JPS6212900B2 - - Google Patents

Info

Publication number
JPS6212900B2
JPS6212900B2 JP10955580A JP10955580A JPS6212900B2 JP S6212900 B2 JPS6212900 B2 JP S6212900B2 JP 10955580 A JP10955580 A JP 10955580A JP 10955580 A JP10955580 A JP 10955580A JP S6212900 B2 JPS6212900 B2 JP S6212900B2
Authority
JP
Japan
Prior art keywords
electrode
liquid crystal
substrate
photosensitive resin
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10955580A
Other languages
Japanese (ja)
Other versions
JPS5734520A (en
Inventor
Makoto Honda
Koji Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP10955580A priority Critical patent/JPS5734520A/en
Publication of JPS5734520A publication Critical patent/JPS5734520A/en
Publication of JPS6212900B2 publication Critical patent/JPS6212900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は、コレステリツク−ネマテイツク相転
移を利用した液晶表示素子用電極基板の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an electrode substrate for a liquid crystal display device using cholesteric-nematic phase transition.

液晶表示素子(LCD)は低消費電力、低電圧
駆動、小型、薄型等の利点を生かし、腕時計、電
卓表示等に実用化されている。
Liquid crystal display devices (LCDs) have advantages such as low power consumption, low voltage drive, small size, and thinness, and have been put to practical use in wristwatches, calculator displays, etc.

LCDの次の応用分野として、各種情報処理端
末、計測用表示等のX−Yマトリツクス型表示や
カラー表示が有望と考えられ、X−Yマトリツク
ス型LCDについてはこれまで種々の方式が報告
されている。これらの中で、メモリー効果を有す
る液晶(記憶型液晶)は、リフレツシユ不要、走
査線数が多くとも駆動可能という特徴がある。ま
たカラー表示液晶は意匠性の付与あるいは見易さ
の向上ができる特徴がある。
As the next application field for LCDs, X-Y matrix type displays and color displays for various information processing terminals, measurement displays, etc. are thought to be promising, and various systems for X-Y matrix type LCDs have been reported so far. There is. Among these, liquid crystals having a memory effect (memory liquid crystals) are characterized in that they do not require refreshing and can be driven even with a large number of scanning lines. Furthermore, color display liquid crystals have the characteristic of being able to provide design properties and improve visibility.

コレステリツク−ネマテイツク相転移
(CNT)型液晶は記憶表示、高速書き込み可能の
特徴をもつ方式と、二色性染料を添加したゲスト
ホスト型の方式とに適用されており、本発明の電
極基板は両者に適用できる。
Cholesteric-nematic phase transition (CNT) type liquid crystals are applied to two types: a type that has the characteristics of memory display and high-speed writing, and a guest-host type type in which a dichroic dye is added. Applicable to

CNT型液晶セルは、垂直配向処理を施した透
明電極基板間にP型ネマテイツク−コレステリツ
ク混合液晶をはさんだ構造になつており、第1図
に示すような光透過強度−印加電圧特性を示す。
第2図は上記の特性を利用した記憶書込の原理説
明図であり、図a,cは印加電圧−時間関係、図
b,dは図a,cのそれぞれに対応する液晶の光
透過強度−時間の関係を示す図である。
A CNT type liquid crystal cell has a structure in which a P-type nematic-cholesteric mixed liquid crystal is sandwiched between vertically aligned transparent electrode substrates, and exhibits light transmission intensity-applied voltage characteristics as shown in FIG.
Figure 2 is an explanatory diagram of the principle of memory writing using the above characteristics, where figures a and c are applied voltage-time relationships, and figures b and d are light transmission intensities of the liquid crystal corresponding to figures a and c, respectively. - It is a diagram showing a time relationship.

第1図、第2図を用いて説明すれば、記憶表示
は第1図に示される印加電圧を取り除いた後に得
られる2種の安定状態、すなわち、比較的透明な
状態(S)と不透明な状態(F0)とを利用して行
なわれる。
To explain this using FIGS. 1 and 2, the memory display can be realized in two stable states obtained after removing the applied voltage shown in FIG. 1: a relatively transparent state (S) and an opaque state. This is done using the state (F 0 ).

第3図aは従来のX−Yマトリツクス表示を行
なうCNT液晶表示素子の部分断面図の例であ
り、1,1′はガラス基板、2,2′はそれぞれガ
ラス基板1,1′上に設けた透明導電膜からなる
X電極、Y電極、3,3′は電極を含むガラス基
板上に設けた液晶垂直配向層、4はCNT型液晶
である。このようなX−Yマトリツクスによるフ
アインパターンをもつた素子を駆動する場合、
X、Y両電極間にVHより高い電圧が印加された
X、Y電極2,2′の交叉部近傍間には、図aに
矢印5で示すような電気力線分布を生ずる。この
ような電気力線分布をX電極2の方向の断面の電
圧分布で示せば第3図bに示すようになり、X、
Y電極2,2′の交叉部近傍の非電極部に光散乱
するに十分な電圧のかかる部分ができ、第3図c
に示すように画素を回り込む形で光散乱を生じる
F′状態の部分6が出現し、さらに、この散乱部
が経時的に拡大し、定着時にはF0状態になり、
散乱が記憶される欠点があつた。
Figure 3a is an example of a partial cross-sectional view of a CNT liquid crystal display element that performs a conventional X-Y matrix display. 3 and 3' are liquid crystal vertical alignment layers provided on a glass substrate including the electrodes, and 4 is a CNT type liquid crystal. When driving an element with a fine pattern using such an X-Y matrix,
In the vicinity of the intersection of the X and Y electrodes 2 and 2', where a voltage higher than V H is applied between the X and Y electrodes, an electric force line distribution as shown by arrow 5 in FIG. If such an electric force line distribution is shown as a voltage distribution in the cross section in the direction of the X electrode 2, it will be as shown in Figure 3b.
A region where sufficient voltage is applied to scatter light is created in the non-electrode portion near the intersection of the Y electrodes 2 and 2', as shown in Fig. 3c.
Light scattering occurs around the pixel as shown in
A part 6 in the F′ state appears, and this scattering part expands over time and becomes the F 0 state at the time of fixation.
There was a drawback that scattering was memorized.

本発明者らは、液晶セルの厚み方向に液晶のら
せんピツチの少ない方が光散乱強度も記憶効果も
弱い性質を利用して、第4図a及びb(第4図a
及びbはそれぞれ上側電極基板の非電極部分及び
電極部分で切断した部分端面図である。)に示す
ように、それぞれの表面にX、Y電極2,2′を
設けた基板1,1′の電極2,2′側の非電極部に
それぞれ絶縁性の凸部7,7′を設け、さらにそ
の上に着色被膜8,8′を設け、さらに、それぞ
れ電極部2,2′ならびに着色被膜8,8′を含む
基板1,1′の全表面上に液晶の垂直配向層3,
3′を設けてなる2枚の電極基板9,9′をX、Y
電極2,2′が直交して対向するように配置し
て、両者の間にCNT型液晶を挾持させて液晶セ
ルを構成し、一方の電極基板9または9′の非電
極部、すなわち、凸部7または7′上の着色被膜
8又は8′と他方の電極基板9または9′の電極
部、すなわちY電極2′またはX電極2との間の
液晶の厚みをX、Y電極2,2′の交叉部間の液
晶の厚みよりも薄くすることにより、上述した従
来技術の欠点を除去しうること、さらに着色被膜
を設けることによりコントラストを向上させうる
ことを見出し、本発明に到達したものである。こ
の場合、一般的には、上記非電極部、すなわち、
凸部7,7′上の着色被膜8,8′部分における液
晶の厚みは、CNT型液晶のらせんが記憶効果を
もつピツチ数以下になるようにする。通常の場
合、約3ピツチ以下になるようにすることが望ま
しい。また、上記凸部はその原理から、その一部
が電極部に重畳して形成されても上記の効果をも
つていることは明らかである。さらに、上記凸部
の高さは、液晶セルの厚さ、駆動電圧、液晶の種
類、液晶セルの製造方法等を考慮して決定され、
通常は0.1〜5μ程度の高さにする。
The present inventors utilized the property that the smaller the helical pitch of the liquid crystal in the thickness direction of the liquid crystal cell, the weaker the light scattering intensity and the memory effect.
and b are partial end views cut at a non-electrode portion and an electrode portion of the upper electrode substrate, respectively. ), insulating protrusions 7, 7' are provided on the non-electrode parts of the electrodes 2, 2' side of the substrates 1, 1', each having X and Y electrodes 2, 2' on their respective surfaces. Further, colored coatings 8, 8' are provided thereon, and vertically aligned liquid crystal layers 3,
The two electrode substrates 9 and 9' provided with
The electrodes 2 and 2' are arranged to face each other at right angles, and a CNT type liquid crystal is sandwiched between them to form a liquid crystal cell. The thickness of the liquid crystal between the colored film 8 or 8' on the part 7 or 7' and the electrode part of the other electrode substrate 9 or 9', that is, the Y electrode 2' or the X electrode 2, is The present invention was achieved by discovering that the above-mentioned drawbacks of the prior art can be eliminated by making the thickness of the liquid crystal thinner than the thickness of the liquid crystal between the intersections of ', and that the contrast can be improved by providing a colored film. It is. In this case, generally the non-electrode portion, that is,
The thickness of the liquid crystal in the colored coatings 8, 8' on the protrusions 7, 7' is set to be equal to or less than the number of pitches in which the spiral of the CNT type liquid crystal has a memory effect. In normal cases, it is desirable to keep the distance to about 3 pitches or less. Moreover, it is clear from the principle that the above-mentioned convex part has the above-mentioned effect even if it is formed partially overlapping the electrode part. Furthermore, the height of the convex portion is determined by taking into account the thickness of the liquid crystal cell, the driving voltage, the type of liquid crystal, the manufacturing method of the liquid crystal cell, etc.
The height is usually about 0.1 to 5μ.

また、上述のピツチより大きなコレステリツク
相液晶を用い記憶機能を持たない系に、二色性色
素を0.01〜5%程度添加した場合、セル内部で液
晶と二色性染料は電極面にほぼ平行になるため、
着色してみえ電圧の印加で、垂直に立つために消
色する。本来この系では背景が着色しているため
電極で消色するネガ表示しか行えないが、本発明
の基板を用いれば、非電極部の液晶厚みをらせん
を形成し得ない厚みまで薄くすることによつて背
景の着色を異ならせて、カラーコントラストの高
い表示が行える。凸部は通常0.5〜10μ程度とな
るが、この高さは単に液晶層厚みばかりでなく、
垂直配向剤の強さ、液晶のらせんピツチ等を勘案
して決定される。通常はセル厚みの5分の1から
2分の1になる。
Furthermore, when dichroic dye is added at a rate of 0.01 to 5% to a system that uses cholesteric phase liquid crystals larger than the pitch described above and does not have a memory function, the liquid crystal and dichroic dye become almost parallel to the electrode surface inside the cell. To become
It appears colored, but when voltage is applied, it disappears to stand vertically. Originally, in this system, since the background is colored, only negative display can be performed by erasing the color with electrodes, but by using the substrate of the present invention, it is possible to reduce the thickness of the liquid crystal in the non-electrode area to a thickness that does not form a spiral. Therefore, by changing the coloring of the background, a display with high color contrast can be achieved. The height of the convex portion is usually about 0.5 to 10μ, but this height is determined not only by the thickness of the liquid crystal layer but also by the thickness of the liquid crystal layer.
It is determined by taking into consideration the strength of the vertical alignment agent, the helical pitch of the liquid crystal, etc. Usually it is one-fifth to one-half of the cell thickness.

本発明は、上記のような液晶表示素子を反射型
とした場合の反射型電極基板の製造方法に関す
る。
The present invention relates to a method for manufacturing a reflective electrode substrate when the liquid crystal display element as described above is a reflective type.

すなわち、本発明は、透明基板上に形成したパ
ターン化した非透明電極層をマスクとして、この
電極層上に設けた感光性樹脂被膜を前記基板裏面
から露光、現像することにより、透明基板の非電
極部上に感光性樹脂被膜からなり、予め該被膜上
に設けた着色被膜を表面に有する凸部を精度よ
く、簡便な工程で設けるようにしたものである。
That is, in the present invention, a patterned non-transparent electrode layer formed on a transparent substrate is used as a mask, and a photosensitive resin film provided on this electrode layer is exposed and developed from the back side of the substrate, thereby removing the non-transparent substrate. The convex portion is formed of a photosensitive resin coating on the electrode portion and has a colored coating on the surface which is previously provided on the coating, and is provided with high precision and in a simple process.

本発明による反射型液晶表示素子用の反射型電
極基板の製造工程を以下に第5図a〜cを用いて
説明する。
The manufacturing process of a reflective electrode substrate for a reflective liquid crystal display device according to the present invention will be described below with reference to FIGS. 5a to 5c.

同図aに示すように、通常の方法で、透明基板
21に所定の電極パターンに対応してパターン化
された非透明導電層22を形成する。
As shown in FIG. 5A, a non-transparent conductive layer 22 is formed on a transparent substrate 21 by a conventional method, and is patterned in accordance with a predetermined electrode pattern.

ついで、同図bに示すように、非透明導電層2
2を含む透明基板21の全表面上に電極層22よ
りも厚い所定厚さのネガ型感光性樹脂被膜23を
設け、さらにその上に着色被膜24を設けた後、
透明基板の裏面から矢印25で示すように露光
し、現像し電極層22上の樹脂被膜23と着色被
膜24を除却すれば、同図cに示すように、基板
21の非電極部に感光性樹脂からなり、表面に着
色被膜24′を有する凸部23′が得られる。
Then, as shown in Figure b, a non-transparent conductive layer 2 is formed.
A negative photosensitive resin film 23 having a predetermined thickness thicker than the electrode layer 22 is provided on the entire surface of the transparent substrate 21 including the electrode layer 22, and a colored film 24 is further provided thereon.
If the transparent substrate is exposed to light from the back side as shown by the arrow 25 and developed to remove the resin coating 23 and colored coating 24 on the electrode layer 22, the non-electrode portion of the substrate 21 will become photosensitive, as shown in FIG. A convex portion 23' made of resin and having a colored coating 24' on the surface is obtained.

本発明に用いられる透明基板としては、ガラ
ス、アクリル、ポリエステル、ポリカーボネート
等の無機又は有機の透明性の良い材料が用いられ
る。
As the transparent substrate used in the present invention, inorganic or organic materials with good transparency, such as glass, acrylic, polyester, and polycarbonate, are used.

また、非透明電極としては、Al、Cr、Sn、
Fe、Zn、Au、Ag、Pd、Cu、Pb、Co、Ni等の金
属、導電性の金属酸化物、金属窒化物等を用いる
ことができる。
In addition, non-transparent electrodes include Al, Cr, Sn,
Metals such as Fe, Zn, Au, Ag, Pd, Cu, Pb, Co, and Ni, conductive metal oxides, metal nitrides, and the like can be used.

また、ネガ型感光性樹脂としては、アジドゴム
系、環化ゴム系、ポリケイ皮酸ビニール系、シン
ナミリデン系、アクリロイル系、不飽和ポリエス
テル系、感光性シリコン等の通常のネガ型感光性
樹脂が用いられる。
In addition, as the negative photosensitive resin, ordinary negative photosensitive resins such as azide rubber type, cyclized rubber type, polyvinyl cinnamate type, cinnamylidene type, acryloyl type, unsaturated polyester type, and photosensitive silicone are used. .

また、着色被膜の材料としては、黒色顔料、有
色顔料、金属、金属酸化物、金属炭化物等が用い
られ、これらはそのままあるいは樹脂等に分散又
は溶解した形で、回転塗布法、浸漬法、ロールコ
ート法、スパツタ、蒸着、CVD等により被膜形
成される。この被膜は、使用材料によつても異な
るが、一般的には0.01〜10μm程度の厚さである
ことが好ましい。
In addition, as materials for the colored film, black pigments, colored pigments, metals, metal oxides, metal carbides, etc. are used, and these can be applied as they are or in the form of dispersed or dissolved in resin etc. by spin coating, dipping, roll coating, etc. Films are formed by coating methods, sputtering, vapor deposition, CVD, etc. Although the thickness of this coating varies depending on the material used, it is generally preferable that the thickness is about 0.01 to 10 μm.

さらに、本発明においては、電極の保護および
樹脂を含む基材からの液晶に害を与える物質の浸
出防止のため、上記凸部23′の形成後、着色被
膜24′、電極22上にSiO、SiO2、MgF2
Al2O3、LiO−Sio2等の無機絶縁材料の層を設け
てもよい。
Furthermore, in the present invention, in order to protect the electrodes and prevent substances harmful to the liquid crystal from leaching from the resin-containing base material, after forming the convex portions 23', a colored film 24' and SiO, SiO2 , MgF2 ,
A layer of inorganic insulating material such as Al 2 O 3 or LiO-Sio 2 may also be provided.

以上の工程の後に、電極および着色被膜上また
は無機絶縁層上に液晶垂直配向剤層を設ければよ
い。この垂直配向剤としては、アルキル基を有す
るシラン系カツプリング剤、有機クロム錯体、シ
リコン等があり、配向剤層はフローコート法、浸
漬法、回転塗布法、ロールコート法等の通常の塗
工方法によつて設けられる。
After the above steps, a liquid crystal vertical alignment agent layer may be provided on the electrodes and the colored film or on the inorganic insulating layer. Examples of this vertical alignment agent include a silane coupling agent having an alkyl group, an organic chromium complex, silicon, etc., and the alignment agent layer is coated using normal coating methods such as flow coating, dipping, spin coating, and roll coating. provided by.

以下に本発明の実施例を第5図a〜eを参照し
て詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 5a to 5e.

実施例 1 表面に金属クロム層を蒸着により形成したガラ
ス基板21のクロム層を通常のホトエツチング法
を用いてエツチし、基板21上に所定の平行電極
パターンに対応したクロム電極層22を形成し
(図a)、電極層22を含む基板21の表面上に回
転塗布法により環化ゴム系のネガ型感光性樹脂層
23を厚さ2μに形成し、さらに該樹脂層上に蒸
着法にて1000Åの厚さにクロムからなる着色被膜
24を設け、次いでガラス基板21の裏面から
100W/m2の紫外線により60秒間露光し、キシレ
ンを用いて現像することにより基板21の非電極
部に表面に着色被膜24′を有し高さ2μの透明
樹脂凸起23′と非透明電極22ももつ電極基板
を得た(同図c)。
Example 1 The chromium layer of a glass substrate 21 on which a metallic chromium layer was formed by vapor deposition was etched using a normal photoetching method to form a chromium electrode layer 22 corresponding to a predetermined parallel electrode pattern on the substrate 21 ( In Figure a), a cyclized rubber-based negative photosensitive resin layer 23 is formed to a thickness of 2 μm on the surface of the substrate 21 including the electrode layer 22 by a spin coating method, and then a layer of 1000 Å is further deposited on the resin layer by a vapor deposition method. A colored film 24 made of chromium is provided to a thickness of
By exposing to ultraviolet light of 100 W/m 2 for 60 seconds and developing with xylene, a colored film 24' is formed on the non-electrode part of the substrate 21, and a transparent resin protrusion 23' with a height of 2 μm and a non-transparent electrode are formed. An electrode substrate having 22 electrodes was obtained (FIG. c).

一方、表面に透明導電層をもつたガラス基板の
導電層を前記の電極基板の電極層22と同一の平
行電極パターンに通常の方法で加工し、全体が透
明の電極基板を作つた。
On the other hand, the conductive layer of a glass substrate having a transparent conductive layer on its surface was processed by a conventional method into the same parallel electrode pattern as the electrode layer 22 of the electrode substrate described above, thereby producing an entirely transparent electrode substrate.

前記非透明電極をもつた電極基板と透明電極を
もつた電極基板の電極側の全面に浸漬法によりシ
リコーン系液晶垂直配向剤層を設けた後、両基板
の電極が電極間間隔8μで直交、対向するように
両基板を配置して液晶用セルを作製し、同セル内
にピツチ1.8μのP型コレステリツク液晶を封入
し、記憶型液晶表示素子を作製した。この素子は
非画線部の白濁がなく、さらに凸部表面の着色被
膜により良好な色対比をもつ表示が得られた。
After providing a silicone-based liquid crystal vertical alignment agent layer on the entire surface of the electrode side of the electrode substrate with the non-transparent electrode and the electrode substrate with the transparent electrode by a dipping method, the electrodes of both substrates were perpendicular to each other with an inter-electrode spacing of 8μ. A liquid crystal cell was fabricated by arranging both substrates to face each other, and a P-type cholesteric liquid crystal with a pitch of 1.8 μm was sealed in the cell to fabricate a memory type liquid crystal display element. In this device, there was no clouding in the non-image areas, and a display with good color contrast was obtained due to the colored coating on the surface of the convex portions.

実施例 2 実施例1の反射基板に高さ4μの凸部及びその
上に着色被膜を形成し、10μ厚みのセルを実施例
1と同様にして製造し、液晶としてはE−7
(BDH社製)にKCB15(BDH社製)を5%添加し
たものに、さらに1%のD3(BDH社製、二色性
染料)を加えたものを前記セル内に封入し、セル
の背部に反射板を配置したところ、表示部背景の
着色が小さいポジ型表示可能なゲストホスト型液
晶表示素子が得られた。
Example 2 A convex portion with a height of 4μ and a colored film were formed on the reflective substrate of Example 1, and a cell with a thickness of 10μ was manufactured in the same manner as in Example 1, and the liquid crystal was E-7.
(manufactured by BDH) with 5% of KCB15 (manufactured by BDH) and 1% of D3 (manufactured by BDH, dichroic dye) was sealed in the cell, and the back of the cell was sealed. By arranging a reflective plate in the display area, a guest-host type liquid crystal display element capable of positive type display with little coloration in the background of the display area was obtained.

本発明によれば、特性のすぐれた液晶表示素子
用電極基板を簡単な工程で精度よく製造すること
ができる。
According to the present invention, an electrode substrate for a liquid crystal display element with excellent characteristics can be manufactured with high precision through a simple process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCNT型液晶の光透過強度−印加電圧
特性を示す図、第2図はCNT型液晶セルの記憶
書込の原理説明図、第3図aはX−Yマトリツク
ス表示メモリー素子のX、Y電極交叉部近傍の電
気力線分布を示す図、第3図bは上記X、Y電極
交叉部周辺における両電極間の電圧分布を示す
図、第3図cは同図bのようなX、Y電極間の電
圧分布によりX、Y電極交叉部近傍に出現するフ
オーカルコニツク部を示す図、第4図は本発明に
より得られる電極基板を用いたX−Yマトリツク
ス表示メモリー液晶表示素子のそれぞれ上側電極
基板の非電極部分及び電極部分で切断したところ
を示す部分端面図、第5図は本発明による液晶表
示素子用電極基板の製造工程説明図である。 1,1′……ガラス基板、2,2′……透明電
極、3,3′……垂直配向剤層、4……CNT型液
晶、5……電気力線、6……フオーカルコニツク
部、7,7′……絶縁性凸部、8,8′……着色被
膜、9,9′……電極基板、21……透明基板、
22……非透明電極層、23……ネガ型感光性樹
脂被膜、23′……硬化樹脂凸部、24……着色
被膜、24′……凸部上の着色被膜。
Figure 1 is a diagram showing the light transmission intensity vs. applied voltage characteristics of a CNT type liquid crystal, Figure 2 is a diagram explaining the principle of memory writing in a CNT type liquid crystal cell, and Figure 3a is an X-Y matrix display memory element. , a diagram showing the distribution of electric lines of force near the intersection of the Y electrodes, Figure 3b is a diagram showing the voltage distribution between the two electrodes around the intersection of the X and Y electrodes, and Figure 3c is a diagram similar to Figure 3b. A diagram showing a focal conic region appearing near the intersection of the X and Y electrodes due to the voltage distribution between the X and Y electrodes. FIG. 4 shows an X-Y matrix display memory liquid crystal display element using the electrode substrate obtained by the present invention. FIG. 5 is a partial end view showing the non-electrode portion and the electrode portion of the upper electrode substrate, respectively, and FIG. 5 is an explanatory diagram of the manufacturing process of the electrode substrate for a liquid crystal display element according to the present invention. 1, 1'... Glass substrate, 2, 2'... Transparent electrode, 3, 3'... Vertical alignment agent layer, 4... CNT type liquid crystal, 5... Lines of electric force, 6... Focal conic part , 7, 7'... Insulating convex portion, 8, 8'... Colored coating, 9, 9'... Electrode substrate, 21... Transparent substrate,
22... Non-transparent electrode layer, 23... Negative photosensitive resin coating, 23'... Cured resin protrusion, 24... Colored coating, 24'... Colored coating on the protrusion.

Claims (1)

【特許請求の範囲】[Claims] 1 表面上に所定の電極パターンに対応したパタ
ーンをもつた少なくとも一定波長域の光に不透過
性域を有する導電層からなる電極を設けた透明基
板の該電極を含む面上に所定厚さの前記導電層の
不透過性域に感光波長を有するネガ型感光性樹脂
被膜を設け、さらに該被膜の上に着色被膜を設
け、次いで前記基板の裏面から前記ネガ型感光性
樹脂の感光性樹脂の感光波長を有し、該波長域で
は前記導電層を通過しない光で露光した後、前記
感光性樹脂被膜を現像し、前記基板表面の前記非
透明電極上の前記感光性樹脂被膜を除去すると共
に前記基板の非電極部上に前記感光性樹脂からな
り表面に着色被膜を有する凸部を設けることを特
徴とする液晶表示素子用電極基板の製造方法。
1. A transparent substrate having a predetermined thickness on the surface containing the electrode of a transparent substrate provided with an electrode made of a conductive layer having a pattern corresponding to a predetermined electrode pattern on the surface and having a region opaque to light in at least a certain wavelength range. A negative photosensitive resin coating having a photosensitive wavelength is provided in the impermeable region of the conductive layer, a colored coating is further provided on the coating, and then a photosensitive resin of the negative photosensitive resin is applied from the back side of the substrate. After exposing with light having a photosensitive wavelength and not passing through the conductive layer in the wavelength range, developing the photosensitive resin film and removing the photosensitive resin film on the non-transparent electrode on the surface of the substrate. A method for manufacturing an electrode substrate for a liquid crystal display element, characterized in that a convex portion made of the photosensitive resin and having a colored film on the surface is provided on a non-electrode portion of the substrate.
JP10955580A 1980-08-09 1980-08-09 Production of electrode substrate for liquid crystal display element Granted JPS5734520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10955580A JPS5734520A (en) 1980-08-09 1980-08-09 Production of electrode substrate for liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10955580A JPS5734520A (en) 1980-08-09 1980-08-09 Production of electrode substrate for liquid crystal display element

Publications (2)

Publication Number Publication Date
JPS5734520A JPS5734520A (en) 1982-02-24
JPS6212900B2 true JPS6212900B2 (en) 1987-03-23

Family

ID=14513197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10955580A Granted JPS5734520A (en) 1980-08-09 1980-08-09 Production of electrode substrate for liquid crystal display element

Country Status (1)

Country Link
JP (1) JPS5734520A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149025A (en) * 1984-01-13 1985-08-06 Seiko Epson Corp Liquid crystal display device
JPS6145224A (en) * 1984-08-10 1986-03-05 Alps Electric Co Ltd Manufacture of liquid-crystal display element
JPH05181117A (en) * 1991-12-26 1993-07-23 Semiconductor Energy Lab Co Ltd Dispersed liquid crystal electro-optical device

Also Published As

Publication number Publication date
JPS5734520A (en) 1982-02-24

Similar Documents

Publication Publication Date Title
TW548484B (en) Liquid crystal display device, electronic apparatus and substrate for liquid crystal device
JP2808483B2 (en) Liquid crystal element
US5757451A (en) Liquid crystal display device spacers formed from stacked color layers
US4448491A (en) Image display apparatus
US5526149A (en) Reflection type liquid crystal display device
US5610741A (en) Reflection type liquid crystal display device with bumps on the reflector
JP2782291B2 (en) Ferroelectric liquid crystal color panel
US5721599A (en) Black matrix for liquid crystal display
EP0586145B1 (en) Liquid crystal display device
JP2669609B2 (en) Liquid crystal display device
JP2001305551A (en) Cholesteric liquid crystal display device
JPH0798452A (en) Reflection type liquid crystal display device
JPS6212899B2 (en)
US3897996A (en) Electro-optic display device
JP2010262055A (en) Display element and display
US5521731A (en) Reflective type liquid crystal display device and method of making the same whereby the switching MIM has its first electrode used for signal wiring and its second electrode used as pixel electrodes
JPS6212900B2 (en)
JPH08313726A (en) Active matrix liquid crystal display device and its production
JPH0812350B2 (en) Liquid crystal display
US5595790A (en) Method for forming a reflective surface for a LCD
JPS6212898B2 (en)
JPS6349231B2 (en)
JPH0618874A (en) Reflection type liquid crystal display device
JPH112718A (en) Color filter and color liquid crystal display device
JPH04308816A (en) Reflection type liquid crystal display device and production thereof