JPS6212898B2 - - Google Patents

Info

Publication number
JPS6212898B2
JPS6212898B2 JP10955380A JP10955380A JPS6212898B2 JP S6212898 B2 JPS6212898 B2 JP S6212898B2 JP 10955380 A JP10955380 A JP 10955380A JP 10955380 A JP10955380 A JP 10955380A JP S6212898 B2 JPS6212898 B2 JP S6212898B2
Authority
JP
Japan
Prior art keywords
electrode
substrate
liquid crystal
resist layer
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10955380A
Other languages
Japanese (ja)
Other versions
JPS5734521A (en
Inventor
Makoto Honda
Koji Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP10955380A priority Critical patent/JPS5734521A/en
Publication of JPS5734521A publication Critical patent/JPS5734521A/en
Publication of JPS6212898B2 publication Critical patent/JPS6212898B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、コレステリツク−ネマテイツク相転
移を利用した液晶表示素子用電極基板およびその
製造方法に関する。 液晶表示素子(LCD)は低消費電力、低電圧
駆動、小型、薄型等の利点を生かし、腕時計、電
卓表示等に実用化されている。 LCDの次の応用分野として、各種情報処理端
末、計測用表示等のX−Yマトリツクス型表示や
カラー表示が有望と考えられ、X−Yマトリツク
ス型LCDについてはこれまで種々の方式が報告
されている。これらの中で、メモリー効果を有す
る液晶(記憶型液晶)は、リフレツシユ不要、走
査線数が多くとも駆動可能という特徴がある。ま
たカラー表示液晶は意匠性の付与あるいは見易さ
の向上ができる特徴がある。 コレステリツク−ネマテイツク相転移
(CNT)型液晶は記憶表示、高速書き込み可能の
特徴をもつ方式と、二色性染料を添加したゲスト
ホスト型の方式とに適用されており、本発明の電
極基板は両者に適用できる。 CNT型液晶セルは、垂直配向処理を施した透
明電極基板間にP型ネマテイツク−コレステリツ
ク混合液晶をはさんだ構造になつており、第1図
に示すような光透過強度一印加電圧特性を示す。
第2図は上記の特性を利用した記憶書込の原理説
明図であり、図a,cは印加電圧−時間関係、図
b,dは図a,cのそれぞれに対応する液晶の光
透過強度一時間の関係を示す図である。 第1図、第2図を用いて説明すれば、記憶表示
は第1図に示される印加電圧を取り除いた後に得
られる2種の安定状態、すなわち、比較的透明な
状態Sと不透明な状態Foとを利用して行なわれ
る。 第3図aは従来のX−Yマトリツクス表示を行
なうCNT液晶表示素子の部分断面図の例であ
り、1,1′はガラス基板、2,2′はそれぞれガ
ラス基板1,1′上に設けた透明導電膜からなる
X電極、Y電極、3,3′は電極を含むガラス基
板上に設けた液晶垂直配向層、4はCNT型液晶
である。このようなX−Yマトリツクスによるフ
アインパターンをもつた素子を駆動する場合、
X、Y両電極間にVHより高い電圧が印加された
X、Y電極2,2′の交叉部近傍間には、図aに
矢印5で示すような電気力線分布を生ずる。この
ような電気力線分布をX電極2の方向の断面の電
圧分布で示せば第3図bに示すようになり、X、
Y電極2,2′の交叉部近傍の非電極部に光散乱
するに十分な電圧のかかる部分ができ、第3図c
に示すように画素を回り込む形で光散乱を生じる
F′状態の部分6が出現し、さらに、この散乱部
が経時的に拡大し、定着時にはFo状態になり、
散乱が記憶される欠点があつた。 本発明者らは、液晶セルの厚み方向に液晶のら
せんピツチの少ない方が光散乱強度も記憶効果も
弱い性質を利用して、第4図a及びb(第4図a
及びbはそれぞれ上側電極基板の非電極部分及び
電極部分で切断した部分端面図である。)に示す
ように、それぞれの表面にX、Y電極2,2′を
設けた基板1,1′の電極2,2′側の非電極部に
それぞれ絶縁性の凸部7,7′を設け、さらにそ
の上に着色被膜8,8′を設け、さらに、それぞ
れ電極部2,2′ならびに着色被膜8,8′を含む
基板1,1′の全表面上に液晶の垂直配向層3,
3′を設けてなる2枚の電極基板9,9′をX、Y
電極2,2′が直交して対向するように配置し
て、両者の間にCNT型液晶を挾持させて液晶セ
ルを構成し、一方の電極基板9または9′の非電
極部、すなわち、凸部7または7′上の着色被膜
8又は8′と他方の電極基板9または9′の電極
部、すなわちY電極2′またはX電極2との間の
液晶の厚みをX、Y電極2,2′の交叉部間の液
晶の厚みよりも薄くすることにより、上述した従
来技術の欠点を除去しうることさらに着色被膜を
設けることによりコントラストを向上させうるこ
とを見出し、本発明に到達したものである。この
場合、一般的には、上記非電極部、すなわち、凸
部7,7′上の着色被膜8,8′部分における液晶
の厚みは、CNT型液晶のらせんが記憶効果をも
つピツチ数以下になるようにする。通常の場合、
約3ピツチ以下になるようにすることが望まし
い。また、上記凸部はその原理から、その一部が
電極部に重畳して形成されても上記の効果をもつ
ていることは明らかである。さらに、上記凸部の
高さは、液晶セルの厚さ、駆動電圧、液晶の種
類、液晶セルの製造方法等を考慮して決定され、
通常は0.1〜5μ程度の高さにする。 また、上述のピツチより大きなコレステリツク
相液晶を用い記憶機能を持たない系に、二色性色
素を0.01〜5%程度添加した場合、セル内部で液
晶と二色性染料は電極面にほぼ平行になるため着
色してみえ電圧の印加で、垂直に立つために消色
する。本来この系では背景が着色しているため電
極で消色するネガ表示しか行えないが、本発明の
基板を用いれば、非電極部の液晶厚みをらせんを
形成し得ない厚みまで薄くすることによつて背景
の着色を異ならせてカラーコントラストの高い表
示が行える。凸部は通常0.5〜10μ程度となる
が、この高さは単に液晶層厚みばかりでなく、垂
直配向剤の強さ、液晶のらせんピツチ等を勘案し
て決定される。通常はセル厚みの5分の1から2
分の1になる。 本発明による液晶表示素子用電極基板の製造工
程を以下に第5図を用いて詳細に説明する。 (1) 基板電極パターン化用レジスト層の形成 同図aに示すように、表面に電極形成用導電
層22が設けられた基板21の導電層22上に
所定の電極パターンに対応した導電層エツチン
グ用レジスト層23を設ける。このレジスト層
23は、可溶性の樹脂、無機材料またはそれら
の複合体の層からなり、印刷、光合成あるいは
光分解等の手法を用いて形成される。 (2) 導電層エツチング 同図bに示すように、レジスト層23をマス
クにして導電層22をエツチングし、レジスト
層23の下のみに電極となるパターン化された
導電層22を残す。この場合、エツチング液は
導電層22は溶かすが、レジスト層23および
基板21を溶かさないものである必要があるこ
とは勿論である。 (3) 絶縁性被膜の形成 同図cに示すように、電極22とその上のレ
ジスト層23を埋めるように、基板21の全面
上に絶縁性被膜24を設ける。絶縁性被膜の材
料としては、レジスト層23を溶解するエツチ
ング液に対して耐性があり、かつ、基板21に
対して接着性がある有機または無機の絶縁性物
質であり、この絶縁性物質をレジスト層23の
構成材料に対しては非溶解性である溶媒に溶か
して、フローコート、浸漬、ロールコート、回
転塗布等の方法による塗布するか、あるいは真
空蒸着、スパツタ、化学蒸着等の方法による被
膜形成方法を用いて絶縁性被膜24は形成され
る。 なお、絶縁性被膜24と基板21との接着性
を高めるために、被膜24の形成前に、基板2
1の表面にプライマー、コロナ、プラズマ処理
を施して接着力をより強固にすることもでき
る。また、被膜材料が硬化型物質の場合には、
被膜形成後に熱または光等による硬化処理が施
される。 (4) 着色被の形成 同図dに示すように、絶縁性被膜24の上に
着色被膜25を設ける。着色被膜の材料として
は、黒色顔料、有色顔料、金属、金属酸化物、
金属炭化物等が用いられ、これらはそのままあ
るいは樹脂等に分散又は溶解した形で回転塗布
法、浸漬法、ロールコート法、スパツタ、蒸
着、CVD等により被膜形成される。この被膜
は、使用材料によつても異なるが、一般的には
0.01〜5μm程度の厚さであることが好まし
い。 (5) レジスト層エツチング 同図eに示すように、同図dの行程後、絶縁
性被膜24及び着色被膜25は浸さないが、レ
ジスト層23は溶解するエツチング液により、
レジスト層23を溶解、除去すると同時にその
上面に形成されている薄い絶縁性被膜24及び
その上の着色被膜25をリフトオフし、基板2
1上のパターン化された電極22を露出させ
る。このときのレジストエツチと被膜のリフト
オフのための方法としては、エツチング液中浸
漬処理、浸漬エツチング液中超音波処理、エツ
チング液スプレー処理、エツチング液中でのこ
すり落し処理などが用いられる。 (6) 液晶垂直配向被膜の形成 同図eの工程後、電極22、着色被膜25を
含む基板21の全面上に液晶垂直配向被膜を設
ければ、本発明による液晶表示素子用電極基板
が得られる。この液晶垂直配向被膜用材料とし
ては、アルキル基を有するシラン形カツプリン
グ剤、有機クロム錯体、有機シリコン等があ
り、同被膜はこれら材料の一つを回転塗布法、
浸漬法、ロールコート法等に用いた塗布法によ
つて設けられる。 なお、垂直配向被膜形成前に、電極部の保護
及びイオン等液晶特性に害を及ぼす物質等の影
響を防止するため基板の全面にSiO、SiO2
MgF2、Al2O3、LiO−SiO等からなる無機絶縁
層を予め設けておいてもよい。 以下に本発明の実施例を第5図を参照して説明
する。 実施例 1 表面に透明導電層22をもつた2枚のガラス基
板21の導電層上にポジ型レジスト層をスピンナ
ーコート法に形成し、このレジスト層を通常の方
法で露光、現像して導電層22上に所定の平行電
極パターンに対応したレジスト層23を設け(第
5図a)、このレジスト層23をマスクとして導
電層22をエツチングし、レジスト層23の下の
導電層22のみを残し、それ以外の部分の導電層
を除去してガラス基板21の非電極部表面を露出
させる(第5図b)。ガラス基板21のレジスト
層23側の全表面にアルキルチタン−エポキシ系
プライマーの1%エチルシクロヘキサン溶液でプ
ライマー処理を施した後、熱硬化性シリコーンの
10%エチルシクロヘキサン溶液をスピンナーコー
トし、100℃、20分間の加熱硬化処理を施し、レ
ジスト層23の上面をわずかに覆うに足る厚さの
絶縁性被膜24を形成する(第5図c)。この基
板を酸素プラズマ処理した後、真空蒸着法により
クロムを1000Å設け、着色被膜25を形成する
(第5図d)。つぎに、メチルエチルケトンにより
レジスト層23を溶解、除去する。このとき、レ
ジスト層23上にある薄い絶縁性被膜及び着色被
膜もリフトオフされて同時に除去され、レジスト
層下の電極層22が露出され、電極層22間の非
電極部に高さ1μの絶縁性被膜からなる凸部24
及びその上に厚さ1000Åの着色被膜25が形成さ
れ、本発明の電極基板が得られる(第5図e)。 この2枚の電極基板の電極側の全表面にシリコ
ーン系垂直配向剤の10%メチルエチルケトン溶液
をスピンナーコートして垂直配向被膜を形成した
後、両基板を電極が直交し、かつ電極間隔8μで
対向するように配置した上、通常の方法で液晶セ
ルとし、この液晶セル中にピツチ1.5μのビフエ
ニル系P型コレステリツク液晶を封入し、透過型
マトリツクス表示メモリ液晶表示素子を作製し
た。その仕様と性能測定結果を第1表に示した。
そして、この液晶表示素子は、非電極部の白濁が
無く、着色して色対比の良好なる表示を示した。
The present invention relates to an electrode substrate for a liquid crystal display device that utilizes cholesteric-nematic phase transition, and a method for manufacturing the same. Liquid crystal display devices (LCDs) have advantages such as low power consumption, low voltage drive, small size, and thinness, and have been put to practical use in wristwatches, calculator displays, etc. As the next application field for LCDs, X-Y matrix type displays and color displays for various information processing terminals, measurement displays, etc. are thought to be promising, and various systems for X-Y matrix type LCDs have been reported so far. There is. Among these, liquid crystals having a memory effect (memory liquid crystals) are characterized in that they do not require refreshing and can be driven even with a large number of scanning lines. Furthermore, color display liquid crystals have the characteristic of being able to provide design properties and improve visibility. Cholesteric-nematic phase transition (CNT) type liquid crystals are applied to two types: a type that has the characteristics of memory display and high-speed writing, and a guest-host type type in which a dichroic dye is added. Applicable to A CNT type liquid crystal cell has a structure in which a P-type nematic-cholesteric mixed liquid crystal is sandwiched between vertically aligned transparent electrode substrates, and exhibits a light transmission intensity-applied voltage characteristic as shown in FIG.
Figure 2 is an explanatory diagram of the principle of memory writing using the above characteristics, where figures a and c are applied voltage-time relationships, and figures b and d are light transmission intensities of the liquid crystal corresponding to figures a and c, respectively. It is a figure showing the relationship of one hour. Explaining with reference to FIGS. 1 and 2, the memory display is divided into two stable states obtained after removing the applied voltage shown in FIG. 1: a relatively transparent state S and an opaque state Fo. This is done using the. Figure 3a is an example of a partial cross-sectional view of a CNT liquid crystal display element that performs a conventional X-Y matrix display. 3 and 3' are liquid crystal vertical alignment layers provided on a glass substrate including the electrodes, and 4 is a CNT type liquid crystal. When driving an element with a fine pattern using such an X-Y matrix,
In the vicinity of the intersection of the X and Y electrodes 2 and 2', where a voltage higher than V H is applied between the X and Y electrodes, an electric force line distribution as shown by arrow 5 in FIG. If such an electric force line distribution is shown as a voltage distribution in the cross section in the direction of the X electrode 2, it will be as shown in Figure 3b.
A region where sufficient voltage is applied to scatter light is created in the non-electrode portion near the intersection of the Y electrodes 2 and 2', as shown in Fig. 3c.
Light scattering occurs around the pixel as shown in
A part 6 in the F′ state appears, and this scattering part expands over time and becomes the Fo state at the time of fixation.
There was a drawback that scattering was memorized. The present inventors utilized the property that the smaller the helical pitch of the liquid crystal in the thickness direction of the liquid crystal cell, the weaker the light scattering intensity and the memory effect.
and b are partial end views cut at a non-electrode portion and an electrode portion of the upper electrode substrate, respectively. ), insulating protrusions 7, 7' are provided on the non-electrode parts of the electrodes 2, 2' side of the substrates 1, 1', each having X and Y electrodes 2, 2' on their respective surfaces. Further, colored coatings 8, 8' are provided thereon, and vertically aligned liquid crystal layers 3,
The two electrode substrates 9 and 9' provided with
The electrodes 2 and 2' are arranged to face each other at right angles, and a CNT type liquid crystal is sandwiched between them to form a liquid crystal cell. The thickness of the liquid crystal between the colored film 8 or 8' on the part 7 or 7' and the electrode part of the other electrode substrate 9 or 9', that is, the Y electrode 2' or the X electrode 2, is The present invention was achieved by discovering that the above-mentioned drawbacks of the prior art can be eliminated by making the thickness of the liquid crystal thinner than the thickness of the liquid crystal between the intersections of . be. In this case, the thickness of the liquid crystal in the non-electrode parts, that is, the colored coatings 8 and 8' on the convex parts 7 and 7', is generally equal to or less than the number of pitches at which the helix of the CNT type liquid crystal has a memory effect. I will make it happen. In normal cases,
It is desirable to keep the distance to about 3 pitches or less. Moreover, it is clear from the principle that the above-mentioned convex part has the above-mentioned effect even if it is formed partially overlapping the electrode part. Furthermore, the height of the convex portion is determined by taking into account the thickness of the liquid crystal cell, the driving voltage, the type of liquid crystal, the manufacturing method of the liquid crystal cell, etc.
The height is usually about 0.1 to 5μ. Furthermore, when dichroic dye is added at a rate of 0.01 to 5% to a system that uses cholesteric phase liquid crystals larger than the pitch described above and does not have a memory function, the liquid crystal and dichroic dye become almost parallel to the electrode surface inside the cell. When voltage is applied, the color disappears as it stands vertically. Originally, in this system, since the background is colored, only negative display can be performed by erasing the color with electrodes, but by using the substrate of the present invention, it is possible to reduce the thickness of the liquid crystal in the non-electrode area to a thickness that does not form a spiral. Therefore, a display with high color contrast can be achieved by changing the coloring of the background. The height of the convex portion is usually about 0.5 to 10 μm, but the height is determined not only by the thickness of the liquid crystal layer but also by taking into consideration the strength of the vertical alignment agent, the helical pitch of the liquid crystal, etc. Usually one-fifth to two-fifth of the cell thickness
It becomes 1/1. The manufacturing process of the electrode substrate for a liquid crystal display element according to the present invention will be explained in detail below with reference to FIG. (1) Formation of a resist layer for substrate electrode patterning As shown in Figure a, a conductive layer corresponding to a predetermined electrode pattern is etched on the conductive layer 22 of the substrate 21, the surface of which is provided with the conductive layer 22 for electrode formation. A resist layer 23 is provided. This resist layer 23 is made of a layer of soluble resin, inorganic material, or a composite thereof, and is formed using techniques such as printing, photosynthesis, or photolysis. (2) Etching the conductive layer As shown in FIG. 2B, the conductive layer 22 is etched using the resist layer 23 as a mask, leaving the patterned conductive layer 22 that will become an electrode only under the resist layer 23. In this case, it goes without saying that the etching solution needs to dissolve the conductive layer 22 but not the resist layer 23 and the substrate 21. (3) Formation of an insulating film As shown in FIG. 2c, an insulating film 24 is provided over the entire surface of the substrate 21 so as to fill the electrode 22 and the resist layer 23 thereon. The material for the insulating film is an organic or inorganic insulating substance that is resistant to the etching solution that dissolves the resist layer 23 and has adhesive properties to the substrate 21. For the constituent material of the layer 23, it is dissolved in a solvent that is insoluble and applied by a method such as flow coating, dipping, roll coating, or spin coating, or a coating is applied by a method such as vacuum deposition, sputtering, or chemical vapor deposition. The insulating film 24 is formed using a forming method. Note that in order to improve the adhesion between the insulating film 24 and the substrate 21, the substrate 2
It is also possible to apply primer, corona, or plasma treatment to the surface of 1 to further strengthen the adhesion. In addition, if the coating material is a hardening type substance,
After the film is formed, a curing treatment using heat or light is performed. (4) Formation of colored coating As shown in Figure d, a colored coating 25 is provided on the insulating coating 24. Materials for the colored film include black pigments, colored pigments, metals, metal oxides,
Metal carbides and the like are used, and these can be used as they are or in the form of being dispersed or dissolved in a resin or the like to form a film by spin coating, dipping, roll coating, sputtering, vapor deposition, CVD, or the like. This coating varies depending on the material used, but generally
The thickness is preferably about 0.01 to 5 μm. (5) Resist layer etching As shown in Figure e, after the step in Figure d, the insulating coating 24 and the colored coating 25 are not immersed, but the resist layer 23 is etched by the etching solution that dissolves it.
At the same time as the resist layer 23 is dissolved and removed, the thin insulating film 24 formed on its upper surface and the colored film 25 thereon are lifted off, and the substrate 2 is removed.
1 to expose the patterned electrode 22 on top. Methods for resist etching and film lift-off at this time include immersion treatment in an etching solution, immersion in an etching solution with ultrasonic treatment, etching solution spray treatment, and scraping treatment in an etching solution. (6) Formation of liquid crystal vertical alignment film After the process shown in FIG. It will be done. Materials for this liquid crystal vertical alignment film include silane coupling agents having alkyl groups, organic chromium complexes, organic silicones, etc., and the film is made by coating one of these materials by spin coating.
It is applied by a coating method such as a dipping method or a roll coating method. Before forming the vertical alignment film, SiO, SiO 2 ,
An inorganic insulating layer made of MgF 2 , Al 2 O 3 , LiO-SiO, etc. may be provided in advance. An embodiment of the present invention will be described below with reference to FIG. Example 1 A positive resist layer is formed by a spinner coating method on the conductive layers of two glass substrates 21 having transparent conductive layers 22 on their surfaces, and this resist layer is exposed and developed by a conventional method to form a conductive layer. A resist layer 23 corresponding to a predetermined parallel electrode pattern is provided on 22 (FIG. 5a), and the conductive layer 22 is etched using this resist layer 23 as a mask, leaving only the conductive layer 22 under the resist layer 23. The other portions of the conductive layer are removed to expose the surface of the non-electrode portion of the glass substrate 21 (FIG. 5b). After priming the entire surface of the glass substrate 21 on the resist layer 23 side with a 1% ethylcyclohexane solution of alkyl titanium-epoxy primer, thermosetting silicone
A 10% ethylcyclohexane solution is spinner-coated and heat-cured at 100° C. for 20 minutes to form an insulating film 24 thick enough to slightly cover the upper surface of the resist layer 23 (FIG. 5c). After this substrate is subjected to oxygen plasma treatment, chromium is deposited to a thickness of 1000 Å by vacuum evaporation to form a colored film 25 (FIG. 5d). Next, the resist layer 23 is dissolved and removed using methyl ethyl ketone. At this time, the thin insulating film and colored film on the resist layer 23 are also lifted off and removed at the same time, exposing the electrode layer 22 under the resist layer, and forming an insulating film with a height of 1 μm in the non-electrode portion between the electrode layers 22. Convex portion 24 made of film
A colored film 25 with a thickness of 1000 Å is formed thereon to obtain the electrode substrate of the present invention (FIG. 5e). A 10% methyl ethyl ketone solution of a silicone-based vertical alignment agent is spinner coated on the entire surface of the electrode side of these two electrode substrates to form a vertical alignment film, and then both substrates are placed so that the electrodes are perpendicular to each other and facing each other with an electrode spacing of 8μ. A liquid crystal cell was prepared using a conventional method, and biphenyl-based P-type cholesteric liquid crystal with a pitch of 1.5 μm was sealed in this liquid crystal cell to produce a transmissive matrix display memory liquid crystal display element. Its specifications and performance measurement results are shown in Table 1.
This liquid crystal display element had no clouding in the non-electrode portion, and exhibited a colored display with good color contrast.

【表】 実施例 2 実施例1と同様の方法で、高さ4μの凸部及び
その上に着色被膜を形成し、10μのセルを実施例
1と同様に製造し、液晶としてはE−7(BDH
社製)にCB15(BDH社製)を5%添加したもの
に1%のD3(BDH社製ゲストホスト用二色性染
料)を加えたものを挾持したところ、表示部背景
の着色が小さくなり、ポジ型表示可能なゲストホ
スト型セルを得た。
[Table] Example 2 In the same manner as in Example 1, a convex portion with a height of 4μ and a colored film were formed thereon, and a 10μ cell was manufactured in the same manner as in Example 1, and the liquid crystal was E-7. (BDH
When 5% of CB15 (manufactured by BDH) was added to 5% of CB15 (manufactured by BDH) and 1% of D3 (dichroic dye for guest hosts manufactured by BDH) was held, the coloring of the background of the display area was reduced. , we obtained a guest-host type cell capable of positive display.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCNT型液晶の光透過強度−印加電圧
特性を示す図、第2図はCNT型液晶セルの記憶
書込の原理説明図、第3図aはX−Yマトリツク
ス表示メモリー素子のX、Y電極交叉部近傍の電
気力線分布を示す図、第3図bは上記X、Y電極
交叉部周辺における両電極間の電圧分布を示す
図、第3図cは同図bのようなX、Y電極間の電
圧分布によりX、Y電極交叉部近傍に出現するフ
オーカルコニツク部を示す図、第4図a及びbは
本発明による電極基板を用いたX−Yマトリツク
ス表示メモリー液晶表示素子のそれぞれ上側電極
基板の非電極部分及び電極部分で切断したところ
を示す部分端面図、第5図は本発明による液晶表
示素子用電極基板の製造工程説明図である。 1,1′……ガラス基板、2,2′……透明電
極、3,3′……垂直配向剤層、4……CNT型液
晶、5……電気力線、6……フオーカルコニツク
部、7,7′……絶縁性凸部、8,8′……着色被
膜、9,9′……電極基板、21……基板、22
……透明導電層、23……レジスト層、24……
絶縁性被膜、25……着色被膜。
Figure 1 is a diagram showing the light transmission intensity vs. applied voltage characteristics of a CNT type liquid crystal, Figure 2 is a diagram explaining the principle of memory writing in a CNT type liquid crystal cell, and Figure 3a is an X-Y matrix display memory element. , a diagram showing the distribution of electric lines of force near the intersection of the Y electrodes, Figure 3b is a diagram showing the voltage distribution between the two electrodes around the intersection of the X and Y electrodes, and Figure 3c is a diagram similar to Figure 3b. Figures 4a and 4b show a focal conic region appearing near the intersection of the X and Y electrodes due to the voltage distribution between the X and Y electrodes. FIG. 5 is a partial end view showing the non-electrode portion and the electrode portion of the upper electrode substrate of the device, respectively, and is an explanatory diagram of the manufacturing process of the electrode substrate for a liquid crystal display device according to the present invention. 1, 1'... Glass substrate, 2, 2'... Transparent electrode, 3, 3'... Vertical alignment agent layer, 4... CNT type liquid crystal, 5... Lines of electric force, 6... Focal conic part , 7, 7'... Insulating convex portion, 8, 8'... Colored coating, 9, 9'... Electrode substrate, 21... Substrate, 22
...Transparent conductive layer, 23...Resist layer, 24...
Insulating coating, 25...Colored coating.

Claims (1)

【特許請求の範囲】 1 絶縁性基板の一方の面上に所定の電極パター
ンを有する導電層が設けられている液晶表示素子
用電極基板において、前記基板の前記電極側の面
の非電極部上に絶縁性被膜からなる凸部を設け、
さらに該絶縁性被膜の上に着色被膜を設けたこと
を特徴とする液晶表示素子用電極基板。 2 一方の面上に導電層を設けた絶縁性基板の該
導電層上に所定の電極パターンに対応した所定厚
さの導電層エツチングマスク用レジスト層を設
け、該レジスト層をマスクとして該レジスト層下
以外の前記導電層をエツチングにより除去し、前
記基板の非電極部表面を露出させ、前記基板の前
記レジスト層を含む全面に絶縁性被膜を塗被しさ
らに該絶縁性被膜上に着色被膜を設けた後、該絶
縁性被膜及び着色被膜は侵さないが、前記レジス
ト層は侵すエツチング液を用いて該レジスト層を
溶解除去すると同時に該レジスト層の表面上にあ
る前記絶縁性被膜及び着色被膜をも除去し、前記
基板の前記非電極部上に前記絶縁性被膜からなる
凸部とその上に着色被膜とを設けることを特徴と
する液晶表示素子用電極基板の製造方法。
[Scope of Claims] 1. In an electrode substrate for a liquid crystal display element, in which a conductive layer having a predetermined electrode pattern is provided on one surface of an insulating substrate, on a non-electrode portion of the surface of the substrate on the electrode side. A convex portion made of an insulating film is provided on the
An electrode substrate for a liquid crystal display element, further comprising a colored film provided on the insulating film. 2. A resist layer for a conductive layer etching mask having a predetermined thickness corresponding to a predetermined electrode pattern is provided on the conductive layer of an insulating substrate provided with a conductive layer on one surface, and the resist layer is used as a mask. The conductive layer other than the bottom part is removed by etching to expose the non-electrode surface of the substrate, an insulating film is applied to the entire surface of the substrate including the resist layer, and a colored film is further applied on the insulating film. After the formation, the resist layer is dissolved and removed using an etching solution that does not attack the insulating film and the colored film but does attack the resist layer, and at the same time removes the insulating film and the colored film on the surface of the resist layer. A method for manufacturing an electrode substrate for a liquid crystal display device, characterized in that a convex portion made of the insulating film and a colored film are provided on the non-electrode portion of the substrate.
JP10955380A 1980-08-09 1980-08-09 Electrode substrate for liquid crystal display element and its production Granted JPS5734521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10955380A JPS5734521A (en) 1980-08-09 1980-08-09 Electrode substrate for liquid crystal display element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10955380A JPS5734521A (en) 1980-08-09 1980-08-09 Electrode substrate for liquid crystal display element and its production

Publications (2)

Publication Number Publication Date
JPS5734521A JPS5734521A (en) 1982-02-24
JPS6212898B2 true JPS6212898B2 (en) 1987-03-23

Family

ID=14513151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10955380A Granted JPS5734521A (en) 1980-08-09 1980-08-09 Electrode substrate for liquid crystal display element and its production

Country Status (1)

Country Link
JP (1) JPS5734521A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233427A (en) * 1989-02-02 1991-10-17 Sharp Corp Ferroelectric liquid crystal element

Also Published As

Publication number Publication date
JPS5734521A (en) 1982-02-24

Similar Documents

Publication Publication Date Title
US4712874A (en) Ferroelectric liquid crystal device having color filters on row or column electrodes
JPS6290623A (en) Ferroelectric liquid crystal element
JP2669609B2 (en) Liquid crystal display device
JP2004077697A (en) Liquid crystal display device
JPS6212899B2 (en)
JPH0119132B2 (en)
JPS6212898B2 (en)
JPS63116126A (en) Liquid crystal display device
JPS6212900B2 (en)
TW578027B (en) Liquid crystal display panel, method of producing the same, method of driving the same
JP2535414B2 (en) Liquid crystal display
JP3312151B2 (en) Liquid crystal display
JP2005275215A (en) Electrophoretic display device
JPH03167522A (en) Liquid crystal device fitted with transparent panel heater
JP5038883B2 (en) Liquid crystal display element and driving method thereof
JP2007041374A (en) Manufacturing method of electrode substrate and manufacturing method of liquid crystal display
JPH0120428B2 (en)
JPH06230211A (en) Color filter, its production, color liquid crystal display using the same and method for driving the same
JP4572446B2 (en) Liquid crystal display element
JPH05232452A (en) High-polymer dispersion type liquid crystal display device and its production
JPS61151616A (en) Liquid crystal light valve
JPS6148159B2 (en)
JPH09146123A (en) Two-terminal nonlinear element and its production
JPS58178320A (en) Electrooptic device
JP2010019929A (en) Liquid crystal display and drive method therefor