波或いはそれらの併用
等を用いる。その用途としては各種フレキシブル
印刷回路板だけでなく、金属を除去してフイルム
だけとしての用途にも使用できる。例えばカメ
ラ、電卓、電算機、測定機等のフレキシブルプリ
ント板、フレキシブルフラツトケーブル、フレキ
シブル面状ヒーター、メモリー素子、ブスバー、
トランスデユーサー、モーターコイル、コンデン
サー、磁気テープ、プリント板のオーバーコート
フイルム、音響機器の各種振動板等の広範囲の分
野に使用できるものである。 以下実施例により更に詳しく説明する。 実施例 1 ピロメリツト酸無水物2モルとジアミノジフエ
ニルメタン1モルをNメチルピロリドン中で重縮
合せしめて得られた分子量12000のポリイミド樹
脂100重量部と主鎖を形成する炭素原子に対する
不飽和原子の割合が20%のアクリロニトリルを40
重量%含むムーニー粘度が80のアクリロニトリル
―ブタジエン共重合体20重量部とさらに加硫剤と
して硫黄0.2重量部を加え80℃で5時間反応させ
て、25℃における固有粘度が2.0の耐熱性樹脂を
得た。この樹脂をN―メチルピロリドンとキシレ
ンの混合溶剤で混合希釈して濃度30重量%にした
ものを、塗布機を用いて厚さ35μの銅箔上に約30
μ塗布する。これを250℃で30分間乾燥して皮膜
を形成せしめてフレキシブル銅張板を作つた。 この銅張板の印刷配線板用としての性能と、こ
れを40゜ボーメの塩化第2鉄溶液で銅箔をエツチ
ングして得たフイルムの性能を第1表に示す。 実施例 2 トリメリツト酸無水物2モルとジフエニルメタ
ンジイソシアネート3モルをN―メチルピロリド
ン中で付加重合せしめて得られた分子量21000の
ポリアミドイミド樹脂100重量部とムーニー粘度
60のエピクロルヒドリン重合体15重量部と加硫剤
としてジクミールパーオキサイド0.15重量部を加
え、100℃で1時間反応させて、25℃における固
有粘度が1.9の耐熱性樹脂を得た。 この樹脂をNメチルピロリドンで混合希釈して
濃度15重量%にしたものを、塗布機を用いて厚さ
35μの銅箔上に約20μ塗布する。これを、150℃
で10分間乾燥させた後、更に220℃で60分乾燥し
て皮膜を形成せしめてフレキシブル銅張板を作つ
た。 この銅張板の印刷配線板用としての性能とこれ
を実施例1と同様の方法でエツチングして得たフ
イルムの性能を第1表に示す。 実施例 3 トリメリツト酸無水物1モルとヒドロキノンジ
アセテート1モルをクレゾール中で反応せしめて
得た付加体にジアミノジフエニルエーテル1モル
を反応せしめて得た分子量30000のポリエステル
イミド100重量部とムーニー粘度80のフツ化ビニ
リデンと3フツ化エチレンの共重合体10重量部と
加硫剤としてヘキサメチレンジアミン0.1重量部
を加え混合させて、25℃における固有粘度が1.8
の耐熱性樹脂を得た。 この樹脂をジメチルホルムアミドで混合希釈し
て濃度40重量%にしたものを、塗布機を用いて厚
さ20μのアルミ箔上に約50μ塗布する。これを
100℃で60分乾燥させた後、更に150℃で120分乾
燥して皮膜を形成せしめてフレキシブルアルミ張
板を作つた。 このアルミ張板の印刷配線板としての性能とこ
れを実施例1と同様の方法でエツチングして得た
フイルムの性能を第1表に示す。 実施例 4 実施例1で用いたポリイミド樹脂100重量部と
実施例1で用いたアクリロニトリル―ブタジエン
共重合体30重量部と硫黄0.3重量部を用いて、以
下実施例1と同様の方法で銅張板及びそのフイル
ムを作つた。この性能を第1表に示す。 実施例 5 実施例2で用いたポリアミドイミド樹脂100重
量部と実施例2で用いたエピクロルヒドリン重合
体3重量部とジクミールパーオキサイド0.03重量
部を用いて、以下実施例2と同様の方法で銅張板
及びそのフイルムを作つた。この性能を第1表に
示す。 比較例 1 実施例1と同様の方法で得た分子量3200のポリ
イミド樹脂と実施例1で用いたアクリロニトリル
―ブタジエン共重合体及び加硫剤を用いて、以下
実施例1と同様の方法でフレキシブル銅張板及び
そのフイルムを得た。その性能を第1表に示す。 比較例 2 実施例2と同様のポリアミドイミド樹脂100重
量部と実施例2で用いたエピクロルヒドリン重合
体60重量部とジクミールパーオキサイド0.6重量
部を用いて、以下実施例2と同様の方法でフレキ
シブル銅張板及びそのフイルムを得た。その性能
を第1表に示す。 比較例 3 樹脂として実施例1で用いたポリイミド樹脂だ
けを用い、以下実施例1と同様の方法でフレキシ
ブル銅張板及びそのフイルムを得た。その性能を
実施例1に順じて第1表に示す。 比較例 4 樹脂として実施例2で用いたポリアミド樹脂だ
けを用い、以下実施例2と同様の方法でフレキシ
ブル銅張板及びそのフイルムを得た。その性能を
実施例2に順じて第1表に示す。 比較例 5 ビスフエノールA型エポキシ樹脂(シエル社製
品エピコート−#828)40重量部と無水マレイン
酸30重量部とアクリロニトリル―ブタジエン共重
合体30重量部をアセトンで混合溶解して濃度40重
量%にしたものを、厚さ25μのポリイミドフイル
ム(デユポン社製品カプトンH)に厚さ約30μ塗
布する。130℃で5分間乾燥後、厚さ35μの銅箔
をロール間を通し加熱圧着して銅張板を作つた。
更に130℃で10時間アフターベーキングして接着
剤を完全硬化させた。 この銅張板の印刷配線板としての性能及びこれ
を実施例1と同様の方法でエツチングして得た接
着剤付フイルムの性能を第1表に示す。 比較例 6 シリコーン樹脂(信越化学工業製KR#271)
100重量部と実施例1で用いたアクリロニトリル
―ブタジエン共重合体20重量部と加硫剤として硫
黄0.2重量部を用いて、以下実施例1と同様の方
法で銅張板及びそのフイルムを作つた。この性能
を第1表に示す。 比較例 7 実施例1で用いたポリイミド樹脂100重量部と
主鎖を形成する炭素原子に対する不飽和原子の割
合が60%のアクリロニトリルを40重量%含むムー
ニー粘度80のアクリロニトリル―ブタジエン共重
合体と加硫剤として硫黄0.2重量部を用いて、以
下実施例1と同様の方法で銅張板及びそのフイル
ムを作つた。この性能を第1表に示す。
The present invention relates to a method for producing a heat-resistant resin-coated metal clad plate or foil by forming an electrically insulating film directly on a metal plate or foil without using an electrically insulating film or fibrous base material. It is something. Recently, there has been a growing demand for simpler, smaller, higher reliability, and higher performance mounting methods for communication equipment, consumer equipment, computer equipment, and audio equipment, and similar demands are also being made for the printed wiring boards used inside these equipment. is strongly desired. Therefore, among printed wiring boards, flexible printed wiring boards, which are lightweight and compact and can be bent to form three-dimensional wiring, meet these requirements and have recently been used as printed wiring boards for a wide range of equipment. Such flexible printed wiring boards have conventionally been made by bonding electrically insulating films such as polyester resin films, polyimide resin films, fluororesin films, etc. to metal foils via adhesives, or by bonding them with metal foils using adhesives, or by using glass cloth, glass nonwoven fabrics, etc. A so-called flexible copper-clad board has been used, which is obtained by bonding a prepreg, which is a fibrous base material impregnated with a heat-resistant resin such as a polyimide resin or an epoxy resin, to a metal foil. However, in the case of film-based materials, in addition to the properties of the film itself, the properties of the adhesive used have a large influence on the performance. When a film is used as a base, the properties of the film, such as heat resistance, are diminished by the adhesive, and the original properties of the film are not utilized. Also, those using resin-impregnated fibrous substrates without adhesives cannot be used in applications that require severe bending because they will break. There is also a method of bonding plastic film or resin powder to metal foil by heat fusion without using an adhesive, but films or powders that have a high degree of heat resistance can themselves be heat-fused at a high melting point. It is difficult to bond, requires special treatment, and requires extremely high-temperature crimping equipment, making it difficult to manufacture industrially and also resulting in very high costs. On the other hand, if an insulating resin could be wet-coated on the metal foil surface and dried to form a film, and the film itself could be used as an insulating layer and support for flexible printed circuits, it would be possible to use the above-mentioned conventional materials. In comparison, since no adhesive is used, the properties of the resin itself can be utilized as they are in the printed wiring board. The process of crimping with metal foil becomes unnecessary, increasing productivity. The thickness of the insulating layer and support can be freely controlled, making it possible to manufacture ultra-thin substrates. Continuous manufacturing becomes easier. These advantages make it an extremely attractive material industrially. The solution casting method has long been known as a manufacturing method for such materials. For example, varnishes made of resins such as epoxy, urethane, and alkyd are applied to the surface of metal foil, dried, and then a coating film is formed on the surface of the metal foil. It is known that it can be done. However, when such resins are applied to flexible printed circuit boards for the purpose described above, the film obtained by coating and drying often lacks mechanical strength and cannot be used as a support film for flexible printed circuits. It cannot withstand the mechanical stress during the subsequent printed board processing process and use. Thermoplastic resins, which are easy to form into films using the usual solution casting method, have drawbacks such as insufficient heat resistance during processing and mounting as flexible printed circuits. Recently, in order to compensate for these drawbacks, a method has been described in which a flexible printed circuit board is manufactured by a solution casting method using a heat-resistant resin having a heterocycle such as polyimide, polyamideimide, polyesterimide, etc. as the resin. When such a resin is used, it has excellent heat resistance, but because it has few polar groups, it lacks adhesion to metal foil, and when the resin is applied onto the metal foil surface and hardened by drying, Curing shrinkage occurs, and the substrate curls significantly toward the opposite side of the metal foil, that is, the resin film side, making it unsuitable for practical use as a printed wiring board. This tendency is such that the curl becomes larger as a polymer resin is used. Furthermore, if a polymeric resin is not used, the molecular bonding will be weak, resulting in poor film forming properties, resulting in weak mechanical strength and brittleness. Therefore, as a method to compensate for these drawbacks and take advantage of the properties of heat-resistant resins, the present inventors have already proposed reacting a heat-resistant resin that forms a heterocycle with a thermosetting resin such as an epoxy resin or a phenoxy resin. Through this method, we have been able to provide a well-balanced product that provides good film forming properties, adhesion to metal foil, and curling, all of which are necessary for printed wiring boards to support the board. However, this method Since it is a three-dimensional reaction using a thermosetting resin, it inevitably lacks flexibility and is also brittle and easily torn when notched. The present invention also overcomes this drawback. That is, the present invention utilizes the properties of the substrate resin without using adhesives, and provides a new printed wiring board that has extremely excellent practical properties such as adhesiveness, film flexibility, mechanical strength, and no curling. It provides materials. That is, the present invention is characterized in that a film obtained by reacting a heat-resistant resin forming a heterocycle with a resin having high elasticity is used for a flexible printed wiring board. A heat-resistant resin having a heterocycle alone has excellent heat resistance as described above, but has poor adhesion to metal foil because it has few polar groups. Also, curls and wrinkles occur due to shrinkage during curing. In addition, these drawbacks can be solved by reacting with a thermosetting resin, but as mentioned above, since it is a product of a three-dimensional reaction of a thermosetting resin, it impairs flexibility and Moreover, the tear strength decreases. Therefore, as a result of intensive research to take advantage of the heat resistance of this resin and compensate for these drawbacks, we were able to solve all of these drawbacks at once by reacting a resin with high elasticity. The resin reacted with a highly elastic resin increases the number of polar groups that the highly elastic resin has, so it has strong adhesion to metal foil that cannot be obtained with a heat-resistant resin alone. Make it. Furthermore, if only a linear polymeric heat-resistant resin is used, it will shrink significantly during curing, and the obtained metal clad plate will have curls, wrinkles, etc. However, by reacting the heat-resistant rubber of the present invention, the rubber will shrink during curing. Crosslinking occurs due to its own vulcanization, three-dimensionality occurs, and curing shrinkage can be suppressed, and surprisingly, almost no wrinkles, curls, etc. were generated in the experimental examples. Another feature is that the use of rubber improves elasticity, as is well known.
The cured product is highly flexible, so even if the cured product is made into a film, the tear strength etc. will not decrease and the film will be strong. In terms of film forming properties, it has been found that the use of a polymeric resin is faster and the mechanical strength of the resulting film is stronger when a polymeric resin is used than a low molecular weight resin. This is due to the difference in intermolecular bonding strength between the process of polymerizing the resin, which is performed in a dynamic state by stirring under heating, and in a method in which it is performed in a static state under heating.
Obviously, it will be stronger. In the present invention, the step of synthesizing the resin corresponds to the step of casting it on metal foil. By the way, the present inventors have discovered that a film with strong mechanical strength can be obtained by using a resin that has been polymerized in advance to be cast on the metal foil. As mentioned above, if a linear polymer made only of heat-resistant resin is used, the shrinkage due to curing will be greater, but in the present invention, by plasticizing the film by reaction with heat-resistant rubber, , succeeded in suppressing this. As described above, by using the resin of the present invention, it is possible to solve the major drawbacks of the resin, such as adhesive strength, curls, wrinkles, etc., while taking advantage of the resin's heat resistance. We were able to obtain a highly practical product with flexibility. The metal plates or foils used in the present invention are ordinary metal foils or plates thereof having good conductivity, such as copper foil, aluminum foil, nichrome foil, nickel foil, titanium foil, etc. The thickness is preferably 1 to 150μ, and if necessary, gold,
Surface plating with nickel, solder, etc. may also be applied. Further, in order to further improve the adhesive strength, the surface of the metal foil may be mechanically roughened by polishing or the like, or treated with a chemical agent such as a chromic acid-sulfuric acid solution. Heat-resistant resins having a heterocycle include polyimide, polyamideimide, polyesterimide, polyesteramideimide, polyvidantoin, polyimidazopyrrolone, polybenzimidazole,
Polyparabanic acid, polyparapanic acid, polychiazole, polybenzothiazole, polyquinoxaline, polyoxadiazole, etc., and copolymers thereof have a heterocyclic ring.
Heat-resistant resins without heterocycles include fluororesins and silicone resins, but polymerized resins have almost no polar groups and are difficult to react with other resins. When resin is used, it lacks adhesion to metal foil, and even as a metal clad plate, curls, wrinkles, etc. occur, making it impractical.
The heat-resistant resin used in the present application has a molecular weight of about 5,000 or more. The upper limit of the molecular weight of the heat-resistant resin is not particularly limited, but is preferably about 5000 to
200,000, more preferably about 8,000 to 100,000. This is because, as mentioned above, those with a high molecular weight have excellent film-forming properties, and in particular those with a molecular weight of about 5,000 or more have excellent mechanical strength such as tensile strength of the obtained film. If it is less than about 5,000, the film becomes brittle and is insufficient as a support for a printed wiring board. Examples of highly elastic resins include butadiene-styrene copolymers, butadiene-acrylonitrile copolymers, chloroprene polymers, acrylic acid ester polymers, alkylsiloxane condensates without double bonds in the main chain, and vinylidene fluoride. -Trifluoroethylene copolymer, vinylidene fluoride-hexafluoride propylene copolymer, chlorosulfonated polyethylene, alkylene-sulfide polymer, ethylene-propylene copolymer, propylene oxide polymer, epichlorohydrin polymer, epichlorohydrin- Ethylene oxide copolymers and the like can be used. These resins have a Mooney viscosity of 150
Use the following: Those with a Mooney viscosity of 150 or more are difficult to dissolve in solvents and require a large amount of solvent to dissolve, resulting in poor productivity. Furthermore, it has very poor compatibility with heat-resistant resins, and ordinary mixing does not result in uniformity, making it impractical. Furthermore, these resins are those in which the ratio of unsaturated atoms to carbon atoms forming the main chain is 40% or less. If it exceeds 40%, the ratio of double bonds in the main chain increases, and the bonds between molecules adjacent to the double bonds are weak, so thermal decomposition is likely to occur at high temperatures, resulting in a loss of heat resistance. Furthermore, when oxygen is present, the double bond itself is oxidized, and at high temperatures this oxidative deterioration occurs rapidly, resulting in a decrease in heat resistance. Among the above resins with high elasticity, acrylonitrile with an acrylonitrile content of 25% by weight or more
Preferably, a butadiene copolymer is used. In general, those with double bonds in their main chains are susceptible to thermal deterioration due to oxidation, but the acrylonitrile used in this application has an acrylonitrile content of 25% by weight or more.
Butadiene copolymer is usually called high nitrile rubber and has excellent heat resistance, so it prevents a decrease in heat resistance due to deterioration of the butadiene component. Furthermore, as the acrylonitrile content increases, the number of polar groups such as CN- groups increases, providing strong adhesiveness and increasing flexibility. In addition to these, small amounts of vulcanizing agents such as sulfur, metal oxides, peroxides, and vulcanization accelerators such as aldehyde-ammonia, aldehyde-amines, guanidine, thiourea, thiazole, etc. may also be added. Flexibility agents such as polyester, polyester, antioxidants such as diphenylamine and butylphenol, talc, clay, mica, feldspar powder,
Fillers such as quartz powder and magnesium oxide, colorants such as carbon black and ferrocyanine blue,
Small amounts of flame retardants such as tributyl phosphate, tetrabromodiphenylmethane, antimony trioxide, and barium metaborate may also be added, allowing for special uses as printed wiring boards. can be applied. The blending ratio of each resin described above is preferably 0.1 to 40 parts by weight of the resin having high elasticity, more preferably 100 parts by weight of the heat-resistant resin having a heterocycle, to 100 parts by weight of the heat-resistant resin having a heterocycle. On the other hand,
It is a mixture of 1 to 30 parts by weight of a highly elastic resin. More preferably, these resins are not only mixed together, but also before being cast onto the metal foil surface.
It is best to use one that has been heated and stirred at a temperature of 15°C to 150°C for 30 minutes to 10 hours. The resin mixed and reacted within this range has excellent film-forming properties, and at the same time, the resulting film has even better mechanical strength as a support for a printed wiring board. It also has excellent adhesive properties and does not cause curls, wrinkles, etc. in appearance. Furthermore, since no adhesive is used, the performance of the heat-resistant resin can be utilized as is, and it has superior mechanical properties, chemical properties, and physical properties at high temperatures compared to those using conventional adhesives. Become. In particular, the extremely low thermal deterioration of adhesive strength is an epoch-making feature that greatly expands the range of applications in which this printed wiring board can be mounted on various devices. Resin with high elasticity
If it is less than 0.1 part by weight, it will shrink when cured.
Curls and wrinkles occur, which is a serious drawback for printed wiring boards. Moreover, if it exceeds 40 parts by weight, it will not mix well with the heat-resistant resin and will be difficult to form uniformly, resulting in poor film forming properties. The resin composition of the present invention can be prepared using a suitable organic solvent such as dimethylacetamide, dimethylformamide,
Dimethyl sulfoxide, N-methylpyrrolidone, γ-butyllactone, caprolactam, pyridine, piperidine, phenol, cresol, dichloromethane, dioxane, tetrahydrofuran, toluene, xylene, solvent naphtha, ketones, alcohols, etc., or a mixture thereof dissolves in An example of a method for manufacturing printed wiring board substrates is to dissolve a resin composition in a solvent to a concentration of 3 to 70%, and cast it onto a metal foil surface to a uniform thickness in the range of 0.5 to 300μ. Apply, then in the dryer 50-450
The resin film is formed by drying at a temperature of 25°C for 2 minutes to 25 hours in two or more steps if necessary. Coating or casting equipment includes roll coaters, doctor blades,
A Gisa, a wheeler, a flow coater, etc. are used, and infrared rays, steam, high frequency, or a combination thereof are used for drying. It can be used not only for various flexible printed circuit boards, but also as a film by removing metal. For example, flexible printed boards for cameras, calculators, calculators, measuring instruments, etc., flexible flat cables, flexible sheet heaters, memory devices, bus bars, etc.
It can be used in a wide range of fields such as transducers, motor coils, capacitors, magnetic tapes, overcoat films for printed circuit boards, and various diaphragms for audio equipment. This will be explained in more detail below with reference to Examples. Example 1 100 parts by weight of a polyimide resin with a molecular weight of 12,000 obtained by polycondensing 2 moles of pyromellitic anhydride and 1 mole of diaminodiphenylmethane in N-methylpyrrolidone and the unsaturated atoms relative to the carbon atoms forming the main chain. 40% acrylonitrile with a proportion of 20%
20 parts by weight of acrylonitrile-butadiene copolymer with a Mooney viscosity of 80 and 0.2 parts by weight of sulfur as a vulcanizing agent were reacted at 80°C for 5 hours to form a heat-resistant resin with an intrinsic viscosity of 2.0 at 25°C. Obtained. This resin was mixed and diluted with a mixed solvent of N-methylpyrrolidone and xylene to a concentration of 30% by weight, and then coated on a 35μ thick copper foil using a coating machine for approximately 30 minutes.
Apply μ. This was dried at 250°C for 30 minutes to form a film and a flexible copper clad board was made. Table 1 shows the performance of this copper clad board as a printed wiring board and the performance of a film obtained by etching the copper foil with a 40° Baumé ferric chloride solution. Example 2 100 parts by weight of a polyamideimide resin with a molecular weight of 21,000 obtained by addition polymerizing 2 moles of trimellitic anhydride and 3 moles of diphenylmethane diisocyanate in N-methylpyrrolidone and Mooney viscosity.
15 parts by weight of epichlorohydrin polymer No. 60 and 0.15 parts by weight of dicumyl peroxide as a vulcanizing agent were added and reacted at 100°C for 1 hour to obtain a heat-resistant resin having an intrinsic viscosity of 1.9 at 25°C. This resin was mixed and diluted with N-methylpyrrolidone to a concentration of 15% by weight.
Apply approximately 20μ on 35μ copper foil. This is heated to 150℃.
After drying for 10 minutes at 220°C, a film was formed by further drying at 220°C for 60 minutes to produce a flexible copper clad board. Table 1 shows the performance of this copper clad board as a printed wiring board and the performance of a film obtained by etching it in the same manner as in Example 1. Example 3 100 parts by weight of a polyesterimide with a molecular weight of 30,000 obtained by reacting 1 mole of diaminodiphenyl ether with an adduct obtained by reacting 1 mole of trimellitic anhydride and 1 mole of hydroquinone diacetate in cresol and Mooney viscosity 10 parts by weight of a copolymer of vinylidene fluoride and ethylene trifluoride of No. 80 and 0.1 part by weight of hexamethylene diamine as a vulcanizing agent were added and mixed to give an intrinsic viscosity of 1.8 at 25°C.
A heat-resistant resin was obtained. Mix and dilute this resin with dimethylformamide to a concentration of 40% by weight, and apply about 50μ of this onto a 20μ thick aluminum foil using a coating machine. this
After drying at 100°C for 60 minutes, it was further dried at 150°C for 120 minutes to form a film and produce a flexible aluminum veneer. Table 1 shows the performance of this aluminum clad board as a printed wiring board and the performance of a film obtained by etching it in the same manner as in Example 1. Example 4 Copper cladding was made in the same manner as in Example 1 using 100 parts by weight of the polyimide resin used in Example 1, 30 parts by weight of the acrylonitrile-butadiene copolymer used in Example 1, and 0.3 parts by weight of sulfur. The board and its film were made. This performance is shown in Table 1. Example 5 Copper was prepared in the same manner as in Example 2 using 100 parts by weight of the polyamide-imide resin used in Example 2, 3 parts by weight of the epichlorohydrin polymer used in Example 2, and 0.03 parts by weight of dicumyl peroxide. Manufactured veneer boards and their films. This performance is shown in Table 1. Comparative Example 1 Using a polyimide resin with a molecular weight of 3200 obtained in the same manner as in Example 1, the acrylonitrile-butadiene copolymer and vulcanizing agent used in Example 1, flexible copper was prepared in the same manner as in Example 1. A veneer and its film were obtained. Its performance is shown in Table 1. Comparative Example 2 Using 100 parts by weight of the same polyamide-imide resin as in Example 2, 60 parts by weight of the epichlorohydrin polymer used in Example 2, and 0.6 parts by weight of dicumyl peroxide, a flexible resin was prepared in the same manner as in Example 2. A copper clad board and its film were obtained. Its performance is shown in Table 1. Comparative Example 3 A flexible copper-clad board and a film thereof were obtained in the same manner as in Example 1 using only the polyimide resin used in Example 1 as the resin. The performance is shown in Table 1 in accordance with Example 1. Comparative Example 4 A flexible copper-clad board and a film thereof were obtained in the same manner as in Example 2 using only the polyamide resin used in Example 2 as the resin. The performance is shown in Table 1 in accordance with Example 2. Comparative Example 5 40 parts by weight of bisphenol A type epoxy resin (Epicoat-#828 manufactured by Ciel), 30 parts by weight of maleic anhydride, and 30 parts by weight of acrylonitrile-butadiene copolymer were mixed and dissolved in acetone to a concentration of 40% by weight. The resulting solution is applied to a thickness of about 30μ on a 25μ thick polyimide film (Kapton H, manufactured by DuPont). After drying at 130°C for 5 minutes, a 35μ thick copper foil was passed between rolls and bonded under heat to form a copper clad board.
Further, the adhesive was completely cured by after-baking at 130°C for 10 hours. Table 1 shows the performance of this copper-clad board as a printed wiring board and the performance of an adhesive-backed film obtained by etching it in the same manner as in Example 1. Comparative example 6 Silicone resin (Shin-Etsu Chemical KR#271)
A copper clad board and its film were made in the same manner as in Example 1 using 100 parts by weight of the acrylonitrile-butadiene copolymer used in Example 1 and 0.2 parts by weight of sulfur as a vulcanizing agent. . This performance is shown in Table 1. Comparative Example 7 100 parts by weight of the polyimide resin used in Example 1 was combined with an acrylonitrile-butadiene copolymer having a Mooney viscosity of 80 and containing 40% by weight of acrylonitrile in which the ratio of unsaturated atoms to the carbon atoms forming the main chain was 60%. A copper clad board and its film were produced in the same manner as in Example 1 using 0.2 parts by weight of sulfur as the sulfur agent. This performance is shown in Table 1.

【表】【table】

【表】 第1表に示した様に本発明の方法により得られ
た金属張板(実施例1〜5)は、印刷配線板とし
ての各必要性能を充分兼備したバランスのとれた
品質を有している。これは従来の接着剤を用いた
方法(比較例5)と比べ、電気絶縁性は勿論、引
き剥がし強さが約2倍以上強くなつており、従来
品では極細線(例えば回路巾0.1mm以下)を有す
る印刷配線板でしばしば回路線のハガレ等の事故
を生じていた用途への適用が充分の信頼性を有し
て使用が可能となる画期的なもので、配線板の動
向が極細線になりつつある現在大きなメリツトと
なる。 又、本発明は寸法変化率が非常に小さいばかり
でなく、印刷配線板として重要な性能であるシワ
やカール等の反りがほとんど発生しない。この特
徴は金属張板を印刷配線板に加工する時の重大な
要因で大巾な歩留り向上が期待される。更にフイ
ルム自身も強い機械的強度及び可撓性を有してお
り、印刷配線板としての支持体として充分な強度
及び可撓性を保持している。特に本発明の高分子
量の樹脂を用いたもの(実施例1〜5)の強度は
より強い。それだけフイルム単体としても低コス
トで作れることからモーターコイル、コンデンサ
ー、磁気テープ等への適用が計れる。本願より小
さい分子量の耐熱性樹脂を用いたものは(比較例
1)、引張り強度、引裂き強度等の機械的強度が
著るしく低下し、プリント板の支持体としても弱
く、フイルム単体としても実用に供さない。又耐
熱性樹脂に高弾性を有する樹脂を反応させないも
の(比較例3〜4)は、引き剥がし強さが著しく
低下し、又反りが大きく、実用上印刷配線板とし
ての用途が非常に限定された範囲にしか使えず、
従来のフイルムをベースとしたものと比べメリツ
トが少なく反りの点で欠点となる。又、配合量が
本願より多い場合(比較例2)は、耐熱性樹脂と
の混ざりが悪く均一になりにくくなる為フイルム
形成性が悪くなり、そのためフイルムの機械的強
度は低下する。さらに、主鎖を形成する炭素原子
に対する不飽和原子の割合が40%以上である高弾
性を有する樹脂を用いたもの(比較例7)は、前
述のごとく主鎖内の二重結合の割合が多くなるの
で耐熱性が悪く、特に引剥がし強さの熱劣化は初
期値に比べ著しく低下する。又、複素環を有する
樹脂を使用しない(比較例6)と前述したように
接着性に欠け、又金属張板としてもカール、シワ
等が生じ、本願の特長とする耐熱性樹脂の性質を
生かすことができない。 以上述べた如く、本発明によつて得られる金属
板乃至箔/耐熱性樹脂皮膜より成る材料はフレキ
シブル印刷配線用基板として従来の用途は勿論、
新しい応用分野を拡げるものであり、耐熱性、電
気絶縁性、可撓性、フイルム強度、無方向性、寸
法安定性、接着性等において優れたバランスされ
た性能を賦与することができ、更に高温での電気
での電気絶縁性、誘電特性、接着強度の諸性能の
低下が非常に少なく、また1〜10μ程度の極薄フ
イルムも作ることができ、又工業的に低コストで
作ることができるもので実用上極めて有用な材料
である。
[Table] As shown in Table 1, the metal clad boards (Examples 1 to 5) obtained by the method of the present invention have well-balanced quality that fully meets each of the required performances as a printed wiring board. are doing. Compared to the conventional method using adhesive (Comparative Example 5), this method has not only electrical insulation but also approximately twice the peel strength. ) This is an epoch-making product that can be used with sufficient reliability in applications where printed wiring boards often had accidents such as peeling of circuit lines. This is a big advantage now that the line is becoming more common. Furthermore, the present invention not only has a very small dimensional change rate, but also almost no warping such as wrinkles or curls, which are important properties for printed wiring boards. This feature is an important factor when processing metal clad plates into printed wiring boards, and is expected to significantly improve yield. Furthermore, the film itself has strong mechanical strength and flexibility, and maintains sufficient strength and flexibility as a support for a printed wiring board. In particular, those using the high molecular weight resin of the present invention (Examples 1 to 5) have higher strength. Since it can be made as a single film at a low cost, it can be applied to motor coils, capacitors, magnetic tapes, etc. The one using a heat-resistant resin with a molecular weight smaller than that of the present application (Comparative Example 1) has significantly lower mechanical strengths such as tensile strength and tear strength, and is weak as a support for printed boards, and is not practical as a single film. Do not serve. In addition, those in which a resin having high elasticity is not reacted with a heat-resistant resin (Comparative Examples 3 to 4) have a markedly reduced peel strength and large warpage, and their practical use as printed wiring boards is extremely limited. It can only be used within a certain range,
Compared to conventional film-based products, it has fewer advantages and has the disadvantage of warping. Moreover, when the blending amount is larger than that in the present application (Comparative Example 2), the mixture with the heat-resistant resin is poor and it becomes difficult to form a uniform film, resulting in poor film forming properties and, as a result, the mechanical strength of the film is reduced. Furthermore, in the case of using a highly elastic resin in which the ratio of unsaturated atoms to the carbon atoms forming the main chain is 40% or more (Comparative Example 7), the ratio of double bonds in the main chain is low as described above. As the amount increases, heat resistance is poor, and in particular, thermal deterioration of peel strength is significantly lower than the initial value. In addition, if a resin containing a heterocyclic ring is not used (Comparative Example 6), as mentioned above, adhesiveness is lacking, and curls, wrinkles, etc. occur even when used as a metal clad plate. I can't. As mentioned above, the material made of metal plate or foil/heat-resistant resin film obtained by the present invention can be used not only as a flexible printed wiring board but also in conventional applications.
It expands new fields of application and provides excellent balanced performance in heat resistance, electrical insulation, flexibility, film strength, non-directionality, dimensional stability, adhesion, etc. There is very little deterioration in electrical insulation properties, dielectric properties, and adhesive strength when using electricity, and ultra-thin films of about 1 to 10μ can be made, and they can be made industrially at low cost. It is an extremely useful material for practical purposes.

Claims (1)

【特許請求の範囲】 1 分子量が5000以上の複素環を有する耐熱性樹
脂と主鎖を形成する炭素原子に対する不飽和炭素
原子の割合が40%以下でかつムーニー粘度が150
以下の高弾性を有する樹脂との有機溶剤溶液を金
属板乃至箔の片面又は両面に塗布、乾燥し、金属
表面に樹脂の皮膜を形成させることを特徴とする
樹脂皮膜金属張板の製造方法。 2 高弾性を有する樹脂としてアクリロニトリル
分が25重量%以上のアクリロニトリル―ブタジエ
ン共重合体、又は主鎖中に2重結合を有しないも
のを用いる特許請求の範囲第1項記載の樹脂皮膜
金属張板の製造方法。 3 分子量が5000以上の複素環を有する耐熱性樹
脂100重量部に対して高弾性を有する樹脂0.1〜40
重量部からなる樹脂を用いることを特徴とする特
許請求の範囲第1項又は第2項記載の樹脂皮膜金
属張板の製造方法。
[Claims] 1. A heat-resistant resin having a heterocycle with a molecular weight of 5,000 or more and a main chain in which the ratio of unsaturated carbon atoms to carbon atoms is 40% or less and a Mooney viscosity of 150
A method for manufacturing a resin-coated metal clad plate, which comprises applying the following organic solvent solution containing a resin having high elasticity to one or both sides of a metal plate or foil and drying it to form a resin film on the metal surface. 2. A resin-coated metal clad plate according to claim 1, in which an acrylonitrile-butadiene copolymer having an acrylonitrile content of 25% by weight or more or a copolymer having no double bond in the main chain is used as the resin having high elasticity. manufacturing method. 3 0.1 to 40 parts by weight of a heat-resistant resin having a heterocycle with a molecular weight of 5000 or more and a resin having high elasticity
3. A method for manufacturing a resin-coated metal clad plate according to claim 1 or 2, characterized in that a resin consisting of parts by weight is used.
JP16928579A 1979-12-27 1979-12-27 Method of manufacturing resin film metallcoated plate Granted JPS5694689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16928579A JPS5694689A (en) 1979-12-27 1979-12-27 Method of manufacturing resin film metallcoated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16928579A JPS5694689A (en) 1979-12-27 1979-12-27 Method of manufacturing resin film metallcoated plate

Publications (2)

Publication Number Publication Date
JPS5694689A JPS5694689A (en) 1981-07-31
JPS6213067B2 true JPS6213067B2 (en) 1987-03-24

Family

ID=15883674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16928579A Granted JPS5694689A (en) 1979-12-27 1979-12-27 Method of manufacturing resin film metallcoated plate

Country Status (1)

Country Link
JP (1) JPS5694689A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4714001A (en) * 1999-12-23 2001-07-03 Oak-Mitsui Inc. Method for applying polymer film to a metal foil

Also Published As

Publication number Publication date
JPS5694689A (en) 1981-07-31

Similar Documents

Publication Publication Date Title
JPS6333314B2 (en)
JPH0563107B2 (en)
JPS63161023A (en) Production of flexible printed circuit board
JP2889976B2 (en) Polyimide film and method for producing the same
JPS6213067B2 (en)
KR100993063B1 (en) Flexible circuit clad laminate
JP2958051B2 (en) Flexible printed circuit board and method of manufacturing the same
JP2761655B2 (en) Manufacturing method of flexible printed circuit board
JP2787955B2 (en) Manufacturing method of flexible printed circuit board
JP2815668B2 (en) Manufacturing method of flexible printed circuit board with cover coat
JP2008238788A (en) Laminated polyimide film, its manufacturing process, and flexible circuit board
JPS6384089A (en) Manufacture of flexible printed circuit substrate
JP3270378B2 (en) Metal / resin composite, method for producing the same, and substrate for flexible circuit wiring board
JP2653582B2 (en) Polyimide film having a polyamic acid layer on the surface having openings and flexible printed circuit board or circuit board using the same
JPH0848795A (en) Mew polyimide film and its production
JPS6049423B2 (en) Manufacturing method of resin-coated metal clad plate or foil
JP2746643B2 (en) Flexible printed circuit board and method of manufacturing the same
US4226913A (en) Polyparabanic acid/copper foil laminates obtained by direct solution casting
JPH03291987A (en) Manufacture of flexible printed circuit board
JPH03291988A (en) Manufacture of flexible printed circuit board
JP2653583B2 (en) Polyimide film having a polyamic acid layer on its surface and substrate for flexible printed circuit using the same
JPH03291986A (en) Manufacture of board for flexible printed circuit with cover coating
JP2787954B2 (en) Manufacturing method of flexible printed circuit board
JP2804304B2 (en) Manufacturing method of flexible printed circuit board
KR100687387B1 (en) Polyimide for producing cast-on-copper laminate and method for producing thereof