JP2002105625A - Method for manufacturing low resistivity p-type zinc oxide thin film - Google Patents

Method for manufacturing low resistivity p-type zinc oxide thin film

Info

Publication number
JP2002105625A
JP2002105625A JP2000294159A JP2000294159A JP2002105625A JP 2002105625 A JP2002105625 A JP 2002105625A JP 2000294159 A JP2000294159 A JP 2000294159A JP 2000294159 A JP2000294159 A JP 2000294159A JP 2002105625 A JP2002105625 A JP 2002105625A
Authority
JP
Japan
Prior art keywords
thin film
zno
gan
target
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000294159A
Other languages
Japanese (ja)
Inventor
Akira Yoshida
明 吉田
Kishun Kin
煕濬 金
Akihiro Wakahara
昭浩 若原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000294159A priority Critical patent/JP2002105625A/en
Publication of JP2002105625A publication Critical patent/JP2002105625A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing p-type zinc oxide thin film of which a function as a semiconductor having light transmissivity and electric conductivity can be expected. SOLUTION: In depositing the p-type zinc oxide thin film, a ZnO target and a GaN target as a dopant source are used to dope a ZnO thin film with Ga and N independently and simultaneously or with GaN. It is preferable to use a sputtering method as a thin film deposition method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光透過性と導電性
をもつ半導体として期待が大きいp型酸化亜鉛(以下、
適宜「ZnO」と記載する。)薄膜を製造する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a p-type zinc oxide (hereinafter referred to as a "p-type zinc oxide"), which is highly expected as a semiconductor having optical transparency and conductivity.
It is described as “ZnO” as appropriate. A) a method of producing a thin film;

【0002】[0002]

【従来の技術】酸化亜鉛は、半導性、光導電性あるいは
圧電性を有し、かつ可視光領域で本質的に透明な物質で
ある。この酸化亜鉛薄膜は、通常、スパッタリングや化
学気相堆積(CVD)法によって得られ、n型不純物ド
ーピングによる低抵抗化の方法が工夫されている(例え
ば、特開平7−106615号公報、特開平7−288
049号公報、特開平8−50815号公報)。しか
し、低抵抗で、かつp型のZnO単結晶薄膜の育成は、
自己補償効果やp型ドーパントの小さな溶解度のために
不可能であった。
2. Description of the Related Art Zinc oxide is a semiconductive, photoconductive or piezoelectric material and is essentially transparent in the visible light region. This zinc oxide thin film is usually obtained by sputtering or chemical vapor deposition (CVD), and a method of lowering resistance by doping with n-type impurities has been devised (for example, JP-A-7-106615, JP-A-7-106615). 7-288
049, JP-A-8-50815). However, the growth of a p-type ZnO single crystal thin film with low resistance is
This was not possible due to the self-compensation effect and the small solubility of the p-type dopant.

【0003】ところが、最近、レーザーアブレーション
法において、ZnO薄膜中へアクセプターとドナーを同
時にドーピングする同時ドーピング法によりp型導電性
が報告された(Tetsuya Yamamoto and Hiroshi Yoshid
a;J Appi.Phys.Vol.38 L166-L169(1999)、M.Joseph,H.Ta
bata and T.Kawai;J Appi.Phys.Vol.38 L1205-L1207(19
99))。
Recently, however, p-type conductivity has been reported in a laser ablation method by a simultaneous doping method in which an acceptor and a donor are simultaneously doped into a ZnO thin film (Tetsuya Yamamoto and Hiroshi Yoshid).
a; J Appi.Phys.Vol.38 L166-L169 (1999), M.Joseph, H.Ta
bata and T. Kawai; J Appi. Phys. Vol. 38 L1205-L1207 (19
99)).

【0004】[0004]

【発明が解決しようとする課題】ZnOは、室温での紫
外光レーザ発振の報告(川崎雅史、大友 明:固体物
理、33巻、59頁、1998年)等により、発光材料
として注目を集めている。しかし、ZnOはp型導電性
のものができないという問題があった。従来、高周波を
使ったスパッタリング法を用い、Ga源とN源を別々の
原料源からドーピングする個別ドーピングではn型Zn
O薄膜はできてもp型ZnO薄膜はできなかった。
Problems to be Solved by the Invention ZnO has attracted attention as a luminescent material according to reports of ultraviolet laser oscillation at room temperature (Masashi Kawasaki, Akira Otomo: Solid State Physics, Vol. 33, p. 59, 1998). I have. However, there is a problem that ZnO cannot be made of p-type conductivity. Conventionally, n-type Zn is used for individual doping in which a Ga source and an N source are doped from separate source materials by using a sputtering method using a high frequency.
Although an O thin film was formed, a p-type ZnO thin film was not formed.

【0005】この解決策として、レーザーアブレーショ
ン法を用いてGa23とN2Oを個別にドーピングして
p型ZnO膜を作成する方法が、上記のとおり、最近開
発されたが、元来、アブレーション法は、大面積化が難
しく、コスト高となり、大量生産に向いていない。ま
た、得られたZnO薄膜は高抵抗であるという問題があ
る。
As a solution to this problem, a method of forming a p-type ZnO film by individually doping Ga 2 O 3 and N 2 O using a laser ablation method has been recently developed as described above. However, the ablation method is difficult to increase the area, increases the cost, and is not suitable for mass production. Further, there is a problem that the obtained ZnO thin film has high resistance.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決する手
段として、本発明者らは、新たな方法を見いだした。す
なわち、本発明は、ZnOターゲットを用いてp型Zn
O薄膜を形成する際に、不純物ドーピング物質としてG
aNターゲットを用いることによりZnO薄膜にGaと
Nを別々に同時ドーピングするか、またはGaNをドー
ピングすることを特徴とする低抵抗p型ZnO薄膜の製
造方法である。
As a means for solving the above-mentioned problems, the present inventors have found a new method. That is, the present invention provides a p-type Zn
When forming an O thin film, G is used as an impurity doping substance.
This is a method for manufacturing a low-resistance p-type ZnO thin film, wherein Ga and N are separately and simultaneously doped into a ZnO thin film by using an aN target, or GaN is doped.

【0007】本発明の製造方法で作製したZnO薄膜
は、GaがNと結合したGaNをターゲットとして用い
ることによって、GaがNと結合した形でZnO薄膜中
に取り込まれ、低抵抗のp型ZnO薄膜が得られる。こ
のZnO薄膜には、IIIB族に属する元素とVB族に属する
元素が結合した化合物をドープしてもよい。IIIB族の元
素としては、B,Al,Ga,In等が挙げられ、VB族
の元素としては、N,P,As,Sb等が挙げられる。
The ZnO thin film manufactured by the manufacturing method of the present invention is incorporated into the ZnO thin film in a form in which Ga is bonded to N by using GaN in which Ga is bonded to N as a target, and has a low-resistance p-type ZnO. A thin film is obtained. This ZnO thin film may be doped with a compound in which an element belonging to Group IIIB and an element belonging to Group VB are combined. IIIB group elements include B, Al, Ga, In and the like, and VB group elements include N, P, As, Sb and the like.

【0008】ZnO薄膜を形成する方法としては、スパ
ッタリング法が好ましいが、分子線エピタキシー(MB
E)法、イオンプレーティング法、レーザーアブレーシ
ョン法、化学気相成長法など、任意の公知の薄膜形成法
を用いることができる。基板としては、Si、SiC、
サファイア、GaN、NdGaO3、LiGaO2、Li
AlO2、LSAT等の結晶基板およびガラス等のアモ
ルファス基板を用いることができる。
As a method of forming a ZnO thin film, a sputtering method is preferable, but molecular beam epitaxy (MB)
Any known thin film forming method such as E), ion plating, laser ablation, and chemical vapor deposition can be used. As the substrate, Si, SiC,
Sapphire, GaN, NdGaO 3, LiGaO 2 , Li
A crystalline substrate such as AlO 2 or LSAT and an amorphous substrate such as glass can be used.

【0009】GaNターゲットは、GaがNと結合した
GaNを添加したZnOターゲットとして使用できる。
この場合、GaNターゲットは、例えば、下記の方法で
製作できる。a) ZnO粉末とGaN粉末を良く混合し
た後、プレスしてGaNを混合したZnOターゲットを
製作する。b) 上記a)のターゲットを焼結し、GaNと
ZnOの焼結ターゲットを製作する。
The GaN target can be used as a ZnO target to which GaN in which Ga is combined with N is added.
In this case, the GaN target can be manufactured, for example, by the following method. a) After the ZnO powder and the GaN powder are mixed well, they are pressed to produce a ZnO target mixed with GaN. b) The target of a) is sintered to produce a sintered target of GaN and ZnO.

【0010】また、GaNターゲットをZnOターゲッ
トと別に配置して用いる。この場合、GaNターゲット
は、例えば、下記のように用いる。a) ZnOターゲッ
ト上に小片状のGaNターゲットを配置する。b) Zn
OターゲットとGaNターゲットを並べて配置する。G
aNターゲットとしては、GaN粉末、GaN薄膜、ま
たはGaN焼結体等、GaN化合物すべてが適用可能で
あり、GaNの作製方法は、特に限定されない。
A GaN target is used separately from a ZnO target. In this case, the GaN target is used, for example, as follows. a) A small GaN target is placed on the ZnO target. b) Zn
An O target and a GaN target are arranged side by side. G
As the aN target, any GaN compound such as a GaN powder, a GaN thin film, or a GaN sintered body can be applied, and the method for producing GaN is not particularly limited.

【0011】ドーピングするGaNの添加量は、ZnO
ターゲットとの面積比により変化させることができる。
GaNとZnOを同時に蒸発またはスパッタリングする
か、ZnOターゲットとGaNターゲットを交互に用い
て蒸発またはスパッタリングしてもよい。
The amount of GaN to be doped is ZnO
It can be changed by the area ratio with the target.
GaN and ZnO may be evaporated or sputtered at the same time, or ZnO targets and GaN targets may be alternately used to evaporate or sputter.

【0012】GaとNを独立に用いた場合、GaとOの
結合エネルギーは68kcal/mol、ZnとOの結合エネル
ギーは68kcal/mol、GaとNの結合エネルギーは26
0kcal/mol、ZnとNの結合エネルギーは不明である
が、窒素中でのZnOターゲットのスパッタリングによ
っても得られた薄膜は、ZnOであることから、その結
合エネルギーは非常に小さいと考えられる。
When Ga and N are used independently, the binding energy between Ga and O is 68 kcal / mol, the binding energy between Zn and O is 68 kcal / mol, and the binding energy between Ga and N is 26 kcal / mol.
At 0 kcal / mol, the binding energy between Zn and N is unknown, but since the thin film obtained by sputtering a ZnO target in nitrogen is ZnO, it is considered that the binding energy is very small.

【0013】したがって、ドナーとしてのGaとアクセ
プタとしてのNが結合したGaNを用いることにより、
N−Ga−N結合を作りやすく容易にZnO結晶中にN
を取り込むことができる。前記のとおりGaとNの結合
エネルギーは非常に高いので、スパッタリングのパワー
を変えることにより、GaとNを別々に同時ドーピング
する方法とGaNをドーピングする方法を制御すること
ができる。これにより高濃度のアクセプタドーピングが
可能となる。さらに、高濃度に取り込まれたアクセプタ
によりホールバンドが形成され、これによりp型化が実
現できる。p型実現に必要なアクセプタ濃度は、約10
18cm-3以上、さらに1019cm-3以上あるのが望まし
い。
Therefore, by using GaN in which Ga as a donor and N as an acceptor are bonded,
N—Ga—N bonds are easily formed and N—
Can be captured. As described above, since the binding energy between Ga and N is very high, the method of separately co-doping Ga and N and the method of doping GaN can be controlled by changing the sputtering power. This enables high-concentration acceptor doping. Furthermore, a hole band is formed by the acceptor taken in at a high concentration, whereby a p-type can be realized. The acceptor concentration required for realizing the p-type is about 10
It is preferably at least 18 cm -3, more preferably at least 10 19 cm -3 .

【0014】本発明の方法によるZnO薄膜の作製は、
応用面や生産性を考えた場合、スパッタリング法は大量
に生産できることから、スパッタリング法が好ましい。
スパッタリング法を用いる場合、スパッタリング雰囲気
に酸素を添加する。一般に、ZnO薄膜中では、Znと
Oの組成が化学量論的組成の1:1からずれることがあ
り、高温での薄膜作製では、酸素欠損が生じやすい。こ
の酸素欠損は、ドナーとして働くために、低抵抗p型Z
nO実現のためにはできる限り酸素欠損の濃度を下げる
必要がある。スパッタリング雰囲気に酸素を添加するこ
とにより酸素欠損の発生を抑制できる。スパッタリング
中の雰囲気ガスへの酸素添加量は、薄膜の堆積温度にお
ける酸素欠損の発生をキャンセルできるだけの量を入れ
る必要がある。したがって、酸素添加量は、薄膜の堆積
温度に応じて制御するのが望ましい。
The preparation of a ZnO thin film according to the method of the present invention
From the viewpoint of application and productivity, the sputtering method is preferable because the sputtering method can be mass-produced.
In the case of using a sputtering method, oxygen is added to a sputtering atmosphere. In general, in a ZnO thin film, the composition of Zn and O sometimes deviates from the stoichiometric composition of 1: 1. When a thin film is formed at a high temperature, oxygen vacancies are easily generated. This oxygen deficiency causes low resistance p-type Z
In order to realize nO, it is necessary to reduce the concentration of oxygen vacancies as much as possible. Oxygen deficiency can be suppressed by adding oxygen to the sputtering atmosphere. The amount of oxygen added to the atmosphere gas during sputtering must be large enough to cancel the generation of oxygen deficiency at the deposition temperature of the thin film. Therefore, it is desirable to control the amount of added oxygen according to the deposition temperature of the thin film.

【0015】本発明の方法で得られる低抵抗p型ZnO
薄膜を、既に実現されている低抵抗のn型ZnOと組み
合わせることにより、紫外光領域での光エレクトロニク
ス材料として、発光ダイオード、レーザへの応用は広が
る。さらには、光電変換デバイス(太陽電池)、可視光
域で透明な薄膜トランジスタ(TFT)へとその応用が
広がる。
The low-resistance p-type ZnO obtained by the method of the present invention
By combining the thin film with the already realized low-resistance n-type ZnO, the application to light emitting diodes and lasers as an optoelectronic material in the ultraviolet region is expanded. Further, the application thereof extends to a photoelectric conversion device (solar cell) and a thin film transistor (TFT) transparent in a visible light region.

【0016】[0016]

【実施例】実施例1 日電アネルバSPF-210SRF高周波スパッタリング装置を
用い、径40mm、厚さ1mmのZnO焼結ターゲット
上に高純度GaN粉末をコールドプレスした径2mm、
厚み0.1〜0.5mmの小片状のGaNターゲット8
0個を重ねて置いた。O2 とN2 の混合気体中にて、基
板としてコーニング7059ガラスを用いた。RF電力
150W、周波数13.56MHz、圧力40mTor
r、基板温度200℃、電極間距離50mm、成膜時間
120分とした。GaNターゲットの面積をZnOター
ゲットの面積に対して、20%としてGaNの添加量を
調整した。酸素分圧比は、O2/(O2+N2)=60%
とした。
EXAMPLE 1 A high-purity GaN powder was cold-pressed on a ZnO sintered target having a diameter of 40 mm and a thickness of 1 mm using a Nidec Anelva SPF-210SRF high-frequency sputtering apparatus to a diameter of 2 mm.
A small GaN target 8 having a thickness of 0.1 to 0.5 mm
0 were placed one on top of the other. Corning 7059 glass was used as a substrate in a mixed gas of O 2 and N 2 . RF power 150W, frequency 13.56MHz, pressure 40mTorr
r, the substrate temperature was 200 ° C., the distance between the electrodes was 50 mm, and the film formation time was 120 minutes. The addition amount of GaN was adjusted by setting the area of the GaN target to 20% with respect to the area of the ZnO target. The oxygen partial pressure ratio is O 2 / (O 2 + N 2 ) = 60%
And

【0017】実施例2 小片状のGaNターゲットを40個重ねてGaNターゲ
ットの面積をZnOターゲットの面積に対して、10%
とした以外は、実施例1と同じ条件でスパッタリングし
た。
EXAMPLE 2 Forty small GaN targets were stacked, and the area of the GaN target was 10% of the area of the ZnO target.
Sputtering was performed under the same conditions as in Example 1 except that the sputtering was performed.

【0018】比較例1 GaNターゲットを用いない以外は、実施例1と同じ条
件でスパッタリングした。
Comparative Example 1 Sputtering was performed under the same conditions as in Example 1 except that a GaN target was not used.

【0019】比較例2 小片状のGaNターゲットを20個重ねてGaNターゲ
ットの面積をZnOターゲットの面積に対して、5%と
した以外は、実施例1と同じ条件でスパッタリングし
た。
Comparative Example 2 Sputtering was performed under the same conditions as in Example 1 except that 20 small GaN targets were stacked and the area of the GaN target was set to 5% of the area of the ZnO target.

【0020】図1は、実施例1、2、比較例1、2によ
って作製したZnO薄膜の紫外可視光分光高度計による
光透過率を示す透過スペクトルである。GaNを添加し
てもZnO薄膜は高い紫外可視光透過率を保っているこ
とが分かる。また、GaNを添加しても、吸収端特性に
変化は少ない。
FIG. 1 is a transmission spectrum showing the light transmittance of the ZnO thin films prepared in Examples 1 and 2 and Comparative Examples 1 and 2 by an ultraviolet-visible light spectrophotometer. It can be seen that the ZnO thin film maintains a high ultraviolet-visible light transmittance even when GaN is added. Also, even if GaN is added, there is little change in absorption edge characteristics.

【0021】図2は、実施例1によって作製したZnO
薄膜のX線回折結果を示す。図1および図2により、赤
外−可視光領域にて85%以上の紫外可視光透過率をも
つ(0002)配向のZnO薄膜ができたことが分か
る。
FIG. 2 shows the ZnO prepared in Example 1.
4 shows an X-ray diffraction result of the thin film. 1 and 2 that a (0002) -oriented ZnO thin film having an ultraviolet-visible light transmittance of 85% or more in an infrared-visible light region was formed.

【0022】図3は、実施例1、2および比較例1、2
のGaNターゲットとZnOターゲットの面積比とZn
O薄膜の結晶性の関係を示す。左側縦軸は、規格化X線
回折強度を示し、右側縦軸は、(0002)回折半値幅
を示す。図3から、GaN添加量が過度に多くなるとZ
nO薄膜の結晶性が低下することが分かる。図4は、実
施例2のZnO薄膜のバンドギャップを示す。ZnOは
直接遷移型半導体であり、バンドギャップは3.35e
Vである。GaNを添加することで、バンドギャップが
3.35eVから3.25eVの長波長側にシフトして
いることが分かる。表1は、実施例1、2および比較例
1、2によって作製したZnO薄膜の電気的特性を示
す。GaN無添加の場合には抵抗が高く測定できなかっ
た。
FIG. 3 shows Examples 1 and 2 and Comparative Examples 1 and 2.
Area ratio of GaN target to ZnO target and Zn
4 shows the relationship between the crystallinity of the O thin film. The left vertical axis indicates the normalized X-ray diffraction intensity, and the right vertical axis indicates the (0002) diffraction half width. FIG. 3 shows that when the GaN addition amount is excessively large, Z
It can be seen that the crystallinity of the nO thin film decreases. FIG. 4 shows the band gap of the ZnO thin film of Example 2. ZnO is a direct transition semiconductor and has a band gap of 3.35 e.
V. It can be seen that the band gap is shifted from 3.35 eV to 3.25 eV to the longer wavelength side by adding GaN. Table 1 shows the electrical characteristics of the ZnO thin films prepared in Examples 1 and 2 and Comparative Examples 1 and 2. When GaN was not added, the resistance was too high to measure.

【0023】[0023]

【表1】 [Table 1]

【0024】表1より、GaNをGaNターゲットとZ
nOターゲットの面積比で5%の添加量のときは、n型
伝導性を示したが、10%以上の添加量で添加すること
によりp型ZnO薄膜が実現できたことが分かる。実施
例1の場合、得られたZnO薄膜のX線光電子スペクト
ル(XPS)によってGa濃度は約5%であることが分
かった。
Table 1 shows that GaN is a GaN target and Z
When the addition amount was 5% in terms of the area ratio of the nO target, n-type conductivity was exhibited. However, it can be seen that the p-type ZnO thin film was realized by adding the addition amount of 10% or more. In the case of Example 1, the Ga concentration was found to be about 5% by X-ray photoelectron spectrum (XPS) of the obtained ZnO thin film.

【0025】表1に示すGaN 添加量10%の実施例
2の場合に得られたZnO薄膜のVan der Pa
uwによる電気特性の測定において、移動度18.5c
2/V・sec,キャリア密度9.0×1015
-3、抵抗率37.6Ωcmのp型ZnO薄膜ができた
ことが分かった。このことから、同時ドーピング法を用
いたRFスパッタリング法によってp型ZnO薄膜の作
成が可能であることが示された。
The van der Pa of the ZnO thin film obtained in Example 2 with the GaN addition amount of 10% shown in Table 1 was used.
In the measurement of electrical characteristics by uw, the mobility was 18.5c.
m 2 / V · sec, carrier density 9.0 × 10 15 c
It was found that a p-type ZnO thin film having m −3 and a resistivity of 37.6 Ωcm was formed. This indicates that a p-type ZnO thin film can be formed by an RF sputtering method using a simultaneous doping method.

【0026】実施例3 酸素分圧比を、O2/(O2+N2)=50%とした以外
は、実施例1と同じ条件でスパッタリングした。
Example 3 Sputtering was performed under the same conditions as in Example 1 except that the oxygen partial pressure ratio was changed to O 2 / (O 2 + N 2 ) = 50%.

【0027】実施例4 酸素分圧比を、O2/(O2+N2)=70%とした以外
は、実施例1と同じ条件でスパッタリングした。
Example 4 Sputtering was carried out under the same conditions as in Example 1 except that the oxygen partial pressure ratio was O 2 / (O 2 + N 2 ) = 70%.

【0028】比較例3 酸素を無添加とした以外は、実施例1と同じ条件でスパ
ッタリングした。
Comparative Example 3 Sputtering was performed under the same conditions as in Example 1 except that oxygen was not added.

【0029】表2に、ZnO薄膜作製中の酸素分圧比と
電気的特性の関係を示す。p型実現のためには、スパッ
タガス中の酸素添加量が或る程度以上必要であることを
示している。したがって、低抵抗p型ZnO薄膜の実現
には、基板温度などのスパッタリング条件に応じてGa
N添加量と、スパッタガス中の酸素添加量の制御が条件
として必要であることが分かる。
Table 2 shows the relationship between the oxygen partial pressure ratio during the preparation of the ZnO thin film and the electrical characteristics. This indicates that a certain amount or more of oxygen is required to be added to the sputtering gas in order to realize the p-type. Therefore, in order to realize a low-resistance p-type ZnO thin film, the Ga
It can be seen that it is necessary to control the amount of added N and the amount of added oxygen in the sputtering gas as conditions.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明の方法により、高濃度までp型ド
ーパントを安定にドープすることが可能となり、その結
果、p型ZnO薄膜の製造が容易となるため、ZnO基
板のPN接合太陽電池や、液晶にも応用が可能となり、
可視光から紫外光領域にわたる光エレクトロニクス材料
として高効率化や高性能化に貢献することができる。
According to the method of the present invention, a p-type dopant can be stably doped to a high concentration, and as a result, a p-type ZnO thin film can be easily manufactured. , Can be applied to liquid crystal,
It can contribute to higher efficiency and higher performance as an optoelectronic material ranging from visible light to ultraviolet light.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例1、2、比較例1、2のZnO
薄膜の紫外可視光分光高度計による透過スペクトルを示
すグラフである。
FIG. 1 shows ZnO of Examples 1 and 2 and Comparative Examples 1 and 2.
It is a graph which shows the transmission spectrum by the ultraviolet visible light spectroscopy altimeter of a thin film.

【図2】図2は、実施例1のZnO薄膜のX線回折結果
を示すグラフである。
FIG. 2 is a graph showing an X-ray diffraction result of the ZnO thin film of Example 1.

【図3】図3は、実施例1、2、比較例1、2のGaN
ターゲットとZnOターゲットの面積比とZnO薄膜の
結晶性の関係を示すグラフである。
FIG. 3 shows GaN of Examples 1 and 2 and Comparative Examples 1 and 2.
4 is a graph showing the relationship between the area ratio of a target and a ZnO target and the crystallinity of a ZnO thin film.

【図4】図4は、実施例2のZnO薄膜のバンドギャッ
プを示すグラフである。
FIG. 4 is a graph showing a band gap of a ZnO thin film of Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若原 昭浩 愛知県豊橋市北山町東浦2−1高師住宅7 −302 Fターム(参考) 4K029 AA09 BA49 BC09 CA05 DC05 DC09 DC15 DC35 5F041 AA21 CA41 CA54 CA55 CA57 CA67 5F051 AA09 CA02 CB15 CB18 GA04 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Akihiro Wakahara 2-1 Hoshiura, Kitayama-cho, Toyohashi-shi, Aichi 7-302 Fushi term (reference) 4K029 AA09 BA49 BC09 CA05 DC05 DC09 DC15 DC35 5F041 AA21 CA41 CA54 CA55 CA57 CA67 5F051 AA09 CA02 CB15 CB18 GA04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 p型酸化亜鉛薄膜を形成する際に、ター
ゲットと不純物ドーピング物質としてGaNターゲット
を用いることによりZnO薄膜にGaとNを別々に同時
ドーピングするか、またはGaNをドーピングすること
を特徴とする低抵抗p型酸化亜鉛薄膜の製造方法。
When forming a p-type zinc oxide thin film, Ga and N are separately and simultaneously doped into a ZnO thin film by using a GaN target as a target and an impurity doping material, or GaN is doped. A method for producing a low-resistance p-type zinc oxide thin film.
【請求項2】 薄膜を形成する方法がスパッタリング法
であることを特徴とする請求項1記載の低抵抗p型酸化
亜鉛薄膜の製造方法。
2. The method for producing a low-resistance p-type zinc oxide thin film according to claim 1, wherein the method for forming the thin film is a sputtering method.
JP2000294159A 2000-09-27 2000-09-27 Method for manufacturing low resistivity p-type zinc oxide thin film Pending JP2002105625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000294159A JP2002105625A (en) 2000-09-27 2000-09-27 Method for manufacturing low resistivity p-type zinc oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000294159A JP2002105625A (en) 2000-09-27 2000-09-27 Method for manufacturing low resistivity p-type zinc oxide thin film

Publications (1)

Publication Number Publication Date
JP2002105625A true JP2002105625A (en) 2002-04-10

Family

ID=18776820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000294159A Pending JP2002105625A (en) 2000-09-27 2000-09-27 Method for manufacturing low resistivity p-type zinc oxide thin film

Country Status (1)

Country Link
JP (1) JP2002105625A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733895B2 (en) 2001-09-28 2004-05-11 Murata Manufacturing Co., Ltd. ZnO film, method for manufacturing the same, and luminescent element including the same
JP2005039172A (en) * 2003-03-07 2005-02-10 Kwangu Inst Of Science & Technology Zinc oxide semiconductor manufacturing method
US6979842B2 (en) 2002-12-31 2005-12-27 Osram Opto Semiconductors Gmbh Opto-electronic component with radiation-transmissive electrical contact layer
KR100739457B1 (en) 2005-08-26 2007-07-19 인하대학교 산학협력단 Method for fabricating ZnO thin film doped with metal using magnetron co-sputtering
CN100337336C (en) * 2003-12-05 2007-09-12 中国科学院上海硅酸盐研究所 Zinc oxide homogeneous p-n junction material and method for making same
KR100794755B1 (en) 2006-07-03 2008-01-15 전남대학교산학협력단 Method for synthesizing epitaxial p-type zinc oxide thin film growth by co-doping of ? group elements and nitrogen
JP2009035790A (en) * 2007-08-03 2009-02-19 Nikko Kinzoku Kk Sintered compact, method for producing transparent electroconductive film, and transparent electroconductive film
DE112007001605T5 (en) 2006-07-06 2009-06-18 National Institute Of Advanced Industrial Science And Technology Zinc oxide thin film of the p-type and method for forming the same
US7973379B2 (en) * 2005-12-26 2011-07-05 Citizen Holdings Co., Ltd. Photovoltaic ultraviolet sensor
CN103103478A (en) * 2013-01-16 2013-05-15 浙江工业大学 Ag-S co-doped p-type ZnO film and preparation method thereof
JP2013175507A (en) * 2012-02-23 2013-09-05 Shimane Univ Photoelectric conversion element and method for manufacturing the same
CN103794692A (en) * 2014-01-27 2014-05-14 河南科技大学 Heterojunction luminescent device based on zinc oxide and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733895B2 (en) 2001-09-28 2004-05-11 Murata Manufacturing Co., Ltd. ZnO film, method for manufacturing the same, and luminescent element including the same
US6979842B2 (en) 2002-12-31 2005-12-27 Osram Opto Semiconductors Gmbh Opto-electronic component with radiation-transmissive electrical contact layer
JP2005039172A (en) * 2003-03-07 2005-02-10 Kwangu Inst Of Science & Technology Zinc oxide semiconductor manufacturing method
CN100337336C (en) * 2003-12-05 2007-09-12 中国科学院上海硅酸盐研究所 Zinc oxide homogeneous p-n junction material and method for making same
KR100739457B1 (en) 2005-08-26 2007-07-19 인하대학교 산학협력단 Method for fabricating ZnO thin film doped with metal using magnetron co-sputtering
US7973379B2 (en) * 2005-12-26 2011-07-05 Citizen Holdings Co., Ltd. Photovoltaic ultraviolet sensor
KR100794755B1 (en) 2006-07-03 2008-01-15 전남대학교산학협력단 Method for synthesizing epitaxial p-type zinc oxide thin film growth by co-doping of ? group elements and nitrogen
DE112007001605T5 (en) 2006-07-06 2009-06-18 National Institute Of Advanced Industrial Science And Technology Zinc oxide thin film of the p-type and method for forming the same
JP2009035790A (en) * 2007-08-03 2009-02-19 Nikko Kinzoku Kk Sintered compact, method for producing transparent electroconductive film, and transparent electroconductive film
JP2013175507A (en) * 2012-02-23 2013-09-05 Shimane Univ Photoelectric conversion element and method for manufacturing the same
CN103103478A (en) * 2013-01-16 2013-05-15 浙江工业大学 Ag-S co-doped p-type ZnO film and preparation method thereof
CN103103478B (en) * 2013-01-16 2014-12-17 浙江工业大学 Ag-S co-doped p-type ZnO film and preparation method thereof
CN103794692A (en) * 2014-01-27 2014-05-14 河南科技大学 Heterojunction luminescent device based on zinc oxide and preparation method thereof

Similar Documents

Publication Publication Date Title
US7323356B2 (en) LnCuO(S,Se,Te)monocrystalline thin film, its manufacturing method, and optical device or electronic device using the monocrystalline thin film
EP1258928B1 (en) Ultraviolet light emitting diode and ultraviolet laser diode
EP1313134B1 (en) Semiconductor polysilicon component and method of manufacture thereof
US6852623B2 (en) Method for manufacturing zinc oxide semiconductors
JP5102357B2 (en) Substrate for epitaxial growth of gallium nitride
US7172813B2 (en) Zinc oxide crystal growth substrate
JP2002105625A (en) Method for manufacturing low resistivity p-type zinc oxide thin film
JP2007305975A (en) Semiconductor device containing group iii oxide semiconductor
WO1996001549A1 (en) Ternary compound film and manufacturing method therefor
TW200848556A (en) Single crystal of ZnO mixed crystal containing Mg, laminated body thereof and method for manufacturing them
JPS62173775A (en) Zns blue color light emitting element
TW200541070A (en) Semiconductor material and semiconductor element using the same
WO2006073189A1 (en) Functional device and method for forming oxide material
JP2014067913A (en) ZnO-BASED SEMICONDUCTOR ELEMENT AND ZnO-BASED SEMICONDUCTOR ELEMENT MANUFACTURING METHOD
KR100806681B1 (en) Fabrication of highly conductive zno using low temperature rapid thermal annealing
JP2000196146A (en) Semiconductor light emitting element
KR100794755B1 (en) Method for synthesizing epitaxial p-type zinc oxide thin film growth by co-doping of ? group elements and nitrogen
KR20070021342A (en) Method for ZnO thin film doped with metal using magnetron sputtering method
JP2010056464A (en) Semiconductor light emitting element and method of manufacturing same
JP5408564B2 (en) Amorphous substrate
JPS61276384A (en) Blue light emitting element
Pirposhte et al. ZnO Thin Films: Fabrication Routes, and Applications
JP2009188085A (en) Growth method of single-crystal oxychalcogenide system thin film, semiconductor laminated structure, and method for manufacturing semiconductor device, and the semiconductor device
KR101228649B1 (en) Manufacturing method of multi-component metal oxides thin film having superlattice structure in thermoelectric module
Pathak et al. Comparative Study of Synthesis of P-type ZnO Nanostructures

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617