JPS62126642A - Amorphous compound semiconductor - Google Patents

Amorphous compound semiconductor

Info

Publication number
JPS62126642A
JPS62126642A JP60268226A JP26822685A JPS62126642A JP S62126642 A JPS62126642 A JP S62126642A JP 60268226 A JP60268226 A JP 60268226A JP 26822685 A JP26822685 A JP 26822685A JP S62126642 A JPS62126642 A JP S62126642A
Authority
JP
Japan
Prior art keywords
amorphous
composition
compound semiconductor
gap
miscibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60268226A
Other languages
Japanese (ja)
Other versions
JPH0831486B2 (en
Inventor
Meiji Takabayashi
明治 高林
Masayuki Iida
誠之 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60268226A priority Critical patent/JPH0831486B2/en
Publication of JPS62126642A publication Critical patent/JPS62126642A/en
Publication of JPH0831486B2 publication Critical patent/JPH0831486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve thermal stability of III-V and II-VI compound semiconductors, which have, e.g., an amorphous phase with low thermal stability, by constituting an amorphous compound semiconductor with a composition in a miscibility gap appearing in a mixed crystal of two kinds of compounds or in the vicinity of said gap. CONSTITUTION:An amorphous compound semiconductor ZnSxO1-x becomes an amorphous state depending on a composition (x). The amorphous material ZnSxO1-x is hard to crystallize in heat treatment. As embodiments of mixed crystals other than ZnSxO1-x, e.g., GaAsxSb1-x and InPxSb1-x can be considered as III-V compound semiconductors. A distance between bondings of GaAs and GaSb is as large as 7.5%. In this mixed crystal, a miscibility gap is present in the composition in the vicinity of the intermediate part, i.e., in the vicinity of x=0.5. The difference in distance between the bondings of InP and InSb is also as large as 9.9%. The miscibility gas is present in the composition close to InP.

Description

【発明の詳細な説明】 本発明は非晶質化合物半導体に関する。[Detailed description of the invention] The present invention relates to amorphous compound semiconductors.

〔従来の技術〕[Conventional technology]

所謂アモルファスシリコンをはじめとする非晶質半導体
は、使用する基体の選択幅が広く、経済性に優れ、また
組成を連続的に変え所望する特性を選択Φ発現させるこ
とができる、など多くの利点を有しているため、近年例
えば太陽電池、薄膜トランジスタ、感光体などに応用さ
れ、注目を集めている。
Amorphous semiconductors, including so-called amorphous silicon, have many advantages such as a wide selection of substrates, excellent economic efficiency, and the ability to continuously change the composition to selectively develop desired properties. In recent years, it has been applied to, for example, solar cells, thin film transistors, photoreceptors, etc., and has attracted attention.

また、一方、結晶の分野においては、III−V族、I
I−VI族等の化合物半導体が、バンドギャップが多き
いことなどから、発光素子材料等として研究・実用化が
進んでいる。IIiV族及びII−VI族等の化合物半
導体は、イオン結合性が強く非晶質化しにくく、また非
晶質化しても構造安定性が低く結晶化し易い傾向にある
ため、非晶質半導体としての応用については、現在まだ
基礎研究の段階にある。
On the other hand, in the field of crystals, III-V group, I
BACKGROUND ART Compound semiconductors such as I-VI group semiconductors are being researched and put into practical use as materials for light emitting devices because of their large band gaps. Compound semiconductors such as Group IIIiV and Group II-VI have strong ionic bonding properties and are difficult to become amorphous, and even if they become amorphous, they have low structural stability and tend to crystallize easily, so they are not suitable as amorphous semiconductors. Applications are still at the basic research stage.

具体的に、例えばIII−V族の非晶質GaAsは28
0℃、II−VI族の非晶質ZnSeは180℃、0.
4時間、非晶質Z n T eは100℃、2、3時間
で結晶化することが報告されている。
Specifically, for example, III-V group amorphous GaAs is 28
0°C, II-VI group amorphous ZnSe is 180°C, 0.
It has been reported that amorphous Z n Te crystallizes at 100° C. for 2 to 3 hours.

この様に、化合物半導体を非晶質構造として応用するた
めには、熱等に対する構造安定性の低さが実用化を阻む
大きな技術的課題となっていた。
As described above, in order to apply a compound semiconductor as an amorphous structure, the low structural stability against heat and the like has been a major technical issue that hinders its practical application.

〔発明の目的及び概要〕[Purpose and outline of the invention]

本発明の目的は、従来の問題点を解決し、熱等に対する
構造安定性の高い新規な非晶質化合物半導体を提供する
ことにある。
An object of the present invention is to solve the conventional problems and provide a novel amorphous compound semiconductor with high structural stability against heat and the like.

上記問題点は、2種以上の化合物の混晶に現れるミツシ
ビリテイ−・ギヤ・ンブ内又は該キャップ近傍の組成を
有することを特徴とする本発明の非晶質化合物半導体に
よって達成される。
The above-mentioned problems are achieved by the amorphous compound semiconductor of the present invention, which is characterized in that it has a composition in or near the cap that appears in a mixed crystal of two or more types of compounds.

〔発明の詳細な説明及び実施例〕[Detailed description and examples of the invention]

本発明の構成を更に詳しく説明するため、例えば、A、
Q及びA、Rをそれぞれ構成原子とする2種類の化合物
半導体AQ及びARを仮定する。
To explain the configuration of the present invention in more detail, for example, A.
Two types of compound semiconductors AQ and AR are assumed, each having Q, A, and R as constituent atoms.

今、この2種類の化合物半導体で固溶体AQ  Rを構
成するとき、化合物半導体1−x AQの原子間の結合距離とARの結合距離との差がある
程度大きい場合には結晶相である混晶AQ  Rが形成
されない組成範囲、いわゆi−x るミッシビリティー・ギャップ(旧5cibility
Gap 、溶解度ギャップとも呼ばれる)が存在する。
Now, when forming a solid solution AQ R with these two types of compound semiconductors, if the difference between the bond distance between the atoms of the compound semiconductor 1-x AQ and the bond distance of AR is large to some extent, the mixed crystal AQ, which is the crystal phase, The composition range in which R is not formed, the so-called i-x impossibility gap (formerly 5cibility gap)
Gap (also called solubility gap) exists.

ミッシビリティー・ギャップとは、2種類の化合物(例
えば化合物半導体)で結晶相を構成する場合、1つの結
晶相、即ち混晶として固溶させることのできない組成範
囲のことである。[例えば西永頌、平松和正; 「化合
物半導体混晶のMiscibility J 、応用物
理50.1065(1981)に詳しく説明されている
。]そこで、木発明において、このミツシビリテイ−〇
ギャップ内又は該ギャップ近傍の組成で、例えばプラズ
マ化学気相成長法、スパッタリング法、イオンブレーテ
ィング法など公知の非晶質半導体製造方法を用いて、例
えば基体を冷却するなどして結晶相の析出を防ぎ強制的
に2つの化合物半導体を固溶させ、非晶質固溶体を形成
する。すると、混晶においてミッシビリティー・ギャッ
プが存在する固溶体では、2種類の化合物半導体の間の
結合距離差が大きいためにネットワークの乱れが生ずる
。第1図は、固溶体としてII−Vl族化合物半導体の
ZnS  Oを例にとった場i−x 合に、ZnOネットワーク中に1個のS原子がO原子を
置換する形で入り込んだ場合に生ずるネットワークの乱
れの様子を2次元的に誇張して描いたものである。Zn
−5の結合距離は2.33A、Zn−0の結合距離は1
.98Aであるために、第1図に描いた様な乱れが予想
される。そして、さらに多くの0原子でS原子を置換し
ていった場合には、この乱れはネットワーク全体に広が
り、固溶体ZnS  Oは非晶質となる。こ  1−x の乱れは、Zn−3及びZn−0の結合距離差という言
わば内的な要因によるものであるために、熱処理等によ
っても原子の位置関係を移動させない限り、換言すれば
融点近くまで加熱しない限りこのネットワークの乱れを
失わせることはできない。即ち、この様にして構成され
た非晶質化合物半導体の構造の熱的安定性は飛躍的に向
上する。
The miscibility gap is a composition range in which two types of compounds (for example, compound semiconductors) that constitute a crystal phase cannot be dissolved as a single crystal phase, that is, a mixed crystal. [For example, it is explained in detail in Nishinaga Yo, Kazumasa Hiramatsu; "Miscibility of compound semiconductor mixed crystals J, Applied Physics 50.1065 (1981)." By using a known amorphous semiconductor manufacturing method such as plasma chemical vapor deposition, sputtering, or ion blating, the substrate is cooled to prevent precipitation of the crystalline phase and forcibly separate the two. A compound semiconductor is dissolved in a solid solution to form an amorphous solid solution.In a solid solution in which a miscibility gap exists in a mixed crystal, the network is disordered due to the large bond distance difference between the two types of compound semiconductors. Figure 1 shows the case where one S atom enters the ZnO network to replace an O atom in the case of ZnSO, a II-Vl group compound semiconductor, as a solid solution. This is a two-dimensional exaggerated depiction of the network disturbance that occurs in Zn.
-5 bond distance is 2.33A, Zn-0 bond distance is 1
.. 98A, disturbances as depicted in Figure 1 are expected. When more 0 atoms are substituted for S atoms, this disorder spreads throughout the network, and the solid solution ZnS 2 O becomes amorphous. This disorder of 1-x is due to an internal factor, the difference in bond distance between Zn-3 and Zn-0, so unless the positional relationship of the atoms is changed by heat treatment etc., in other words, it will be close to the melting point. The disorder in this network cannot be lost unless it is heated to a certain level. That is, the thermal stability of the structure of the amorphous compound semiconductor constructed in this manner is dramatically improved.

そして、この非晶質相の熱的安定性が飛躍的に向]−す
る組成範囲が、混晶を形成することのできないミッシビ
リティー・ギャップ内又は該ギャップ近傍の組成である
The composition range in which the thermal stability of this amorphous phase is dramatically improved is the composition within or near the miscibility gap where mixed crystals cannot be formed.

この様に、本発明により、例えば2種類の化合物AQ、
ARの混晶に現れるミッシビリティー・ギャップ内又は
該ギャップ近傍の組成で非晶質化合物半導体を構成する
ことにより、例えば熱的安定性の低い非晶質相を持つI
II−V族及びII−VI族化合物半導体の熱的安定性
を向上させることができる。
Thus, according to the present invention, for example, two types of compounds AQ,
By configuring an amorphous compound semiconductor with a composition within or near the miscibility gap appearing in the AR mixed crystal, for example, I.
The thermal stability of II-V and II-VI compound semiconductors can be improved.

次に、本発明の具体的実施例として、非晶質化合物半導
体ZnS  Oについて説明する。
Next, as a specific example of the present invention, an amorphous compound semiconductor ZnSO will be described.

  1−x 11−Vl族化合物半導体ZnS及びZnOは共に非晶
質相を形成させることが困難であり、今まで非晶質相を
形成したという報告はない。また、非晶質相を形成した
としても熱に対して非常に不安定な構造となり、結晶化
し易いと考えられる。これに対し本発明により構成され
たZnS  Oi−x は組成Xに依存して非晶質となり、また非晶質ZnS 
 Oは熱処理に対しても結晶化しにx    1 − 
x くい。第2図はZnS粉末をターゲットとし、Ar−0
2混合ガス雰囲気中にて反応性高周波スバッタ法により
ZnS  O膜を水冷したガx  l−x ラス基板−にに堆積させた場合のX線回折像の例である
。照射X線にはCuKα線を用いている。このZnS 
 O膜においては、X>0.5(7)  l−x 組成範囲では2e=29°にのみZnS結晶面による回
折ピークが現れる。第2図はこの20−29°に現れる
回折強度の組成依存性をプロットしたものである。第2
図に示した様にXが小さくなるにつれ回折ピークは減少
し、X≦0.5となると回折ピークは全く現れなくなっ
ている。また、x<0.3の組成を持つ膜については調
べていないが、少なくとも、0.3≦X≦0.5の組成
範囲では2θ=29°以外の結晶回折ピークも現れず非
晶質であることが分る。第3図はこの反応性高周波スパ
ッタ法を用いて作製したx=0゜3の非晶質ZnS  
O膜に、真空中 x    l−x (10Torr)にて400’0.1時間の熱処理を施
した場合の熱処理前後のX線回折像を比較したものであ
る。2つの回折像に見られる2θ−25°付近の幅の広
い回折はガラス基板によるものである。第3図において
、熱処理後においても結晶回折ピークは見られず結晶化
していないことが分る。
It is difficult to form an amorphous phase in both the 1-x 11-Vl group compound semiconductors ZnS and ZnO, and there has been no report on the formation of an amorphous phase. Furthermore, even if an amorphous phase is formed, it is considered to have a very unstable structure against heat and is likely to crystallize. On the other hand, ZnS Oi-x constructed according to the present invention becomes amorphous depending on the composition X, and amorphous ZnS
O does not crystallize even after heat treatment x 1 −
x Kui. Figure 2 shows ZnS powder as the target and Ar-0
2 is an example of an X-ray diffraction image when a ZnSO film is deposited on a water-cooled glass substrate by the reactive high-frequency sputtering method in a mixed gas atmosphere. CuKα rays are used for the irradiation X-rays. This ZnS
In the O film, a diffraction peak due to the ZnS crystal plane appears only at 2e=29° in the X>0.5(7) l−x composition range. FIG. 2 is a plot of the composition dependence of the diffraction intensity appearing at 20-29°. Second
As shown in the figure, the diffraction peak decreases as X becomes smaller, and when X≦0.5, no diffraction peak appears at all. Furthermore, although we have not investigated films with a composition of x<0.3, at least in the composition range of 0.3≦X≦0.5, no crystal diffraction peaks other than 2θ=29° appear, indicating that the film is amorphous. I understand something. Figure 3 shows amorphous ZnS with x=0°3 fabricated using this reactive high-frequency sputtering method.
This is a comparison of X-ray diffraction images before and after the heat treatment when the O film was heat treated at x l-x (10 Torr) in vacuum for 400'0.1 hour. The wide diffraction around 2θ-25° seen in the two diffraction images is due to the glass substrate. In FIG. 3, no crystal diffraction peak is observed even after heat treatment, indicating that no crystallization occurred.

第4図は、x=0.3及び0.52の非晶質ZnS  
O膜の光学吸収スペクトルを、x    l  −x 第5図は超高圧水銀ランプの365nm輝線を励起光と
した場合の室温におけるフォトルミネッセンススペクト
ルを示している。第4図及び第5図に事した様に、非晶
質ZnS  O膜は、1−x Xを0.3から0.52に変化させることにより、バン
ドギャップエネルギーは3.4eVから3.2eVに、
またフォトルミネッセンスのピーク波長は650nmか
ら700nmに変化することが分る。即ち、Xを連続的
に変えてやることにより、バンドギャップエネルギー及
び発光ピーク波長を連続的に制御することが可能である
Figure 4 shows amorphous ZnS with x=0.3 and 0.52.
The optical absorption spectrum of the O film is x l -x. Figure 5 shows the photoluminescence spectrum at room temperature when the 365 nm emission line of an ultra-high pressure mercury lamp is used as the excitation light. As shown in Figs. 4 and 5, the band gap energy of the amorphous ZnSO film can be changed from 3.4 eV to 3.2 eV by changing 1-x from 0.3 to 0.52. To,
It is also seen that the peak wavelength of photoluminescence changes from 650 nm to 700 nm. That is, by continuously changing X, it is possible to continuously control the band gap energy and the emission peak wavelength.

この様に、ZnS及びZnOは、イオン結合性が強いた
めに非晶質相を構成することが難しく、また今までにこ
れらを組合せて非晶質を作製したという報告もない。こ
れに対し、本発明によって、II−VI族化合物半導体
ZnS及びZnOから構造の熱的安定性の高い非晶質半
導体の構成を可能にすることができる。また、非晶質化
合物半導体ZnS  OはXを変えることによりパン 
 1−x ドキャップエネルギーや発光ピーク波長を制御すること
ができ、さらにバンドギャップエネルギーは3.2〜3
.4eVと大きなことから、可視域での非晶質発光材料
、透明導電膜等へ応用できる。
As described above, it is difficult for ZnS and ZnO to form an amorphous phase due to their strong ionic bonding properties, and there have been no reports of a combination of these to create an amorphous phase. In contrast, according to the present invention, it is possible to construct an amorphous semiconductor having a highly thermally stable structure from II-VI group compound semiconductors ZnS and ZnO. In addition, the amorphous compound semiconductor ZnSO can be made into a pan by changing X.
1-x decap energy and emission peak wavelength can be controlled, and the band gap energy is 3.2 to 3.
.. Since it has a large value of 4 eV, it can be applied to amorphous light emitting materials in the visible range, transparent conductive films, etc.

この様に、本発明によって隣接原子の結合距離が異なる
2種類の化合物半導体の混晶に現れるミッシビリティー
・ギャップを利用して、熱処理に対する非晶質構造の熱
的安定性を向−1ニさせるのは、III−V族及びII
−VI族化合物半導体などの様な2元系化合物半導体の
みならず、3元系化合物半導体、例えばl−111−V
I2族などの結合のイオン性度が高く非晶質化し難いと
考えられる化合物半導体を成分とする混晶についても非
晶質化合物半導体を構成することができる。
In this way, the present invention utilizes the miscibility gap that appears in the mixed crystal of two types of compound semiconductors with different bond distances between adjacent atoms to improve the thermal stability of the amorphous structure against heat treatment. Groups III-V and II
- Not only binary compound semiconductors such as Group VI compound semiconductors, but also ternary compound semiconductors, such as l-111-V
An amorphous compound semiconductor can also be constituted by a mixed crystal containing a compound semiconductor that is considered to have a high degree of ionicity in bonds such as group I2 and is difficult to become amorphous.

ZnS  O以外の混晶についての実施例x    l
−x としては、例えばIII−V族化合物半導体としてはG
aAs  Sb    、InP  Sb    など
xi−xxl−x が考えられる。GaAsとGaSbとの結合間距離は7
.5%と大きく、その混晶では中間近傍の組成、即ち、
x=0.5付近にミツシビリテイ−φキャップが存在す
る。また、InPとInSbとの結合距離差も9.9%
と太きくInP寄りの組成にミツシビリテイ−・キャッ
プが存在する。
Examples x l for mixed crystals other than ZnS O
-x, for example, as a III-V compound semiconductor, G
xi-xxl-x such as aAs Sb and InP Sb can be considered. The bond distance between GaAs and GaSb is 7
.. The composition is as large as 5%, and the composition of the mixed crystal is near the middle, that is,
A Mitsubishiity-φ cap exists near x=0.5. Also, the bond distance difference between InP and InSb is 9.9%.
A robustness cap exists in a composition that is thick and closer to InP.

II−VI族化合物半導体への実施例として例えば今ま
でに混晶形成の報告のないZn5e  0xi−x” ZnTe  Oなどが考えられる。ZnS e  l−
x とZnOとの結合距離差は21%、またZnTeとZn
Oとの結合距離差は28%と大きく、Zn5e  O及
びZnTe  O共にx  l−x       x 
 l−xその全組成範囲がミッシビリティー・ギャップ
に相当する。
As an example of a II-VI group compound semiconductor, for example, Zn5eOxi-x"ZnTeO, which has not been reported to form a mixed crystal, may be considered.ZnS e l-
The bond distance difference between x and ZnO is 21%, and the difference between ZnTe and Zn
The bond distance difference with O is as large as 28%, and both Zn5e O and ZnTe O
The entire composition range of l-x corresponds to the miscibility gap.

〔発明の効果〕〔Effect of the invention〕

以−E説明した様に、本発明により、結合のイオン性度
が高いために熱的に不安定な非晶質構造を持つIII−
V族及びII−VI族化合物半導体等から、非晶質をミ
ッシビリティー・ギャップ内又は該ギャップ近傍の組成
で構成してやることにより、熱処理によっても結晶化し
難い状態とすることができ、非晶質構造の熱的安定性を
向上させることができ、実用に十分耐え得るIII−V
族又はII−VI族非晶質化合物半導体を構成すること
ができる。更に、安定な非晶質相を構成し得る組成範囲
において組成を変えることにより、バンドキャップエネ
ルギーや、発光材ネ4に応用した場合の発光ピーク波長
を連続的に制御することも可能となり、半導体装置に応
用した場合に必要な特性を自由に選択することが可能と
なる。
As explained below, according to the present invention, III-
By configuring an amorphous material from group V and group II-VI compound semiconductors, etc. with a composition within or near the miscibility gap, it is possible to make it difficult to crystallize even by heat treatment. III-V, which can improve the thermal stability of the structure and is sufficiently durable for practical use.
A group or II-VI amorphous compound semiconductor can be constituted. Furthermore, by changing the composition within the composition range that can form a stable amorphous phase, it becomes possible to continuously control the band gap energy and the emission peak wavelength when applied to light emitting materials. When applied to a device, it becomes possible to freely select the necessary characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の非晶質化合物半導体の1例であるZ
nS  Oの構造を説明するためのx    l  −
x 模式図である。 第2図は、本発明の非晶質化合物半導体の1例であるZ
nS  OのX線回折図であり、x    1 − x 横軸はX値、縦軸は膜厚の違いによる補正を施した回折
強度である。 第3図は、ZnS    Oの熱処理前後0.3   
0.7 を比較したX線回折図であり、as  dep、は熱処
理前、400℃l hr (vacuum)は、真空中
400℃で1時間熱処理後のX線回折像である。 第4図は、ZnS  O膜で組成Xが 1−x 0.3及び0.52(7)非晶質ZnS  Ox   
 l−x 膜の室温における光学吸収特性を示した曲線図である。 横軸は光子エネルギー(eV)を、縦軸はαhυ(α:
吸収係数、hr:光子エネルギー)を示す。 第5図は、Xが0.3及び0.52である非晶質ZnS
  O膜の、超高圧水銀ランプのx    l  −x 365nm輝線を励起光とした場合の室温におけるフォ
トルミネッセンススペクトルを示した曲線図である。横
軸の下側は光子エネルギー(eV)、上側は波長(nm
)であり、また縦軸はフォトルミネッセンス強′度の相
対値を示す。 代理人 弁理士 山  下  穣  平葉町IヰV回載
獣−へ 第3図 20   30   40  50   60   7
0  8r回抜再2θ(農) 第4図 尤チェネ1い”−(eV)
FIG. 1 shows Z, which is an example of the amorphous compound semiconductor of the present invention.
x l − to explain the structure of nS O
x is a schematic diagram. FIG. 2 shows Z, which is an example of the amorphous compound semiconductor of the present invention.
This is an X-ray diffraction diagram of nS 2 O. x 1 - x The horizontal axis is the X value, and the vertical axis is the diffraction intensity corrected for the difference in film thickness. Figure 3 shows 0.3 before and after heat treatment of ZnSO.
0.7 is an X-ray diffraction pattern in which as dep is before heat treatment, and 400°C l hr (vacuum) is an X-ray diffraction pattern after heat treatment at 400°C in vacuum for 1 hour. Figure 4 shows ZnSO films with compositions X of 1-x 0.3 and 0.52 (7) amorphous ZnSOx.
FIG. 3 is a curve diagram showing the optical absorption characteristics of the l-x film at room temperature. The horizontal axis is photon energy (eV), and the vertical axis is αhυ (α:
Absorption coefficient (hr: photon energy) is shown. Figure 5 shows amorphous ZnS with X of 0.3 and 0.52.
It is a curve diagram showing the photoluminescence spectrum of an O film at room temperature when the x l -x 365 nm emission line of an ultra-high pressure mercury lamp is used as excitation light. The lower side of the horizontal axis is photon energy (eV), and the upper side is wavelength (nm).
), and the vertical axis indicates the relative value of photoluminescence intensity. Agent Patent Attorney Minoru Yamashita To Hirabacho IV Reprinted Animal Figure 3 20 30 40 50 60 7
0 8r times re-extraction 2θ (agricultural)

Claims (1)

【特許請求の範囲】[Claims] 2種以上の化合物の混晶に現れるミッシビリティー・ギ
ャップ内又は該ギャップ近傍の組成を有することを特徴
とする非晶質化合物半導体。
An amorphous compound semiconductor characterized by having a composition within or near a miscibility gap appearing in a mixed crystal of two or more types of compounds.
JP60268226A 1985-11-27 1985-11-27 Amorphous compound semiconductor Expired - Lifetime JPH0831486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60268226A JPH0831486B2 (en) 1985-11-27 1985-11-27 Amorphous compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60268226A JPH0831486B2 (en) 1985-11-27 1985-11-27 Amorphous compound semiconductor

Publications (2)

Publication Number Publication Date
JPS62126642A true JPS62126642A (en) 1987-06-08
JPH0831486B2 JPH0831486B2 (en) 1996-03-27

Family

ID=17455662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60268226A Expired - Lifetime JPH0831486B2 (en) 1985-11-27 1985-11-27 Amorphous compound semiconductor

Country Status (1)

Country Link
JP (1) JPH0831486B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938737A (en) * 1987-12-25 1990-07-03 Nissan Motor Co., Ltd. Transmission belt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938737A (en) * 1987-12-25 1990-07-03 Nissan Motor Co., Ltd. Transmission belt

Also Published As

Publication number Publication date
JPH0831486B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US10128052B1 (en) Methods of thermally induced recrystallization
Yudasaka et al. Indium selenide film formation by the double-source evaporation of indium and selenium
GB987866A (en) Modified film of a zinc-sulphite-type compound and method of making it
US20120238053A1 (en) Chalcogenide Absorber Layers for Photovoltaic Applications and Methods of Manufacturing the Same
JP2000026119A (en) Article having transparent electrically conductive oxide thin film and its manufacture
Islam et al. Structural and optical properties of CdSexTe1− x thin films grown by electron beam evaporation
Dizaji et al. Effect of thickness on the structural and optical properties of ZnS thin films prepared by flash evaporation technique equipped with modified feeder
Ellis Flash evaporation and thin films of cuprous sulfide, selenide, and telluride
Bouznit et al. New co-spray way to synthesize high quality ZnS films
Kauk-Kuusik et al. Study of Cu2CdGeSe4 monograin powders synthesized by molten salt method for photovoltaic applications
Bhatt et al. Electrooptic properties of polycrystalline SnSe thin films
JP2007149746A (en) Transparent oxide semiconductor junction
JP2002105625A (en) Method for manufacturing low resistivity p-type zinc oxide thin film
JPS62126642A (en) Amorphous compound semiconductor
Markov et al. Thin films of wide band gap II-VI semiconductor compounds: features of preparation
JPH0647515B2 (en) Compound semiconductor epitaxial growth method
CN110668499B (en) Cerium-doped monolayer tungsten disulfide film and preparation method thereof
CN113279063A (en) IV-VI family infrared semiconductor film and preparation method thereof
Hartmann Vapour phase epitaxy of II–VI compounds: A review
RU2089656C1 (en) Method of production of photosensitive resistive and optically nonlinear thin-filmed heterostructures based on semiconductor and dielectric materials
Muthukumarasamy et al. Compositional dependence of optical properties of hot wall deposited CdSexTe1–x thin films
Raju et al. Structural and energy gap variations in (ZnTe) x (CdSe) 1− x thin films
JPH0343770B2 (en)
EREL et al. Department of Physics, Faculty of Science and Letters, University of Kirikkale, 71450
Suri et al. The optical properties of CuGa 0.5 In 0.5 Se 2 thin films

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term