JPS62127466A - Member deposited with ceramics - Google Patents

Member deposited with ceramics

Info

Publication number
JPS62127466A
JPS62127466A JP60267745A JP26774585A JPS62127466A JP S62127466 A JPS62127466 A JP S62127466A JP 60267745 A JP60267745 A JP 60267745A JP 26774585 A JP26774585 A JP 26774585A JP S62127466 A JPS62127466 A JP S62127466A
Authority
JP
Japan
Prior art keywords
base material
gas
ceramics
ceramic
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60267745A
Other languages
Japanese (ja)
Inventor
Mutsuki Yamazaki
六月 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60267745A priority Critical patent/JPS62127466A/en
Priority to KR1019860009820A priority patent/KR890002162B1/en
Priority to FR8616558A priority patent/FR2590594B1/en
Priority to DE19863640430 priority patent/DE3640430A1/en
Publication of JPS62127466A publication Critical patent/JPS62127466A/en
Priority to US08/064,749 priority patent/US5300951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To develop a sliding member which has excellent adhesiveness to a Fe metallic base material and wear resistance and does not wear the mating material by forming an Fe layer contg. C at a high concn. on the surface of the base material of the sliding member then forming a hard ceramic layer thereon. CONSTITUTION:The ferrous base material 10 consisting of cast iron or free cutting steel as the member such as the shaft of a compressor sliding at a high speed is hung to the center of a cylindrical electrode 4 in a cylindrical reaction chamber 1 and a cylindrical diffusion member 5 is disposed on the outside thereof. After the inside of the reaction chamber 1 is evacuated to a reduced pressure, carboneceous gas such as CH4 or C2H6 is introduced into the chamber from a gas inlet 3 and a high-frequency voltage is impressed between the base material 10 and the electrode 4 to generate plasma by which the surface of the material 10 is carbonized. Gas such as SiH4, NH3 or BF3 is then introduced together with gaseous Ar into the furnace and the plasma discharge is executed in the same manner as in the previous time to form the hard ceramic layer of SiC, B4C, SiN, BN, etc., on the surface of the material 10. The sliding member having the excellent sliding characteristic is thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、高速で摺動する部材等に好適のセラミック
スが被着された部材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a member coated with ceramics suitable for a member that slides at high speed.

〔従来の技術] 例えば、コンプレッサのシャフト、エンジンのカムシャ
フト、レーザプリンタのレーザスキャナ、及びプリンタ
のガイドロッド等のように、高速で摺動を受ける部材は
、摩耗しやすく、この8速被摺動部材の摩耗が装置の寿
命及び性能に大きな影響を及ぼしている。このため、こ
のような^速波摺動部材には、高速度鋼及び超硬合金等
の硬くて摩耗し難い材料が使用されている。しかし、こ
れらの材料は、材料費及び加工費が高いために、コスト
が高くなることを回避せざるを得ない場合には、鋳鉄又
は快削鋼等の比較的低廉な材料を使用し、その表面を硬
化させたり、潤滑性を付与する等の対策がとられている
。また、TiN及びTIC等の高硬度のセラミックスを
被覆して切削工具の耐摩耗性を向上させた技術も提案さ
れている。
[Prior Art] For example, members that are subjected to sliding at high speed, such as the shaft of a compressor, the camshaft of an engine, the laser scanner of a laser printer, and the guide rod of a printer, are susceptible to wear. Wear of moving parts has a significant impact on equipment life and performance. For this reason, hard and wear-resistant materials such as high-speed steel and cemented carbide are used for such high-speed wave sliding members. However, these materials have high material costs and processing costs, so if it is necessary to avoid higher costs, use relatively inexpensive materials such as cast iron or free-cutting steel. Measures are being taken to harden the surface and add lubricity. Furthermore, a technique has been proposed in which cutting tools are coated with high-hardness ceramics such as TiN and TIC to improve the wear resistance of cutting tools.

[発明が解決しようとする問題点] しかしながら、表面硬化処理には焼入れがあり、11!
l1fl性付与処理にはタフトライド処理、バーコ処理
又は黒染め二硫化モリブデンの塗布処理等があるが、い
ずれの処理も、高加重が印加され、高速回転する苛酷な
条件下では、充分な耐久性を得ることができない。
[Problems to be solved by the invention] However, surface hardening treatment includes quenching, and 11!
Treatments for imparting l1fl properties include tuftride treatment, Varco treatment, and coating treatment with black-dyed molybdenum disulfide, but all of these treatments have sufficient durability under harsh conditions of high load and high speed rotation. can't get it.

また、焼き入れ及びタフトライド処理においては、処理
温度が500℃以上と高いので、処理中に母材の変形が
生じるおそれがあり、高い寸法精度を要求される部材に
はこれらの処理を適用することができない。
In addition, in hardening and tuftride treatments, the processing temperature is as high as 500°C or higher, so there is a risk of deformation of the base material during the treatment, so these treatments should not be applied to parts that require high dimensional accuracy. I can't.

更に、TiN又はTICを高速被摺動部材に被覆すると
、これらのセラミックスの硬度が高いために、摺動する
相手方の摺動部材を研削してしまい、この研削屑がセラ
ミックス被膜の上に凝着して焼き付くという問題点があ
る。
Furthermore, if TiN or TIC is coated on a high-speed sliding member, the hardness of these ceramics is high, so the sliding member on the other side will be ground, and this grinding debris will adhere to the ceramic coating. There is a problem that it gets burned in.

この発明はかかる事情に鳳みてなされたものであって、
母材に対する接着性が轟く、耐摩耗性が優れていると共
に、摺動する相手方部材を研削してしまうことがなく、
焼付の発生が抑制されたセラミックスが被着された部材
を提供することを目的とする。
This invention was made in light of these circumstances, and
It has excellent adhesion to the base material, excellent wear resistance, and does not grind the sliding mating member.
It is an object of the present invention to provide a member coated with ceramics in which the occurrence of seizure is suppressed.

[問題点を解決するための手段1 この発明に係るセラミックスが被着された部材は、鉄を
主成分とする母材と、この母材の表面に炭素を^濃度で
含有する鉄の層を形成した後母材に被着され主成分が珪
素又は硼素のセラミックス層とを有することを特徴とす
る。
[Means for Solving the Problems 1] A member to which the ceramic according to the present invention is adhered has a base material whose main component is iron, and an iron layer containing a high concentration of carbon on the surface of this base material. It is characterized by having a ceramic layer whose main component is silicon or boron and which is adhered to the base material after being formed.

[作用〕 本願発明者は、硬度が高く、耐摩耗性が優れていると共
に、相手方の摺動材を研削してしまうことがないセラミ
ックス材料を開発すべく種々検討した結果、珪素又は硼
素を主成分とするセラミックスが、このような要求を充
分満足することを見出した。また、このようなセラミッ
クス材料は、スパッタリング、プラズマCVD、イオン
ブレーティング等により母材に被着させることができる
が、処理温度が200乃至300℃と比較的低いため、
処理中の母材の変形を抑制することができ、高精度を要
求される部材にもこれらのセラミックスを被着させるこ
とができる。
[Function] As a result of various studies aimed at developing a ceramic material that has high hardness, excellent wear resistance, and does not grind the mating sliding material, the inventor of the present application has developed a ceramic material that is mainly made of silicon or boron. It has been found that the ceramic component satisfies these requirements. Furthermore, such ceramic materials can be deposited on the base material by sputtering, plasma CVD, ion blating, etc., but since the processing temperature is relatively low at 200 to 300°C,
Deformation of the base material during processing can be suppressed, and these ceramics can also be applied to members that require high precision.

しかしながら、これらのセラミックスは、母材との接着
性がTiN及びTiCよりも劣るという欠点がある。特
に、母材がコンプレッサシャフト等のように鋳鉄である
場合に、これらのセラミックスを成膜することは事実上
困難である。
However, these ceramics have the disadvantage that their adhesion to the base material is inferior to TiN and TiC. In particular, when the base material is cast iron such as a compressor shaft, it is practically difficult to form a film with these ceramics.

本願発明者は、鉄を主成分とする母材に、これらのセラ
ミックスを安定して容易に被着させるべく種々実験研究
を繰返した結果、母材の表面に炭素濃度が高い高炭素濃
度領域を形成しておくことによって、これらのセラミッ
クスを高接着性で被着させることができることを見出し
た。本願発明は、このような研究結果に基いてなされた
ものである。
The inventor of the present application repeatedly conducted various experimental studies in order to stably and easily adhere these ceramics to a base material whose main component is iron, and as a result, the inventor of the present invention created a high carbon concentration region on the surface of the base material. It has been found that by forming these ceramics in advance, these ceramics can be deposited with high adhesion. The present invention was made based on such research results.

なお、耐摩耗性が高いと共に、相手方の摺動部材を研削
してしまうことがないセラミックスとしては、窒化珪素
(SiN)、窒化硼素(BN)、炭化珪素(S + C
) 、炭化硼素(BC) 、酸化珪素(Sin)、炭窒
化珪素(S i CX NY ) 、炭窒化硼素(BC
X NY ) 、又は炭酸化珪素(S i CX OY
 )等がある。これらのセラミックスは、スパッタリン
グ、イオンブレーティング、プラズマCvD、熱CVO
,光CVD、等の方法により製造することができるが、
母材との接着性及び一層の低温処理が可能という点を考
慮すると、プラズマCVDが好ましい。
Ceramics that have high wear resistance and do not grind the opposing sliding member include silicon nitride (SiN), boron nitride (BN), and silicon carbide (S+C).
), boron carbide (BC), silicon oxide (Sin), silicon carbonitride (S i CX NY ), boron carbonitride (BC
X NY ), or silicon carbonate (S i CX OY
) etc. These ceramics can be manufactured by sputtering, ion blating, plasma CVD, thermal CVO
, photo-CVD, etc.
Plasma CVD is preferred in view of its adhesion to the base material and the possibility of lower temperature treatment.

[実施例] 以下、添附の図面を参照してこの発明の実施例について
説明する。この実施例に係るセラミックスが被着された
部材は、以下のようにして製造される。先ず、鋳鉄又は
快削鋼等のブロックからロータリコンプレッサのシャフ
ト又はプリンタのキャリッジガイド等の所定の形状に加
工成形して母材を得る。次いで、この母材の表面を炭化
処理して表層部に炭素を高濃度で含有する領域を形成す
る。その後、SiN等のセラミックスをffl材の表面
にコーティングする。このようにして製造されたシャフ
ト又はキャリッジガイドは、鉄を主成分とする母材の表
面がSiN等のセラミックスで被1されている。このた
め、このような部材に摺動部材が高速で摺動しても、摩
耗が抑制されると共に、摺動部材を研削してしまうこと
もない。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The ceramic-covered member according to this example is manufactured as follows. First, a base material is obtained by processing and forming a block of cast iron or free-cutting steel into a predetermined shape, such as a shaft of a rotary compressor or a carriage guide of a printer. Next, the surface of this base material is carbonized to form a region containing a high concentration of carbon in the surface layer. Thereafter, the surface of the ffl material is coated with ceramics such as SiN. In the shaft or carriage guide manufactured in this way, the surface of the base material whose main component is iron is covered with ceramics such as SiN. Therefore, even if the sliding member slides on such a member at high speed, wear is suppressed and the sliding member is not ground.

次ぎに、第1図を参照して、この実施例に係るセラミッ
クスが被着された部材をプラズマCVD法により製造す
る方法について説明する。円筒状の反応室1は適宜の支
持台上にその軸方向を鉛直にして支持されていると共に
、絶縁体2を介して電気的に浮かせである。反応室1内
は、メカニカルブースタポンプ及び油回転ポンプ(図示
せず)等により排気され、約10−3 トルの真空度に
保持されるようになっている。反応室1内には、ガス導
入口3を介して種々の原料ガスが導入される。
Next, with reference to FIG. 1, a method of manufacturing a member coated with ceramics according to this embodiment by plasma CVD will be described. A cylindrical reaction chamber 1 is supported on a suitable support with its axial direction vertical, and is electrically suspended via an insulator 2. The inside of the reaction chamber 1 is evacuated by a mechanical booster pump, an oil rotary pump (not shown), etc., and is maintained at a vacuum level of about 10 −3 Torr. Various raw material gases are introduced into the reaction chamber 1 through a gas inlet 3 .

円筒状の1!1fI4が反応v1内にその周壁に対して
同軸的に設置されており、この電極4と反応室1の周壁
との間に円筒状の拡散部材5が電極4に同軸的に設置さ
れている。この11fi4及び拡散部材5には、夫々複
数個のガス通流孔6及び7が開設されており、ガス導入
口3を介して反応室1内に導入されたガスは、拡散部材
5のガス通流孔7及び電極4のガス通流孔6を通過して
反応室1の中心部に供給される。これにより、ガスは反
応室1の中心部に均一に拡散して供給される。電極4及
び拡散部材5は反応室1と同一の電位にあり、電極4等
は高周波型[8に接続されていて、電極4に高周波電力
が印加されるようになっている。
A cylindrical 1!1fI4 is installed in the reaction v1 coaxially with respect to its peripheral wall, and a cylindrical diffusion member 5 is installed coaxially with the electrode 4 between this electrode 4 and the peripheral wall of the reaction chamber 1. is set up. A plurality of gas flow holes 6 and 7 are opened in this 11fi4 and the diffusion member 5, respectively, and the gas introduced into the reaction chamber 1 through the gas introduction port 3 is passed through the gas flow through the diffusion member 5. The gas passes through the flow hole 7 and the gas flow hole 6 of the electrode 4 and is supplied to the center of the reaction chamber 1 . Thereby, the gas is uniformly diffused and supplied to the center of the reaction chamber 1. The electrode 4 and the diffusion member 5 are at the same potential as the reaction chamber 1, and the electrode 4 and the like are connected to a high frequency type [8, so that high frequency power is applied to the electrode 4.

反応室1の中心には、母材1oが、その軸方向を鉛直に
して電極4の軸心に配設されている。反応室1の天板上
には、絶縁体2を介して支持部材11が設置されており
、この支持部材11は接地されている。母材10はこの
、支持部材11に懸架されて反応室1内に装入されてい
る。母材10も支持部材11と同様に接地されているか
ら、高周波1a8から電極4に高周波電力が印加される
と、1fffi4と母材10との間に、プラズマ放電が
生起される。
At the center of the reaction chamber 1, a base material 1o is arranged at the axial center of the electrode 4 with its axial direction being vertical. A support member 11 is installed on the top plate of the reaction chamber 1 via an insulator 2, and this support member 11 is grounded. The base material 10 is suspended from the support member 11 and inserted into the reaction chamber 1. Since the base material 10 is also grounded like the support member 11, when high frequency power is applied to the electrode 4 from the high frequency 1a8, plasma discharge is generated between the 1fffi4 and the base material 10.

このように構成される装置により、先ず、母材の表面を
炭化させ、表層部に炭素を高濃度で含有する領域を形成
する。つまり、反応室1内を約10−3トルに排気した
後、ポンプによる排気を継続しつつ、ガス導入口3を介
してCF4ガス又はCH4ガス等の炭素を含有するガス
を反応室1内に導入し、反応室1内を、例えば、1トル
の圧力に調節する。次いで、電極4と母材10との間に
高周波電力を印加してプラズマを生起すると、母材10
の表面が炭化する。この場合に、炭素を含有するガスの
みでプラズマを生起すると、プラズマにより炭素が重合
して形成される膜が母材の表面に何者するおそれがある
。この膜が柔かいものであると、次順の工程で形成され
るセラミックスの層が剥離しやすくなり好ましくない。
Using the apparatus configured as described above, first, the surface of the base material is carbonized to form a region containing a high concentration of carbon in the surface layer. In other words, after the inside of the reaction chamber 1 is evacuated to about 10-3 Torr, a gas containing carbon such as CF4 gas or CH4 gas is introduced into the reaction chamber 1 through the gas inlet 3 while continuing the evacuation by the pump. and the pressure inside the reaction chamber 1 is adjusted to, for example, 1 torr. Next, when high frequency power is applied between the electrode 4 and the base material 10 to generate plasma, the base material 10
The surface of is carbonized. In this case, if plasma is generated only with a gas containing carbon, there is a risk that a film formed by polymerization of carbon due to the plasma will be deposited on the surface of the base material. If this film is soft, the ceramic layer formed in the next step will easily peel off, which is undesirable.

このため、反応空白に、炭素を含有するガスの外に、A
rガス、Heガス、又はN2ガス等のガスを導入し、こ
れらの混合ガスによりプラズマを生起することが好まし
い。このArガス等の混合により、炭素の重合が生じ難
くなり、炭素と鉄との間の反応が進行しやすくなるから
である。この混合ガスとしては、特に、不活性であり、
イオン化エネルギが大きいという点で、Arガスが好ま
しい。一般的な炭化処理条件の一例を下記に示す。
For this reason, in the reaction blank, in addition to the carbon-containing gas, A
It is preferable to introduce a gas such as r gas, He gas, or N2 gas, and generate plasma with a mixture of these gases. This is because the mixture of Ar gas and the like makes it difficult for carbon to polymerize and facilitates the progress of the reaction between carbon and iron. This mixed gas is particularly inert,
Ar gas is preferable because it has high ionization energy. An example of general carbonization treatment conditions is shown below.

CH4ガス流量: 50SCCM Arガス流量:300SCCM 反応圧力(真空度):1.Oトル 高周波型カニ500W 処理笥間:30分 なお、この炭化処理において、母材を予め加熱しておい
てもよいが、プラズマが生起されると、このプラズマに
よって母材が加熱されるので、必ずしも格別の加熱手段
を設けることは必要ない。
CH4 gas flow rate: 50SCCM Ar gas flow rate: 300SCCM Reaction pressure (degree of vacuum): 1. O Tor high frequency type crab 500W Processing time: 30 minutes In addition, in this carbonization treatment, the base material may be heated in advance, but when plasma is generated, the base material is heated by this plasma, so It is not necessarily necessary to provide special heating means.

また、炭素の供給源としては、上述のガスに限らず、固
体を使用してもよい。この場合には、この炭素を含有す
る固体から、Arのプラズマで炭素をたたき出すように
すればよい。
Furthermore, the carbon supply source is not limited to the above-mentioned gases, but solids may also be used. In this case, carbon may be ejected from the carbon-containing solid using Ar plasma.

この炭化処理に続いて、反応室1内にコーティングすべ
きセラミックスの構成元素を含有するガスを導入し、表
面が炭化した母材にセラミックスをコーティングする。
Following this carbonization treatment, a gas containing constituent elements of the ceramic to be coated is introduced into the reaction chamber 1, and the base material whose surface has been carbonized is coated with the ceramic.

コーティングすべきセラミックスがSiを主成分とする
場合には、S i H4ガス又は5i2Hsガス等の3
iを含有するガスに、窒化物であるときはN2ガス又は
NH3ガス等のNを含有するガスを混合し、炭化物であ
るときはCH4ガス又はC2H6ガス等のCを含有する
ガスを混合し、酸化物であるときは02ガス又はN20
ガス等のOを含有するガスを混合する。
When the ceramic to be coated has Si as a main component, 3-Si H4 gas or 5i2Hs gas, etc.
When the gas is a nitride, a gas containing N such as N2 gas or NH3 gas is mixed with the gas containing i, and when it is a carbide, a gas containing C such as CH gas or C2H6 gas is mixed, 02 gas or N20 when it is an oxide
A gas containing O such as gas is mixed.

コーティングすべきセラミックスが8を主成分とする場
合には、Slを含有するガスの替りに、BF3ガス又は
82 H6ガス等の8を含有するガスを使用すればよい
。5iCxNyを成膜するためには、S i H4ガス
とN2ガスの外に、CH4ガスを適量加える。また、S
 i CX OYを成膜するためには、SiH4ガスと
02ガス又はN20ガスとの混合ガスにCH4ガスを加
えればよい。
When the ceramic to be coated has 8 as a main component, a gas containing 8 such as BF3 gas or 82 H6 gas may be used instead of a gas containing Sl. In order to form a film of 5iCxNy, an appropriate amount of CH4 gas is added in addition to S i H4 gas and N2 gas. Also, S
In order to form a film of i CX OY, CH4 gas may be added to a mixed gas of SiH4 gas and 02 gas or N20 gas.

次ぎに、このセラミックスのコーティング条件及び成膜
されたセラミックスの層厚の代表例について説明する。
Next, typical examples of the ceramic coating conditions and the layer thickness of the ceramic film formed will be described.

(a)SiNの場合 S i H4ガス8m: 100SCCMN2ガス流量
:300SCCM 反応圧カニi、oトル 高周波筒カニ 500W 成膜時間:30分 層厚:約3μm (b) S i Cの場合 SiH+ガス流量: 100SCCM CH4ガス流量:300SCCM 反応圧カニi、oトル 高周波筒カニ500W 成膜時間:30分 層厚:約3μm (C)BNの場合 8F3ガス流量: 100SCCM N2ガス流鳳: 300SCCM 反応圧カニ1.Oトル 高周波筒カニ500W 成膜時III:30分 層厚:約3μm (d)SiOの場合 S+H4ガス流1:1001005 ccガス流1300sccM 反応圧カニ1.Oトル 高周波筒カニ500W 成膜時間:30分 層厚:約3μm 上述の如くして製造されたセラミックスが被着された部
材は、セラミックスが高強度で被着されており、耐摩耗
性が^い。上述の各成膜条件で、ロータリコンプレッサ
用のシャフトを製造し、このシャフトに対し、1000
0R,P、Mの回転数で30分間連続運転し、次いで1
0分間停止した後、再度30分間運転するというモード
で1000時間の耐久試験を実施した。上記(a)乃至
(d)に示す各セラミックスをコーティングしたシャフ
トは、いずれも、摩耗による焼付を発生させず、層が剥
離することもなく、極めて耐久性が高いことが実証され
た。
(a) For SiN SiH4 gas 8m: 100SCCMN2 gas flow rate: 300SCCM Reaction pressure 1,000 liters High frequency cylinder 500W Film forming time: 30 minutes Layer thickness: Approx. 3μm (b) For SiC SiH + gas flow rate : 100SCCM CH4 gas flow rate: 300SCCM Reaction pressure I, Otor high frequency cylinder 500W Film forming time: 30 minutes Layer thickness: Approximately 3 μm (C) For BN 8F3 gas flow rate: 100SCCM N2 gas flow rate: 300SCCM Reaction pressure 1 .. Otor high frequency tube crab 500W Film forming time III: 30 minutes Layer thickness: Approximately 3 μm (d) For SiO S+H4 gas flow 1: 1001005 cc gas flow 1300sccM Reaction pressure crab 1. O-tor high frequency tube crab 500W Film forming time: 30 minutes Layer thickness: Approximately 3 μm The ceramics produced as described above are coated with high strength ceramics and have excellent wear resistance. stomach. A shaft for a rotary compressor was manufactured under each film forming condition described above, and 1000
Continuously operate for 30 minutes at rotation speeds of 0R, P, M, then 1
A 1000 hour durability test was conducted in a mode in which the machine was stopped for 0 minutes and then operated again for 30 minutes. It has been demonstrated that the shafts coated with each of the ceramics shown in (a) to (d) above do not cause seizure due to wear or peeling of the layers, and are extremely durable.

なお、この実施例は、母材表面の炭化及びセラミックス
のコーティングをプラズマCVDにより実施しているが
、これに限らず、前述の如く、スパッタリング又はイオ
ンブレーティング等の他の手段を使用してもよい。
In this example, carbonization of the surface of the base material and coating of ceramics are performed by plasma CVD, but the method is not limited to this, and as described above, other methods such as sputtering or ion blasting may also be used. good.

[発明の効果] この発明によれば、鉄を主成分とする母材に対してもセ
ラミックス層が高接着性で接着されており、耐摩耗性が
優れた部材を得ることができる。
[Effects of the Invention] According to the present invention, a ceramic layer is adhered with high adhesiveness even to a base material whose main component is iron, and a member with excellent wear resistance can be obtained.

この部材は、摺動する相手部材を研削してしまうことが
なく、焼付の発生が防止される。
This member does not grind the mating member on which it slides, and the occurrence of seizure is prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係るセラミックスが被着さ
れた部材の製造装置を示す断面口である。 1;反応室、2:絶縁体、4;電極、8;高周波電源、
10;母材
FIG. 1 is a cross-sectional view showing an apparatus for manufacturing a member coated with ceramics according to an embodiment of the present invention. 1; reaction chamber, 2: insulator, 4; electrode, 8; high frequency power supply,
10; Base material

Claims (5)

【特許請求の範囲】[Claims] (1)鉄を主成分とする母材と、この母材の表面に炭素
を高濃度で含有する鉄の層を形成した後母材に被着され
主成分が珪素又は硼素のセラミックス層とを有すること
を特徴とするセラミックスが被着された部材。
(1) A base material whose main component is iron, and a ceramic layer whose main component is silicon or boron, which is adhered to the base material after forming a layer of iron containing a high concentration of carbon on the surface of this base material. A member coated with ceramics, characterized by comprising:
(2)前記炭素を高濃度に含有する鉄の層は、グロー放
電により形成することを特徴とする特許請求の範囲第1
項に記載のセラミックスが被着された部材。
(2) The iron layer containing a high concentration of carbon is formed by glow discharge.
A member coated with the ceramics described in 2.
(3)前記セラミックス層は、グロー放電により形成す
ることを特徴とする特許請求の範囲第1項に記載のセラ
ミックスが被着された部材。
(3) A member coated with ceramics according to claim 1, wherein the ceramic layer is formed by glow discharge.
(4)前記セラミックスは、窒化珪素、窒化硼素、炭化
珪素、炭化硼素、酸化珪素、炭窒化珪素、炭窒化硼素、
又は炭酸化珪素から選択されたものであることを特徴と
する特許請求の範囲第1項に記載のセラミックスが被着
された部材。
(4) The ceramics include silicon nitride, boron nitride, silicon carbide, boron carbide, silicon oxide, silicon carbonitride, boron carbonitride,
A member coated with a ceramic according to claim 1, characterized in that the ceramic is selected from the group consisting of silicon carbonate and silicon carbonate.
(5)前記セラミックスは、水素又はハロゲン元素の少
なくとも一方を含有することを特徴とする特許請求の範
囲第1項に記載のセラミックスが被着された部材。
(5) A member coated with a ceramic according to claim 1, wherein the ceramic contains at least one of hydrogen and a halogen element.
JP60267745A 1985-11-28 1985-11-28 Member deposited with ceramics Pending JPS62127466A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60267745A JPS62127466A (en) 1985-11-28 1985-11-28 Member deposited with ceramics
KR1019860009820A KR890002162B1 (en) 1985-11-28 1986-11-20 Sliding members coated ceramic and a method for manufacture thereof
FR8616558A FR2590594B1 (en) 1985-11-28 1986-11-27 MECHANICAL ELEMENT CARRYING ANTI-WEAR CERAMIC COATING AND ITS MANUFACTURE.
DE19863640430 DE3640430A1 (en) 1985-11-28 1986-11-27 WORKPIECE COATED WITH A CERAMIC MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
US08/064,749 US5300951A (en) 1985-11-28 1993-05-18 Member coated with ceramic material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60267745A JPS62127466A (en) 1985-11-28 1985-11-28 Member deposited with ceramics

Publications (1)

Publication Number Publication Date
JPS62127466A true JPS62127466A (en) 1987-06-09

Family

ID=17448982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60267745A Pending JPS62127466A (en) 1985-11-28 1985-11-28 Member deposited with ceramics

Country Status (1)

Country Link
JP (1) JPS62127466A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049600A1 (en) * 1996-06-21 1997-12-31 Walter Hunger Coupling device for connecting a towing vehicle to a semi-trailer, and process for the modification of coupling devices
JP2009084579A (en) * 2001-09-27 2009-04-23 Toyota Central R&D Labs Inc High-friction sliding member
JP5091667B2 (en) * 2005-03-31 2012-12-05 国立大学法人九州工業大学 Surface-treated metal products

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179644A (en) * 1974-12-16 1976-07-12 Suwa Seikosha Kk TOKEI YOGA ISOBUHIN
JPS558584A (en) * 1978-05-09 1980-01-22 Foster Wheeler Corp Gas permissible screen construction for steamer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179644A (en) * 1974-12-16 1976-07-12 Suwa Seikosha Kk TOKEI YOGA ISOBUHIN
JPS558584A (en) * 1978-05-09 1980-01-22 Foster Wheeler Corp Gas permissible screen construction for steamer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049600A1 (en) * 1996-06-21 1997-12-31 Walter Hunger Coupling device for connecting a towing vehicle to a semi-trailer, and process for the modification of coupling devices
JP2009084579A (en) * 2001-09-27 2009-04-23 Toyota Central R&D Labs Inc High-friction sliding member
JP5091667B2 (en) * 2005-03-31 2012-12-05 国立大学法人九州工業大学 Surface-treated metal products

Similar Documents

Publication Publication Date Title
US5300951A (en) Member coated with ceramic material and method of manufacturing the same
KR100404006B1 (en) Amorphous hard carbon film, mechanical parts and method for producing amorphous hard carbon film
JP4653964B2 (en) DLC film forming method and DLC film-formed product
EP1702998B1 (en) amorphous-carbon coated member
EP2383366B1 (en) Method for producing diamond-like carbon membrane
WO2006057436A1 (en) Amorphous carbon film, process for forming the same, and high wear-resistant sliding member with amorphous carbon film provided
EP1380667A1 (en) Carbon film-coated article and method of producing the same
JP2006291355A (en) Amorphous-carbon coated member
JPS62127466A (en) Member deposited with ceramics
KR890002162B1 (en) Sliding members coated ceramic and a method for manufacture thereof
JPH1192934A (en) Hard carbon thick coating and its production
JPS62127467A (en) Member deposited with ceramics and its production
JPH0994911A (en) Rigid carbon film molded product
JP5772757B2 (en) Method and apparatus for forming amorphous hard carbon film
JP4612147B2 (en) Amorphous hard carbon film and method for producing the same
JP2011026660A (en) Sliding member and method for producing the same
JPS62222071A (en) Production of member deposited with ceramics
US9909217B2 (en) Pump used in gasification system
JPS62127468A (en) Member deposited with ceramics and its production
JPS62222070A (en) Member deposited with ceramics
JPH06221437A (en) Piston ring and its formation
JP2002348668A (en) Amorphous hard carbon film and manufacturing method therefor
JP2852380B2 (en) Method for forming carbon or carbon-based coating
JPS62222068A (en) Production of member deposited with ceramics
JPS62256964A (en) Ceramics-coated member