JP2007305975A - Semiconductor device containing group iii oxide semiconductor - Google Patents

Semiconductor device containing group iii oxide semiconductor Download PDF

Info

Publication number
JP2007305975A
JP2007305975A JP2007101353A JP2007101353A JP2007305975A JP 2007305975 A JP2007305975 A JP 2007305975A JP 2007101353 A JP2007101353 A JP 2007101353A JP 2007101353 A JP2007101353 A JP 2007101353A JP 2007305975 A JP2007305975 A JP 2007305975A
Authority
JP
Japan
Prior art keywords
semiconductor
group iii
thin film
layer
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007101353A
Other languages
Japanese (ja)
Inventor
Takashi Koida
崇 鯉田
Michio Kondo
道雄 近藤
Hitoshi Tanpo
衆志 反保
Sakae Niki
栄 仁木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007101353A priority Critical patent/JP2007305975A/en
Publication of JP2007305975A publication Critical patent/JP2007305975A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To find out a group III oxide semiconductor having a hexagonal structure capable of forbidden band width control; and to provide a semiconductor device, a photoelectric conversion device, an ultraviolet ray detection device, an oxide light-emitting device, and a light-emitting device that contain the group III oxide semiconductor. <P>SOLUTION: The semiconductor device contains group III oxide having a composition expressed by formula: A<SB>2</SB>O<SB>3</SB>, wherein A includes a mixed crystal semiconductor thin film made by solving at least two elements selected from In, Ga, Al, and B with thin-film technique. A solid solubility thin film is obtained having a composition beyond thermodynamic solid solubility limit area in a bulk, and a mixed crystal thin film is also obtained having a thermodynamically unstable hexagonal structure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は光電変換素子、紫外線検出素子、発光ダイオード、半導体レーザ、電界効果型トランジスタなどを含む半導体素子を作製するためのIII族酸化物半導体構成材料ならびに半導体素子に関する。   The present invention relates to a group III oxide semiconductor constituent material and a semiconductor element for producing a semiconductor element including a photoelectric conversion element, an ultraviolet ray detection element, a light emitting diode, a semiconductor laser, a field effect transistor and the like.

従来より高付加価値な半導体デバイスを製造する目的で禁制帯幅の大きい半導体の結晶成長及びデバイス製造技術が急速に発展している。中でもIII族窒化物半導体(In1−x−y−zGaAlN)を用いた可視−紫外域発光素子、パワートランジスタ、高移動度デバイスなどが既に実用段階に入っている。一方、例えば特許文献1、特許文献2に示されているようにII族酸化物半導体(Zn1−x−yMgCdO)を用いた青色発光素子、透明トランジスタも近年急速に研究開発され脚光をあびている。
これらの半導体の大きな特徴としては、Si、C、GaAs、InP系材料の立方晶構造と異なり六方晶構造を有していることがあげられる。半導体素子製造にはヘテロエピタキシャル接合が必須であるが、これら六方晶構造の半導体とのエピタキシャル接合可能材料は、絶縁物としては、特許文献3、特許文献4に示されているようにAl、LiGaO、ScMgAlO、LiGaO、LiAlO、NaGaO、NaAlO、KGaO、KAlOなど、半導体としては、In1−x−y−zGaAlN、Zn1−x−yMgCdO、6H−SiCなど挙げられ、近年急速に研究開発が為されている。
一方、III族酸化物は、イオン性がIII族窒化物とII族酸化物の間と考えられる。そのため、III族窒化物より結合のイオン性が高いため、構造の乱れに起因した電子や正孔の輸送特性の劣化が小さく、II族酸化物より結合のイオン性が低いため、電荷補償によるキャリア制御の困難が少なく、III族窒化物とII族酸化物の短所を補った新しい半導体材料として期待できる。
現在までに実用化されている代表的なIII族酸化物としては、Sn添加により縮退させたIn:Sn(ITO)が挙げられ、フラットパネルディスプレイ・光電変換素子・青色発光ダイオードの透明電極等として幅広く用いられているが、透明電極以外でIII族酸化物をワイドギャップ半導体として用いた半導体素子は現在のところない。
2. Description of the Related Art Conventionally, semiconductor crystal growth and device manufacturing technology having a large forbidden band have been rapidly developed for the purpose of manufacturing semiconductor devices with high added value. Of these Group III nitride semiconductor (In 1-x-y- z Ga x Al y B z N) visible with - ultraviolet region light emitting element, a power transistor, and high mobility devices already in practical use. On the other hand, as shown in Patent Document 1 and Patent Document 2, for example, blue light-emitting elements and transparent transistors using Group II oxide semiconductors (Zn 1-xy Mg x Cd y O) have been rapidly researched and developed in recent years. It is in the limelight.
A major feature of these semiconductors is that they have a hexagonal crystal structure unlike the cubic structure of Si, C, GaAs, and InP-based materials. Although heteroepitaxial bonding is essential for the manufacture of semiconductor elements, materials that can be epitaxially bonded to these hexagonal semiconductors are Al 2 O as shown in Patent Documents 3 and 4 as insulators. 3 , LiGaO 2 , ScMgAlO 4 , LiGaO 2 , LiAlO 2 , NaGaO 2 , NaAlO 2 , KGaO 2 , KAlO 2 and the like semiconductors include In 1-xyz Ga x Al y B z N, Zn 1− x-y Mg x Cd y O , is like 6H-SiC, is rapidly research have been made in recent years.
On the other hand, the group III oxide is considered to have an ionicity between the group III nitride and the group II oxide. Therefore, since the bond ionicity is higher than that of group III nitride, the deterioration of electron and hole transport properties due to structural disorder is small, and the bond ionicity is lower than that of group II oxide. It is expected to be a new semiconductor material that is less difficult to control and compensates for the disadvantages of Group III nitrides and Group II oxides.
Representative group III oxides in practical use to date include In 2 O 3 : Sn (ITO) degenerated by addition of Sn, and transparent for flat panel displays, photoelectric conversion elements, and blue light emitting diodes. Although it is widely used as an electrode or the like, there is currently no semiconductor element using a group III oxide as a wide gap semiconductor other than a transparent electrode.

特開2004−207441号公報JP 2004-207441 A 特開2000−150900号公報JP 2000-150900 A 特開2003−81692号公報JP 2003-81692 A 特開2000−277534号公報JP 2000-277534 A Swanson et al.,Natl.Bur.Stand.(U.S.),Circ.539,5(1955),26.(JCPDS:06−0416)Swanson et al. Natl. Bur. Stand. (US), Circ. 539, 5 (1955), 26. (JCPDS: 06-0416) Welton−Holzer,J.,McCarthy,G.,North Dakota State University,Fargo,North Dakota,USA.,ICDD Grant−in−Aid,(1989)(JCPDS:41−1103)Welton-Holzer, J.A. McCarthy, G .; , North Dakota State University, Fargo, North Dakota, USA. , ICDD Grant-in-Aid, (1989) (JCPDS: 41-1103) Welton−Holzer,J.,McCarthy,G.,North Dakota State University,Fargo,North Dakota,USA.,ICDD Grant−in−Aid,(1989)(JCPDS:42−1468)Welton-Holzer, J.A. McCarthy, G .; , North Dakota State University, Fargo, North Dakota, USA. , ICDD Grant-in-Aid, (1989) (JCPDS: 42-1468) Shannon,Prewitt.,J.Inorg. Nucl. Chem.,30,1389,(1968)(JCPDS:21−0333)Shannon, Prewitt. , J .; Inorg. Nucl. Chem. , 30, 1389, (1968) (JCPDS: 21-0333) D.D.Edwards,P.E.Folkins,T.O.Maso,J.Am.Ceram.Soc.80(1997)253.D. D. Edwards, P.M. E. Folkins, T .; O. Maso, J .; Am. Ceram. Soc. 80 (1997) 253. G.Patzke and M.Binnewies,Sol.State Sci.2(2000)689.G. Patzke and M.M. Binnewies, Sol. State Sci. 2 (2000) 689. R.J.Cava,J.M.Phillips,J.Kwo,G.A. Thomas,R.B.van Dover,S.A.Carter,J.J.Krajewski,W.F.Peck,Jr.,J.H.Marshall,and D.H.Rapkine,Appl.Phys.Lett.64(1994)2071.R. J. et al. Cava, J .; M.M. Phillips, J. et al. Kwo, G .; A. Thomas, R.A. B. van Dover, S.M. A. Carter, J.A. J. et al. Krajewski, W.M. F. Peck, Jr. , J .; H. Marshall, and D.M. H. Rapkin, Appl. Phys. Lett. 64 (1994) 2071. T.Minami,S.Takata,and T.Kakumu,J.Vac.Sci.Technol.A 14(1996)1689.T. T. et al. Minami, S .; Takata, and T.K. Kakumu, J. et al. Vac. Sci. Technol. A 14 (1996) 1689.

しかしながら、上記に述べたIII族酸化物を半導体素子として用いるには、以下のような課題が存在する。
(1)III族酸化物としてのIn、Ga、Alはそれぞれ非特許文献1、非特許文献2、非特許文献3に示されるようにビックスバイト構造(立方晶)、β−Ga構造(単斜晶)、コランダム構造(六方晶)とそれぞれ結晶構造が異なる。そのため、In2−2x−2yGa2xAl2y系III族酸化物は完全固溶系材料ではなく、混晶領域が非常に限られていた。例えば非特許文献1、非特許文献2に示されているIn及びGaの熱力学的安定相図を図1に示す。結晶構造はそれぞれ立方晶及び単斜晶であるが、それぞれの固溶限界は1000℃においてGaモル分率約5%以下、約57%以上であり、約5%より大きく約57%未満では、立方晶と単斜晶の相分離が起こることが報告されている。
(2)III族酸化物は、現在半導体素子として用いられているIV族半導体(C、Si、Ge、SiCなど)およびIII−V族半導体(GaP、GaAs、InPなど)の立方晶構造、III族窒化物半導体(In1−x−y−zGaAlN)およびII族酸化物半導体(Zn1−x−yMgCdO)の六方晶構造と結晶構造あるいは格子定数が大きく異なる。そのため、前記IV族、III−V族、III族窒化物、II族酸化物半導体薄膜素子で用いられている基板の上にIII族酸化物のエピタキシャル薄膜及びエピタキシャル成長した半導体素子を作製することが出来なかった。また、同様の理由で前記IV族、III−V族、III族窒化物、II族酸化物半導体薄膜とヘテロエピタキシャル接合させた半導体素子を作製することが出来なかった。
(3)In、Ga、Alの禁制帯幅はそれぞれ3.6eV、4.8eV、約9eVと紫外域から極紫外域領域に及ぶが、(1)で述べたように混晶領域が非常に限られていたため、禁制帯幅を制御する観点からのIII族酸化物混晶半導体及びそれを用いたヘテロ接合を有する半導体素子は今までなかった。また、六方晶構造を有するIII族窒化物あるいはII族酸化物混晶を用いて大きな禁制帯幅差を有するヘテロ接合素子を作製することは困難である。具体的には、例えばAlN(禁制帯幅:6.2eV)はGaN(禁制帯幅:3.4eV)よりも格段に大きい禁制帯幅を有するが、AlNモル分率増大に伴い結晶性が劣悪となる。また、Zn1−xMgOにおいては、固溶限はMgOモル分率約33%(禁制帯幅:3.9eV)であり、それ以上では結晶構造の異なる立方晶構造と六方晶構造の相分離が生じる。そのため、これらの半導体を用いた半導体素子を作製する際には、禁制帯幅の大きい半導体層作製が困難であるという問題が素子を実現する上で障害となる。
ここで、半導体素子は一般に半導体の機能を備えた受光素子、発光素子、電子素子を含む。
本発明は、上記問題点に鑑み、禁制帯幅制御が可能なIII族酸化物半導体あるいは上記III族窒化物半導体あるいはII族酸化物半導体とエピタキシャル成長が可能な結晶構造を有するIII族酸化物半導体を見つけ、これを用いてIII族酸化物半導体を含む半導体素子、光電変換素子、紫外線検出素子、発光素子、電界効果型トランジスタを含む半導体素子を提供することにある。
However, the use of the group III oxide described above as a semiconductor device has the following problems.
(1) In 2 O 3 , Ga 2 O 3 , and Al 2 O 3 as group III oxides have bixbite structures (cubic crystals) as shown in Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3, respectively. ), Β-Ga 2 O 3 structure (monoclinic crystal) and corundum structure (hexagonal crystal), respectively. Therefore, the In 2-2x-2y Ga 2x Al 2y O 3 group III oxide is not a completely solid solution material, and the mixed crystal region is very limited. For example, FIG. 1 shows thermodynamic stability phase diagrams of In 2 O 3 and Ga 2 O 3 shown in Non-Patent Document 1 and Non-Patent Document 2. The crystal structures are cubic and monoclinic, respectively, but the respective solid solution limits are about 5% or less and about 57% or more of Ga 2 O 3 molar fraction at 1000 ° C., more than about 5% and about 57%. Below, it has been reported that cubic and monoclinic phase separation occurs.
(2) A group III oxide is a cubic structure of a group IV semiconductor (C, Si, Ge, SiC, etc.) and a group III-V semiconductor (GaP, GaAs, InP, etc.) currently used as semiconductor elements, III nitride semiconductor (in 1-x-y- z Ga x Al y B z N) and group II oxide semiconductor (Zn 1-x-y Mg x Cd y O) hexagonal structure of the crystal structure or lattice constant Are very different. Therefore, a Group III oxide epitaxial thin film and an epitaxially grown semiconductor device can be fabricated on the substrate used in the Group IV, III-V, Group III nitride, and Group II oxide semiconductor thin film devices. There wasn't. For the same reason, a semiconductor element heteroepitaxially bonded to the group IV, group III-V, group III nitride, or group II oxide semiconductor thin film could not be fabricated.
(3) The forbidden band widths of In 2 O 3 , Ga 2 O 3 , and Al 2 O 3 are 3.6 eV, 4.8 eV, and about 9 eV, respectively, ranging from the ultraviolet region to the extreme ultraviolet region. As described above, since the mixed crystal region is very limited, a group III oxide mixed crystal semiconductor from the viewpoint of controlling the forbidden band width and a semiconductor device having a heterojunction using the same have not been available. In addition, it is difficult to manufacture a heterojunction device having a large forbidden band width using a group III nitride or group II oxide mixed crystal having a hexagonal crystal structure. Specifically, for example, AlN (forbidden band width: 6.2 eV) has a much larger forbidden band width than GaN (forbidden band width: 3.4 eV), but the crystallinity deteriorates as the AlN molar fraction increases. It becomes. Further, in Zn 1-x Mg x O, the solid solubility limit is about 33% MgO molar fraction (forbidden band width: 3.9 eV), and above that, the cubic structure and the hexagonal structure have different crystal structures. Phase separation occurs. Therefore, when a semiconductor element using these semiconductors is manufactured, a problem that it is difficult to manufacture a semiconductor layer having a large forbidden band becomes an obstacle to realizing the element.
Here, the semiconductor element generally includes a light receiving element, a light emitting element, and an electronic element having a semiconductor function.
In view of the above problems, the present invention provides a group III oxide semiconductor capable of forbidden band width control or a group III oxide semiconductor having a crystal structure capable of epitaxial growth with the above group III nitride semiconductor or group II oxide semiconductor. It is to provide a semiconductor element including a semiconductor element including a group III oxide semiconductor, a photoelectric conversion element, an ultraviolet ray detection element, a light emitting element, and a field effect transistor using the same.

本発明は、上記課題を解決するため、
1.半導体素子は、Aが任意の元素記号を表す時、Aなる構成を有すると共に、Aの元素がIn、Ga、アルミニウムAl、ボロンBの少なくとも二つよりなるIII族酸化物半導体を含み、前記In、Ga、アルミニウムAl、ボロンBの少なくとも二つの元素の組成比を変化させることによって半導体薄膜の禁制帯幅を変調する作用を用いるものとする。
2. III族酸化物を含む半導体素子は、熱力学的に準安定な六方晶構造あるいは歪んだ六方晶構造のIII族酸化物薄膜を有する。熱力学的に準安定な構造を広い組成領域で安定に形成するため、パルスレーザー堆積法、スパッタ法、真空蒸着法、分子線エピタキシー法、有機金属気相成長法など非平衡プロセスである薄膜製造法を用いて、準安定構造と面内の格子不整合率の小さい基板あるいは薄膜の上にIII族酸化物薄膜を形成することが好ましい。
3.In、Ga、アルミニウムAl、ボロンBの少なくとも二つの元素の組成比を変化させることによって禁制帯幅を制御できるIII族酸化物半導体薄膜をカルコパイライト系太陽電池の窓層として用いて光電変換素子を構成する。
4.紫外領域の光に対し光感度を有するIII族酸化物を光検知材料として光検知素子を構成する。ここでいう光検知素子は、一対の電極と該電極間に挟まれた光検知材料層を有し、光検知材料層に前記III族酸化物薄膜を用いた素子、一対の電極と該電極間に挟まれたp型とn型の半導体層を有し、すくなくとも一つの半導体層に前記III族酸化物薄膜を用いた素子である。
5.In、Ga、アルミニウムAl、ボロンBの少なくとも二つの元素の組成比を変化させることによって禁制帯幅を制御できるIII族酸化物半導体薄膜を発光素子のクラッド層として用いて発光素子を構成する。ここでいう発光素子は、基板上に少なくともn型クラッド層、活性層、p型クラッド層を含み、前記活性層より禁制帯幅の大きいクラッド層としてIII族酸化物半導体薄膜を用いた素子である。ここでいう活性層はIII族窒化物半導体あるいはII族酸化物半導体薄膜などが含まれるが、これらに限定されない。
6.電界効果型トランジスタの活性層としてIII族酸化物半導体を用いる。
7.In、Ga、アルミニウムAl、ボロンBの少なくとも二つの元素の組成比を変化させることによって禁制帯幅および格子定数を制御できる六方晶構造III族酸化物薄膜を活性層あるいは障壁層として用いて半導体素子を構成する。ここでいう半導体素子は、活性層として用いる半導体薄膜と障壁層として用いる絶縁体あるいは半導体薄膜界面に発生する二次元電子ガスあるいは二次元正孔ガスの流れを制御することを特徴とし、活性層あるいは障壁層の少なくとも一つに六方晶構造III族酸化物薄膜を用い、In、Ga、アルミニウムAl、ボロンBの少なくとも二つの元素の組成比を変化させることによって活性層/障壁層間の禁制帯幅のオフセット量および薄膜内の歪み量を厳密に制御することが出来る。
In order to solve the above problems, the present invention
1. The semiconductor element includes a group III oxide semiconductor having a configuration of A 2 O 3 when A represents an arbitrary element symbol and an element of A including at least two of In, Ga, aluminum Al, and boron B. It is assumed that the effect of modulating the forbidden band width of the semiconductor thin film by changing the composition ratio of at least two elements of In, Ga, aluminum Al, and boron B is used.
2. A semiconductor element containing a group III oxide has a group III oxide thin film having a thermodynamically metastable hexagonal crystal structure or a distorted hexagonal crystal structure. Thin film production that is a non-equilibrium process such as pulsed laser deposition, sputtering, vacuum deposition, molecular beam epitaxy, metal organic chemical vapor deposition, etc. to stably form thermodynamically metastable structures in a wide composition range It is preferable to form a group III oxide thin film on a substrate or thin film having a metastable structure and a small in-plane lattice mismatch ratio using the method.
3. Using a group III oxide semiconductor thin film that can control the forbidden band width by changing the composition ratio of at least two elements of In, Ga, aluminum Al, and boron B as a window layer of a chalcopyrite solar cell, Constitute.
4). A photodetecting element is constructed using a group III oxide having photosensitivity to light in the ultraviolet region as a photodetecting material. The photodetecting element here includes a pair of electrodes and a photodetecting material layer sandwiched between the electrodes, and an element using the group III oxide thin film for the photodetecting material layer, the pair of electrodes and the electrode This is an element having a p-type and n-type semiconductor layer sandwiched between two layers and using the group III oxide thin film as at least one semiconductor layer.
5). A light-emitting element is formed using a group III oxide semiconductor thin film that can control the forbidden band width by changing the composition ratio of at least two elements of In, Ga, aluminum Al, and boron B as a cladding layer of the light-emitting element. Here, the light emitting element is an element that includes at least an n-type cladding layer, an active layer, and a p-type cladding layer on a substrate, and uses a group III oxide semiconductor thin film as a cladding layer having a larger forbidden band width than the active layer. . The active layer herein includes a group III nitride semiconductor or a group II oxide semiconductor thin film, but is not limited thereto.
6). A group III oxide semiconductor is used as the active layer of the field effect transistor.
7). Semiconductor device using a hexagonal group III oxide thin film that can control the forbidden band width and lattice constant by changing the composition ratio of at least two elements of In, Ga, aluminum Al, and boron B as an active layer or a barrier layer Configure. The semiconductor element here is characterized by controlling the flow of a two-dimensional electron gas or a two-dimensional hole gas generated at the interface between a semiconductor thin film used as an active layer and an insulator used as a barrier layer or a semiconductor thin film, or an active layer or A hexagonal group III oxide thin film is used for at least one of the barrier layers, and the forbidden band width between the active layer and the barrier layer is changed by changing the composition ratio of at least two elements of In, Ga, aluminum Al, and boron B. The amount of offset and the amount of distortion in the thin film can be strictly controlled.

具体的には、以下のようになる。
(1)半導体素子は、Aを任意の元素記号としたとき、Aなる構成を有すると共に、Aの元素がIn、Ga、アルミニウムAl、ボロンBの少なくとも二つよりなるIII族酸化物半導体を含み、In、Ga、アルミニウムAl、ボロンBから選べられる少なくとも二つの元素の組成量を変化させることによって禁制帯幅を変調させたIII族酸化物半導体薄膜を有していることを特徴とする。
(2)上記(1)記載の半導体素子は、六方晶構造あるいは歪を有した六方晶構造のIII族酸化物半導体を有していることを特徴とする。
(3)光電変換素子は、基板側から順に第一の電極層、p型半導体層、窓層及び第二の電極層を含み、前記第二の電極層側から入射する光によって光起電力を発生させる光電変換素子であって、前記窓層を上記(1)又は(2)のいずれか1項記載のIII族酸化物半導体薄膜を有していることを特徴とする。
(4)上記(3)記載の光電変換素子は、p型半導体層を、Cu及びAgから選べられる少なくとも一つの元素と、In及びGaから選べられる少なくとも一つの元素と、Se及びSから選べれる少なくとも一つの元素とを含むp型の化合物半導体、またはCdTeとしたことを特徴とする光電変換素子。
(5)紫外線検出素子は、一対の電極と該電極間に挟まれた光検知材料層とを有する光検出素子であって、前記光検出層を、上記(1)又は(2)のいずれか1項記載のIII族酸化物半導体薄膜としたことを特徴とする。
(6)紫外線検出素子は、基板上に少なくともp型とn型の半導体層を有する紫外線検出素子であって、前記半導体層の少なくとも一つの半導体層を、上記(1)又は(2)のいずれか1項記載のIII族酸化物半導体薄膜としたことを特徴とする。
(7)上記(6)記載の紫外線検出素子は、半導体層として上記(1)又は(2)のいずれか1項記載のIII族酸化物半導体薄膜とIn、Ga、アルミニウムAl、ボロンBから選べられる少なくとも一つの元素とNを含むIII族窒化物半導体又はZn、Mg、Cdから選べられる少なくとも一つの元素とOを含むII族酸化物半導体であることを特徴とする紫外線検出素子。
(8)発光素子は、基板上に少なくともn型クラッド層、活性層、p型クラッド層を含む発光素子であって、前記活性層より禁制帯幅の大きいクラッド層として、上記(1)又は(2)のいずれか1項記載のIII族酸化物半導体薄膜を含むことを特徴とする発光素子。
(9)上記(8)記載の発光素子は、前記活性層をIn、Ga、アルミニウムAl、ボロンBから選べられる少なくとも一つの元素とNを含むIII族窒化物半導体又はZn、Mg、Cdから選べられる少なくとも一つの元素とOを含むII族酸化物半導体のいずれか1つとしたことを特徴とする発光素子。
(10)薄膜電界効果型トランジスタの活性層を上記(1)又は(2)のいずれか1項記載のIII族酸化物半導体薄膜とすることを特徴とする薄膜電界効果型トランジスタ。
(11)半導体素子は、基板上に少なくとも活性層と障壁層を含み、両者界面に発生する二次元電子ガスあるいは二次元正孔ガスの流れを制御する半導体素子であって、活性層あるいは障壁層の少なくとも一つに上記(1)又は(2)のいずれか1項記載のIII族酸化物半導体薄膜を含むことを特徴とする半導体素子。
(12)上記(11)記載の半導体素子は、活性層あるいは障壁層の少なくとも一つに前記III族窒化物半導体又はII族酸化物半導体薄膜を用いることを特徴とする半導体素子。
Specifically, it is as follows.
(1) The semiconductor element has a configuration of A 2 O 3 where A is an arbitrary element symbol, and a group III oxide in which the element of A is at least two of In, Ga, aluminum Al, and boron B A group III oxide semiconductor thin film including a semiconductor and having a forbidden band width modulated by changing a composition amount of at least two elements selected from In, Ga, aluminum Al, and boron B To do.
(2) The semiconductor element described in the above (1) is characterized by having a group III oxide semiconductor having a hexagonal crystal structure or a hexagonal crystal structure.
(3) The photoelectric conversion element includes a first electrode layer, a p-type semiconductor layer, a window layer, and a second electrode layer in order from the substrate side, and generates photovoltaic power by light incident from the second electrode layer side. A photoelectric conversion element to be generated, wherein the window layer has the group III oxide semiconductor thin film according to any one of (1) and (2).
(4) In the photoelectric conversion element according to (3), the p-type semiconductor layer can be selected from at least one element selected from Cu and Ag, at least one element selected from In and Ga, and Se and S. A photoelectric conversion element comprising a p-type compound semiconductor containing at least one element or CdTe.
(5) The ultraviolet detection element is a light detection element having a pair of electrodes and a light detection material layer sandwiched between the electrodes, and the light detection layer is either of the above (1) or (2) A group III oxide semiconductor thin film according to item 1 is used.
(6) The ultraviolet detection element is an ultraviolet detection element having at least p-type and n-type semiconductor layers on a substrate, wherein at least one semiconductor layer of the semiconductor layer is any one of the above (1) and (2). The group III oxide semiconductor thin film according to claim 1 is used.
(7) The ultraviolet detection element according to (6) above may be selected from the group III oxide semiconductor thin film according to any one of (1) or (2) above, In, Ga, aluminum Al, and boron B as the semiconductor layer. An ultraviolet detection element comprising a group III nitride semiconductor containing at least one element and N or a group II oxide semiconductor containing at least one element selected from Zn, Mg, and Cd and O.
(8) The light emitting device is a light emitting device including at least an n-type clad layer, an active layer, and a p-type clad layer on a substrate, and the clad layer having a larger forbidden band width than the active layer is the above (1) or ( A light-emitting device comprising the group III oxide semiconductor thin film according to any one of 2).
(9) In the light emitting device according to (8), the active layer may be selected from a group III nitride semiconductor containing at least one element selected from In, Ga, aluminum Al, and boron B and N, or Zn, Mg, and Cd. A light-emitting element comprising any one of Group II oxide semiconductors containing at least one element and O.
(10) A thin film field effect transistor characterized in that the active layer of the thin film field effect transistor is the group III oxide semiconductor thin film according to any one of (1) and (2).
(11) A semiconductor element is a semiconductor element that includes at least an active layer and a barrier layer on a substrate and controls the flow of a two-dimensional electron gas or two-dimensional hole gas generated at the interface between the active layer and the barrier layer. A semiconductor element comprising the group III oxide semiconductor thin film according to any one of the above (1) and (2) in at least one of the above.
(12) The semiconductor device according to (11), wherein the group III nitride semiconductor or group II oxide semiconductor thin film is used for at least one of an active layer and a barrier layer.

本発明のIII族酸化物半導体(In2−2x−2y−2zGa2xAl2y2z)薄膜は、In、Ga、アルミニウムAl、ボロンBから選ばれる少なくとも二つの元素の組成量を変化させることにより、格子定数制御および禁制帯幅制御が可能な禁制帯幅の大きい半導体である上、酸化亜鉛系II族酸化物半導体及びIII族窒化物半導体の面内格子定数に対して極めて格子不整合率の小さい六方晶構造酸化物薄膜結晶を得ることが出来る。
本発明のIII族酸化物半導体をカルコパイライト系太陽電池の窓層として用い、上記組成量を変化させることにより、光吸収層に用いたカルコパイライト構造化合物との伝導帯オフセットの調整が出来、高効率なカルコパイライト系薄膜太陽電池を得ることが出来る。
また、酸化亜鉛系II族酸化物半導体あるいはIII族窒化物半導体とへテロエピタキシャル成長を行う際、上記組成量変化によりこれらウルツ鉱型結晶の特徴である圧電分極電界あるいは自発分極電界の制御および界面での伝導帯および価電子帯のオフセット量の調整が可能であるため、内部量子効率の高い発光素子あるいは高移動度電子素子を得ることが出来る。
また、本発明のIII族酸化物半導体に、意図的にSn、Ge、Siなどの不純物を添加させることにより紫外域透明導電膜としての機能を付与することが容易に出来る。したがって、III族窒化物半導体(In1−x−y−zGaAlN)あるいはII族酸化物半導体(Zn1−x−yMgCdO)を活性層として用いた可視−紫外域発光素子においてn側オーミック電極あるいはp側オーミック電極を透明電極として用いることにより光取り出し効率の優れた発光素子を得ることも出来る。
Group III oxide semiconductor (In 2-2x-2y-2z Ga 2x Al 2y B 2z O 3) thin film of the present invention, changes In, Ga, aluminum Al, a composition of at least two elements selected from boron B In addition to being a semiconductor with a large forbidden band width that can control the lattice constant and the forbidden band width, the lattice constant is extremely small relative to the in-plane lattice constant of the zinc oxide group II oxide semiconductor and group III nitride semiconductor. A hexagonal structure oxide thin film crystal having a small matching rate can be obtained.
The group III oxide semiconductor of the present invention is used as a window layer of a chalcopyrite solar cell, and by changing the composition amount, the conduction band offset with the chalcopyrite structure compound used in the light absorption layer can be adjusted. An efficient chalcopyrite thin film solar cell can be obtained.
In addition, when heteroepitaxial growth is performed with a zinc oxide group II oxide semiconductor or group III nitride semiconductor, the change in the composition amount causes the piezoelectric polarization field or the spontaneous polarization field, which is characteristic of these wurtzite crystals, at the interface. Therefore, the light emitting element or the high mobility electronic element with high internal quantum efficiency can be obtained.
In addition, by intentionally adding impurities such as Sn, Ge, and Si to the group III oxide semiconductor of the present invention, a function as an ultraviolet transparent conductive film can be easily provided. Therefore, visible using a group III nitride semiconductor (In 1-x-y- z Ga x Al y B z N) or group II oxide semiconductor of (Zn 1-x-y Mg x Cd y O) as the active layer -In the ultraviolet light emitting device, a light emitting device having excellent light extraction efficiency can be obtained by using an n-side ohmic electrode or a p-side ohmic electrode as a transparent electrode.

以下に本発明の実施の形態を図面に基づき具体的に説明する。   Embodiments of the present invention will be specifically described below with reference to the drawings.

本発明のIII族酸化物半導体材料の一例としてIn2−2xGa2x(0≦x≦0.5)からなる薄膜を、パルスレーザー堆積法によって作製した実施形態について示す。レーザーはKrFエキシマレーザー(波長:248nm)を用い、原料ターゲットとしてIn2−2xGa2x(x=0、0.10、0.23、0.32、0.40、0.50)焼結体ターゲットを用いた。基板としては(111)YSZ(イットリア安定化ジルコニア)を用い、基板温度は650℃、酸素分圧は30mTorrにおいて製膜した。薄膜のGaモル分率はx線マイクロアナライザーを用い、異相の有無、固溶・非固溶の判断、結晶構造・格子定数はx線回折法を用い決定した。 As an example of the group III oxide semiconductor material of the present invention, an embodiment in which a thin film made of In 2-2x Ga 2x O 3 (0 ≦ x ≦ 0.5) is manufactured by a pulse laser deposition method will be described. The laser was a KrF excimer laser (wavelength: 248 nm), and In 2-2x Ga 2x O 3 (x = 0, 0.10, 0.23, 0.32, 0.40, 0.50) firing as a raw material target. A ligation target was used. As the substrate, (111) YSZ (yttria stabilized zirconia) was used, and the substrate temperature was 650 ° C. and the oxygen partial pressure was 30 mTorr. The Ga 2 O 3 molar fraction of the thin film was determined using an x-ray microanalyzer, the presence or absence of a heterogeneous phase, the determination of solid solution / non-solid solution, and the crystal structure / lattice constant were determined using an x-ray diffraction method.

図2に本発明の実施例であるYSZ基板上に設けたIn2−2xGa2x薄膜のx線回折パターン(横軸:2θ(回折角度)(°:degree)、縦軸:XRD(x線回折)強度の自然対数(LOG XRD強度)、モル分率(x)を0、0.10、0.23、0.32、0.40、0.50とした特性)、図3にYSZ基板、In薄膜、InGaO薄膜の{220}、{440}、{10―11}回折面のφスキャン測定パターン(横軸:φ(°:degree)、縦軸:XRD強度の自然対数(LOG XRD強度))、 図4及び図5に図2より得られた薄膜の面間方向の軸長d(Å)およびロッキングカーブの半値幅Δω(°:degree)(結晶のモザイクネスの度合いを表し、値の小さい方がモザイクネスが少ない)を示す。
図4(a)は縦軸が立方晶構造In2−2xGa2x薄膜の(222)面間隔(d(222)(Å))および六方晶構造In2−2xGa2x薄膜の(0004)面間隔(d(0004)(Å))、横軸がGaモル分率(x)を表す。図4(b)は縦軸が立方晶構造In2−2xGa2x薄膜の(222)面のロッキングカーブ半値幅(Δω(222)(°:degree))および六方晶構造In2−2xGa2x薄膜の(0004)面のロッキングカーブ半値幅(Δω(0004)(°:degree))、横軸がGaモル分率(x)を表す。図5はIn2−2xGa2x薄膜のGaモル分率(x)、立方晶構造In2−2xGa2x薄膜の(222)面間隔(d(222)(Å))、六方晶構造In2−2xGa2x薄膜の(0004)面間隔(d(0004)(Å))、立方晶構造In2−2xGa2x薄膜の(222)面のロッキングカーブ半値幅(Δω(222)(°:degree))、六方晶構造In2−2xGa2x薄膜の(0004)面のロッキングカーブ半値幅(Δω(0004)(°:degree))の値を示す表である。
Gaモル分率0%以上23%未満では、図2に示されるように立方晶構造に起因した(lll)(l=2,4)回折ピークのみが観察され、図3のIn薄膜の{440}回折面のφスキャン測定パターンで見られるように、YSZ基板と同様に面内は3回対称であり、面間方向に(111)配向した立方晶構造であることが分かる。尚、In2−2xGa2x薄膜(x=0.1)においてもφスキャン測定により面内は3回対称で面間方向に(111)配向した立方晶構造であることを確認した。また、図4及び図5よりモル分率増加にともなう軸長d(222)の減少及びモザイクネスの増加がみられた。一方、Gaモル分率23%より大きく50%以下では図2より六方晶構造に起因する(000l)(l=2,4,6,8,10.12)回折ピークのみが観察され、図3のInGaO薄膜の{10―11}回折面のφスキャン測定パターンで見られるように面内は6回対称であり、面間方向に(0001)配向した六方晶構造あるいは歪みを有した六方晶構造であることが分かる。ここで、InGaO薄膜の結晶面の指数付けは非特許文献4を参考にした。尚、In2−2xGa2x薄膜(x=0.32、0.40)においてもφスキャン測定により面内は6回対称であり、面間方向は(0001)配向した六方晶構造であることを確認した。また、図4及び図5よりモル分率増加にともなう軸長d(0004)の減少及びモザイクネスの増加がみられた。Gaモル分率増加に伴う両軸長(d(222)、d(0004))の減少及びモザイクネスの増加は、GaがInサイトに置換し固溶した際、Ga3+のイオン半径がIn3+のものより小さいため、より単位格子が小さくなっていることと、それによる基板との格子ミスマッチの増大が主な原因と考えられる。一方、Gaモル分率23%では、立方晶及び六方晶構造に起因した回折ピークが同時に見られていることから、立方晶固溶体と六方晶固溶体の共晶領域であることが分かる。但し、いずれの相も(lll)(l=2,4)及び(000l)(l=2,4,6,8,10,12)の回折ピークしか見られないことから、面間方向はエピタキシャル成長していることが分かる。
FIG. 2 shows an x-ray diffraction pattern of an In 2-2x Ga 2x O 3 thin film provided on a YSZ substrate according to an embodiment of the present invention (horizontal axis: 2θ (diffraction angle) (°: degree), vertical axis: XRD ( x-ray diffraction) natural logarithm of intensity (LOG XRD intensity), molar fraction (x) of 0, 0.10, 0.23, 0.32, 0.40, 0.50)), FIG. Φ scan measurement pattern of YSZ substrate, In 2 O 3 thin film, InGaO 3 thin film {220}, {440}, {10-11} diffraction plane (horizontal axis: φ (°: degree), vertical axis: XRD intensity Natural logarithm (LOG XRD intensity), FIG. 4 and FIG. 5 show the axial length d (Å) of the thin film obtained from FIG. 2 and the full width at half maximum Δω (°: degree) of the rocking curve (crystal mosaicness) The lower the value, the less the mosaicness ).
4 (a) is a vertical axis cubic structure In 2-2x Ga 2x O 3 thin film (222) spacing (d (222) (Å)) and hexagonal structure In 2-2x Ga 2x O 3 thin film (0004) Interplanar spacing (d (0004) (Å)), the horizontal axis represents Ga 2 O 3 molar fraction (x). In FIG. 4B, the vertical axis indicates the rocking curve half-value width (Δω (222) (°: degree)) of the (222) plane of the cubic crystal structure In 2-2x Ga 2x O 3 thin film and the hexagonal crystal structure In 2-2x. The rocking curve half-value width (Δω (0004) (°: degree)) of the (0004) plane of the Ga 2x O 3 thin film, and the horizontal axis represents the Ga 2 O 3 molar fraction (x). 5 In 2-2x Ga 2x O 3 Ga 2 O 3 molar ratio of the thin film (x), cubic structure In 2-2x Ga 2x O 3 thin film (222) spacing (d (222) (Å) ), (0004) spacing of hexagonal structure In 2-2x Ga 2x O 3 thin film (d (0004) (Å)), rocking curve of (222) plane of cubic structure In 2-2x Ga 2x O 3 thin film The half width (Δω (222) (°: degree)), the value of the rocking curve half width (Δω (0004) (°: degree)) of the (0004) plane of the hexagonal structure In 2-2x Ga 2x O 3 thin film It is a table | surface which shows.
The Ga 2 O 3 molar ratio 0% or more and less than 23%, due to a cubic structure as illustrated in FIG. 2 (lll) (l = 2,4 ) only diffraction peaks were observed, an In 2 of FIG. 3 As can be seen in the φ-scan measurement pattern of the {440} diffraction plane of the O 3 thin film, the in-plane symmetry is three-fold similar to the YSZ substrate, and it has a (111) -oriented cubic structure in the inter-plane direction. I understand. In the In 2-2x Ga 2x O 3 thin film (x = 0.1), it was confirmed by the φ scan measurement that the in-plane was a cubic structure with three-fold symmetry and (111) orientation in the inter-plane direction. In addition, as shown in FIGS. 4 and 5, the axial length d (222) decreased and the mosaicness increased as the molar fraction increased. On the other hand, only a (000 l) (l = 2, 4, 6, 8, 10.12) diffraction peak due to the hexagonal crystal structure is observed from FIG. 2 when the Ga 2 O 3 molar fraction is greater than 23% and less than 50%. As shown in the φ scan measurement pattern of the {10-11} diffraction plane of the InGaO 3 thin film in FIG. 3, the in-plane is 6-fold symmetric and has a (0001) -oriented hexagonal crystal structure or strain. It can be seen that this is a hexagonal crystal structure. Here, the indexing of the crystal plane of the InGaO 3 thin film was based on Non-Patent Document 4. In the In 2-2x Ga 2x O 3 thin film (x = 0.32, 0.40), the in-plane symmetry is 6 times by φ scan measurement, and the inter-plane direction has a (0001) -oriented hexagonal crystal structure. I confirmed that there was. Further, from FIGS. 4 and 5, a decrease in axial length d (0004) and an increase in mosaicness were observed with an increase in molar fraction. The decrease in both axial lengths (d (222) and d (0004)) and the increase in mosaicness accompanying the increase in the Ga 2 O 3 molar fraction indicate that the Ga 3+ ionic radius when Ga is substituted at the In site and solid-dissolved. Is smaller than that of In 3+ , which is considered to be mainly due to the smaller unit cell and the resulting increase in lattice mismatch with the substrate. On the other hand, when the Ga 2 O 3 molar fraction is 23%, the diffraction peaks attributed to the cubic and hexagonal crystal structures are observed at the same time, which indicates that this is a eutectic region of a cubic solid solution and a hexagonal solid solution. However, since only the diffraction peaks of (lll) (l = 2, 4) and (000l) (l = 2, 4, 6, 8, 10, 12) can be seen in any phase, the inter-plane direction is epitaxially grown. You can see that

一方、In及びGaの熱力学的安定相は、非特許文献5及び非特許文献6に記載されているが、図1に示されているようにそれぞれ立方晶(ビックスバイト構造)を示すのは1000℃においてGaモル分率0%以上約5%以下のIn2−2xGa2x、単斜晶(β−Ga構造)を示すのは1000℃においてGaモル分率約57%以上100%以下のIn2−2xGa2xである。
しかしながら、本実施例では、熱固溶限界を超えてGaモル分率0%以上23%未満のIn2−2xGa2x薄膜で立方晶構造を示し、安定に固溶すること、バルクでは存在し得ない熱力学的に不安定な六方晶構造が、Gaモル分率23%より大きく50%以下のIn2−2xGa2x薄膜で安定に存在し、固溶することが分かった。この現象は以下のように説明することが出来る。
パルスレーザー堆積法は、固体物質を真空中で高エネルギーのプラズマ状態に励起し、基板に凝結、堆積する製膜手法である。励起された原料固体成分は基板の表面構造(結晶構造)を感じると同時に基板で瞬時に凝結され、基板温度で熱力学的平衡状態に落ち着くまでに結晶を形成する。そのため、熱力学的には許されない組成、構造を持つ薄膜を作製することが出来る。すなわち、準安定状態の薄膜結晶を作製することが出来る。
On the other hand, the thermodynamic stable phases of In 2 O 3 and Ga 2 O 3 are described in Non-Patent Document 5 and Non-Patent Document 6, but as shown in FIG. Ga 2 O 3 molar ratio of 0% to about 5% or less in 2-2x Ga 2x O 3 indicate structure) at 1000 ° C., indicate monoclinic (β-Ga 2 O 3 structure) 1000 In 2-2x Ga 2x O 3 having a Ga 2 O 3 molar fraction of about 57% to 100% at a temperature .
However, in this example, the In 2-2x Ga 2x O 3 thin film having a Ga 2 O 3 molar fraction of 0% or more and less than 23% exceeding the thermal solid solution limit exhibits a cubic crystal structure, and is stably dissolved. , A thermodynamically unstable hexagonal structure that cannot exist in the bulk exists stably in an In 2-2x Ga 2x O 3 thin film having a Ga 2 O 3 molar fraction of more than 23% and not more than 50%. I found it to melt. This phenomenon can be explained as follows.
The pulsed laser deposition method is a film forming technique in which a solid substance is excited into a high energy plasma state in a vacuum, and condensed and deposited on a substrate. The excited raw material solid component feels the surface structure (crystal structure) of the substrate and at the same time instantly condenses on the substrate to form crystals until it settles into a thermodynamic equilibrium state at the substrate temperature. Therefore, it is possible to produce a thin film having a composition and structure that are not allowed thermodynamically. That is, a metastable thin film crystal can be manufactured.

本発明のIII族酸化物半導体材料と六方晶構造を有する薄膜の積層構造の一例として(0001)ZnO薄膜上にInGaO薄膜を、パルスレーザー堆積法によって作製した実施形態について示す。レーザーはKrFエキシマレーザー(波長:248nm)を用い、原料ターゲットとしてZnO及びInGaO焼結体ターゲットを用いた。基板としては(0001)Alを用い、ZnO薄膜は基板温度は700℃、酸素分圧は1x10−5Torrにおいて1μm厚製膜し、InGaO薄膜は基板温度は730℃、酸素分圧は30mTorrにおいて1μm厚製膜した。薄膜の異相の有無、固溶・非固溶の判断、結晶構造・格子定数はx線回折法を用い決定した。 As an example of a laminated structure of a group III oxide semiconductor material of the present invention and a thin film having a hexagonal crystal structure, an embodiment in which an InGaO 3 thin film is formed on a (0001) ZnO thin film by a pulse laser deposition method will be described. The laser used was a KrF excimer laser (wavelength: 248 nm), and ZnO and InGaO 3 sintered body targets were used as raw material targets. As the substrate, (0001) Al 2 O 3 was used. The ZnO thin film was formed at a substrate temperature of 700 ° C. and the oxygen partial pressure was 1 μm thick at 1 × 10 −5 Torr. The InGaO 3 thin film was formed at a substrate temperature of 730 ° C. and an oxygen partial pressure. Was formed at 1 m thick at 30 mTorr. The presence / absence of a heterogeneous phase in the thin film, determination of solid solution / non-solid solution, and crystal structure / lattice constant were determined using an x-ray diffraction method.

図6に本発明の実施例である(0001)Al基板上に設けたInGaO/ZnO積層薄膜のx線回折パターン(横軸:2θ(回折角度)(°:degree)、縦軸:XRD(x線回折)強度の自然対数(LOG XRD強度))を示す。
ZnO薄膜は、六方晶構造に起因する(000l)(l=2,4)回折ピークのみが観察され、InGaO薄膜は、六方晶構造に起因する(000l)(l=2,4,6,8,10.12)回折ピークのみが観察され、InGaO薄膜がZnO薄膜上に面間方向に(0001)配向した六方晶構造あるいは歪みを有した六方晶構造で成長していることが分かる。ここで、InGaO薄膜の結晶面の指数付けは非特許文献4を参考にした。
FIG. 6 shows an x-ray diffraction pattern (horizontal axis: 2θ (diffraction angle) (°: degree), vertical axis) of an InGaO 3 / ZnO laminated thin film provided on a (0001) Al 2 O 3 substrate according to an embodiment of the present invention. : Natural logarithm of XRD (x-ray diffraction) intensity (LOG XRD intensity)).
In the ZnO thin film, only the (000 l) (l = 2, 4) diffraction peak due to the hexagonal structure is observed, and the InGaO 3 thin film has (000 l) (l = 2, 4, 6, 6 due to the hexagonal structure). 8, 10.12) Only a diffraction peak is observed, and it can be seen that the InGaO 3 thin film grows on the ZnO thin film in a hexagonal crystal structure having a (0001) orientation in the inter-plane direction or a strained hexagonal crystal structure. Here, the indexing of the crystal plane of the InGaO 3 thin film was based on Non-Patent Document 4.

In及びGaの熱力学的安定相は、非特許文献5及び非特許文献6に記載されているが、図1に示されているようにそれぞれ立方晶(ビックスバイト構造)を示すのは1000℃においてGaモル分率0%以上約5%以下のIn2−2xGa2x、単斜晶(β−Ga構造)を示すのは1000℃においてGaモル分率約57%以上100%以下のIn2−2xGa2xである。
しかしながら、本実施例では、Gaモル分率50%においてバルクでは存在し得ない熱力学的に不安定な六方晶構造がZnO薄膜上に安定に存在し、固溶することが分かった。この現象は以下のように説明することが出来る。
パルスレーザー堆積法は、固体物質を真空中で高エネルギーのプラズマ状態に励起し、基板に凝結、堆積する製膜手法である。励起された原料固体成分は基板の表面構造(結晶構造)を感じると同時に基板で瞬時に凝結され、基板温度で熱力学的平衡状態に落ち着くまでに結晶を形成する。そのため、熱力学的には許されない組成、構造を持つ薄膜を作製することが出来る。すなわち、準安定状態の薄膜結晶を作製することが出来る。
The thermodynamic stable phases of In 2 O 3 and Ga 2 O 3 are described in Non-Patent Document 5 and Non-Patent Document 6, but as shown in FIG. 1, each has a cubic crystal (Bixbite structure). Indicates a Ga 2 O 3 molar fraction of 0% or more and about 5% or less at 1000 ° C., indicating an In 2-2x Ga 2x O 3 monoclinic crystal (β-Ga 2 O 3 structure) at 1000 ° C. It is In 2-2x Ga 2x O 3 having a Ga 2 O 3 molar fraction of about 57% to 100%.
However, in this example, it was found that a thermodynamically unstable hexagonal crystal structure that could not exist in bulk at a Ga 2 O 3 molar fraction of 50% was stably present on the ZnO thin film and dissolved. . This phenomenon can be explained as follows.
The pulsed laser deposition method is a film forming technique in which a solid substance is excited into a high energy plasma state in a vacuum, and condensed and deposited on a substrate. The excited raw material solid component feels the surface structure (crystal structure) of the substrate and at the same time instantly condenses on the substrate to form crystals until it settles into a thermodynamic equilibrium state at the substrate temperature. Therefore, it is possible to produce a thin film having a composition and structure that are not allowed thermodynamically. That is, a metastable thin film crystal can be manufactured.

本発明の実施例1および実施例2においては、製膜手法としてパルスレーザー堆積法を用いたが、上述の理由によりこの現象は非平衡性プロセスである一般の薄膜成長法(スパッタ法、分子線エピタキシー法、有機金属気相成長法など)でも作製可能である。また成長温度の減少・成長速度の増加など成長条件の非平衡性を増すことによっても、より熱力学的には許されない組成範囲において準安定構造を有する薄膜結晶を作製することが可能である。
また、本発明では基板として(111)YSZ基板あるいは(0001)ZnO/(0001)Alを選択したが、上記と同様の理由で立方晶構造In2−2xGa2xの面内の格子定数あるいは六方晶構造In2−2xGa2xの面内の格子定数に近い他の基板または薄膜上、あるいは面方位の異なる基板または薄膜上に成長させることにより、固溶限界領域を増加させることが可能である。下地の基板あるいは薄膜材料としては、IV族半導体(C、Si、Ge、SiCなど)、III−V族半導体(GaP、GaAs、InPなど)、III族窒化物半導体(In1−x−y−zGaAlNなど)、II族酸化物半導体(Zn1−x−yMgCdOなど)、ペロブスカイト型酸化物(BaTiO、SrTiO、NdGaO、LaAlOなど)、その他の酸化物(Al、SrO、BaO、MgO、CaO、Y、In、CeO、ScMgAlO、LiGaO、LiAlO、NaGaO、NaAlO、KGaO、KAlO)などが考えられる。
In Example 1 and Example 2 of the present invention, the pulse laser deposition method is used as a film forming method. For the above-described reason, this phenomenon is a non-equilibrium process, which is a general thin film growth method (sputtering method, molecular beam). (Epitaxial method, metal organic chemical vapor deposition method, etc.). Further, by increasing the non-equilibrium of the growth conditions such as the reduction of the growth temperature and the increase of the growth rate, it is possible to produce a thin film crystal having a metastable structure in a composition range that is not permitted thermodynamically.
In the present invention, a (111) YSZ substrate or (0001) ZnO / (0001) Al 2 O 3 is selected as the substrate, but for the same reason as above, the in-plane of the cubic structure In 2-2x Ga 2x O 3 By growing on another substrate or thin film that is close to the lattice constant in the plane of hexagonal structure In 2-2x Ga 2x O 3 , or on a substrate or thin film having a different plane orientation, It is possible to increase. As a base substrate or thin film material, a group IV semiconductor (C, Si, Ge, SiC, etc.), a group III-V semiconductor (GaP, GaAs, InP, etc.), a group III nitride semiconductor (In 1-xy-) z Ga x Al y B z N etc.), group II oxide semiconductors (Zn 1-xy Mg x Cd y O etc.), perovskite oxides (BaTiO 3 , SrTiO 3 , NdGaO 3 , LaAlO 3 etc.), Other oxides (Al 2 O 3 , SrO, BaO, MgO, CaO, Y 2 O 3 , In 2 O 3 , CeO 2 , ScMgAlO 4 , LiGaO 2 , LiAlO 2 , NaGaO 2 , NaAlO 2 , KGaO 2 , KAlO 2 ).

また、六方晶構造を有するIII族酸化物に限って言えば、x線回折測定によりIII族窒化物半導体(In1−x−y−zGaAlN)あるいはII族酸化物半導体(Zn1−x−yMgCdO)の面内格子定数と近似しており、図4の結果よりIII族イオンの組成比により単位格子体積しいては面内の格子定数を制御することが可能であることが示されている。したがって、上記III族窒化物半導体あるいは上記II族酸化物半導体と六方晶構造を有するIII族酸化物をヘテロエピタキシャル成長させた半導体素子を作製する際、上記III族酸化物あるいは上記III族窒化物のIII族イオンの組成比あるいは上記II族酸化物のII族イオンの組成比を変化させることにより、III族酸化物あるいはIII族窒化物あるいはII族酸化物薄膜の格子歪を精密に制御することが可能である。そのため、これら薄膜結晶の特徴である圧電分極電界あるいは自発分極電界を制御することが可能である。よって、図7に示すような、上記半導体とのへテロ接合を作製し、その界面に上記電界により誘起され、発生した二次元電子ガスあるいは二次元正孔ガスを特徴とした半導体電子素子を得ることが出来る。 Further, As far as the group III oxides having a hexagonal structure, the group III nitride semiconductor by x-ray diffraction measurement (In 1-x-y- z Ga x Al y B z N) or group II oxide semiconductor It is approximate to the in-plane lattice constant of (Zn 1-xy Mg x Cd y O), and the in-plane lattice constant is controlled by the group III ion composition ratio based on the result of FIG. It has been shown that it is possible. Therefore, when manufacturing a semiconductor device in which the group III nitride semiconductor or the group II oxide semiconductor and a group III oxide having a hexagonal structure are heteroepitaxially grown, the group III oxide or the group III nitride III is prepared. By changing the composition ratio of group ions or the composition ratio of group II ions of the above group II oxides, it is possible to precisely control the lattice strain of group III oxides, group III nitrides, or group II oxide thin films. It is. Therefore, it is possible to control the piezoelectric polarization field or the spontaneous polarization field, which is a feature of these thin film crystals. Therefore, as shown in FIG. 7, a heterojunction with the semiconductor is produced, and a semiconductor electronic device characterized by the generated two-dimensional electron gas or two-dimensional hole gas induced at the interface by the electric field is obtained. I can do it.

図7は本発明の実施例に示す高移動度電子素子構造を示す図である。図7は基板(1)上に活性層の高品質化を促進する緩衝層(2)、無添加半導体活性層(3)、無添加半導体障壁層(4)、不純物添加半導体障壁層(5)、ソース電極(6)、ドレイン電極(7)、ゲート電極(8)が設けられている。活性層(3)あるいは障壁層(4)の少なくとも一つに本発明のIII族酸化物半導体を用い、無添加半導体活性層(3)と無添加半導体障壁層(4)界面に上記二次元電子ガスあるいは二次元正孔ガスが形成される。
活性層(3)としてIII族窒化物半導体(In1−x−y−zGaAlN)あるいはII族酸化物半導体(Zn1−x−yMgCdO)あるいは本発明のIII族酸化物半導体(In2−2x−2y−2zGa2xAl2y2z)、障壁層(4)として活性層より禁制帯幅の大きいIII族窒化物半導体あるいはII族酸化物半導体あるいは本発明のIII族酸化物半導体(In2−2x−2y−2zGa2xAl2y2z)を用いることが出来る。
FIG. 7 is a diagram showing a structure of a high mobility electronic device shown in the embodiment of the present invention. FIG. 7 shows a buffer layer (2), an additive-free semiconductor active layer (3), an additive-free semiconductor barrier layer (4), and an impurity-added semiconductor barrier layer (5) that promote high quality of the active layer on the substrate (1). A source electrode (6), a drain electrode (7), and a gate electrode (8) are provided. The group III oxide semiconductor of the present invention is used for at least one of the active layer (3) or the barrier layer (4), and the two-dimensional electrons are formed at the interface between the additive-free semiconductor active layer (3) and the additive-free semiconductor barrier layer (4). A gas or a two-dimensional hole gas is formed.
Group III nitride semiconductor as an active layer (3) (In 1-x -y-z Ga x Al y B z N) or group II oxide semiconductor (Zn 1-x-y Mg x Cd y O) or invention Group III oxide semiconductor (In 2-2x-2y-2z Ga 2x Al 2y B 2z O 3 ), Group III nitride semiconductor or Group II oxide semiconductor having a larger forbidden band than the active layer as the barrier layer (4) Alternatively, a group III oxide semiconductor (In 2-2x-2y-2z Ga 2x Al 2y B 2z O 3 ) of the present invention can be used.

本実施例3では、実施例1で作製したYSZ基板上に設けたIn2−2xGa2x薄膜の光学特性及び電気特性を調べた。室温における禁制帯幅は紫外・可視域の透過スペクトル測定により、室温における電気特性はホール測定法により決定した。
図8に各薄膜の透過スペクトルを示す。図8は縦軸が透過率(%)、横軸が波長(nm)であり、YSZ基板の透過率で規格化した。図8中のそれぞれの記号はモル分率(x)が0、0.10、0.23、0.32、0.40、0.50に対応する。図9はIn2−2xGa2x薄膜の室温における透過率を示す表である。
いずれの薄膜も可視領域において透明であり、Gaモル分率増加に伴い吸収端が短波長側に変化している。図10はGaモル分率に対するIn2−2xGa2x薄膜の室温における光学的バンドギャップの変化を示す図である。図10は縦軸が禁制帯幅(eV)、横軸がGaモル分率(x)を表す。禁制帯幅は、Gaモル分率がx=0、0.10、0.23、0.32、0.40、0.50と増加するに伴い3.73、3.79、3.94、4.11、4.19、4.37eVと増加していることが分かる。
これらの値は、非特許文献7及び非特許文献8で報告されているバルク多結晶及び薄膜試料の禁制帯幅、InGaO:3.3eV程度およびIn2−2xGa2x(0≦x≦0.5)薄膜:約3.75(x=0)から3.4eV(x=0.5)と連続的に変化、と大きく異なっていることが分かる。この現象は基板として格子整合しやすいYSZ基板を用いると同時に薄膜作製条件を最適化することにより欠陥の少ない高品質な薄膜作製に成功した結果、材料本来の物性があらわれたものと考えられる。
図11にYSZ基板上In2−2xGa2x薄膜の室温における電気特性、図12に比抵抗、キャリア濃度、移動度の表を示す。意図的にドーピングを施していない本薄膜はいずれもn型の半導体であり、Gaモル分率増加に伴いキャリア濃度の減少、抵抗率の増加が見られる。また、移動度は共晶が見られたx=0.23近傍では8.7cm/Vs程度と低いが、一般にGaモル分率増加に伴い減少している。この現象は以下のように説明することが出来る。
In Example 3, the optical characteristics and electrical characteristics of the In 2-2x Ga 2x O 3 thin film provided on the YSZ substrate prepared in Example 1 were examined. The forbidden band width at room temperature was determined by transmission spectrum measurement in the ultraviolet and visible regions, and the electrical characteristics at room temperature were determined by the Hall measurement method.
FIG. 8 shows the transmission spectrum of each thin film. In FIG. 8, the vertical axis represents transmittance (%) and the horizontal axis represents wavelength (nm), which is normalized by the transmittance of the YSZ substrate. Each symbol in FIG. 8 corresponds to a molar fraction (x) of 0, 0.10, 0.23, 0.32, 0.40, 0.50. FIG. 9 is a table showing the transmittance at room temperature of the In 2-2x Ga 2x O 3 thin film.
All the thin films are transparent in the visible region, and the absorption edge is changed to the short wavelength side as the Ga 2 O 3 molar fraction is increased. FIG. 10 is a diagram showing the change in the optical band gap at room temperature of the In 2-2x Ga 2x O 3 thin film with respect to the Ga 2 O 3 molar fraction. In FIG. 10, the vertical axis represents the forbidden band width (eV), and the horizontal axis represents the Ga 2 O 3 molar fraction (x). The forbidden band width is 3.73, 3.79, 3 as the Ga 2 O 3 molar fraction increases to x = 0, 0.10, 0.23, 0.32, 0.40, 0.50. .94, 4.11, 4.19, 4.37 eV.
These values are forbidden band widths of bulk polycrystalline and thin film samples reported in Non-Patent Document 7 and Non-Patent Document 8, InGaO 3 : about 3.3 eV, and In 2-2x Ga 2x O 3 (0 ≦ x .Ltoreq.0.5) Thin film: It is found that the difference is continuously different from about 3.75 (x = 0) to 3.4 eV (x = 0.5). This phenomenon is considered to be due to the fact that the original physical properties of the material appeared as a result of successful production of a high-quality thin film with few defects by optimizing the thin film production conditions while using a YSZ substrate that is easily lattice-matched as a substrate.
FIG. 11 shows the electrical characteristics at room temperature of the In 2-2x Ga 2x O 3 thin film on the YSZ substrate, and FIG. 12 shows a table of specific resistance, carrier concentration, and mobility. All the thin films not intentionally doped are n-type semiconductors, and a decrease in carrier concentration and an increase in resistivity are observed with an increase in the Ga 2 O 3 molar fraction. Further, the mobility is as low as about 8.7 cm 2 / Vs in the vicinity of x = 0.23 where eutectic was observed, but generally decreases with an increase in the Ga 2 O 3 mole fraction. This phenomenon can be explained as follows.

一般にIn2−2xGa2x薄膜のキャリアの起源としては、酸素欠損あるいは格子間陽イオン(In3+あるいはGa3+)などのドナー型点欠陥と考えられている。GaはInに比べ酸素との結合性が高いため、上述のドナー型点欠陥が減少し、キャリア濃度が減少したものと思われる。また、キャリア濃度減少に伴い、キャリアの散乱起源として点欠陥以外の粒界による散乱が支配的になる。Gaモル分率の大きいIn2−2xGa2x薄膜は、基板との格子ミスマッチ増大によりモザイクネスが大きい(マクロな欠陥、例えば転位・粒界等が多い)ことが図4のXRDのロッキングカーブ半値幅の結果より示唆されている。そのため、Gaモル分率増大に伴い、移動度が減少し、キャリア濃度減少の効果も併せて、抵抗率が増大したものと思われる。
しかし、Gaモル分率の大きいIn2−2xGa2x薄膜はモザイクネスが大きいにもかかわらず、その移動度は一般の酸化物薄膜の中でも比較的大きい(〜30cm/Vs)。この結果より、欠陥の低減対策を施した成長プロセスを導入することにより、薄膜の高品質化を図り、更なる高移動度化の実現が可能である。
薄膜の高品質化手法としては、前述したより薄膜材料と格子・熱膨張係数ミスマッチの少ない基板の選択、薄膜材料の成長に適した緩衝層の挿入、III族窒化物半導体等の成長で施されている2段階成長法あるいは低温緩衝層の挿入などが挙げられる。
In general, the origin of carriers in the In 2-2x Ga 2x O 3 thin film is considered to be donor-type point defects such as oxygen deficiency or interstitial cations (In 3+ or Ga 3+ ). Since Ga has a higher bonding property to oxygen than In, it is considered that the above-mentioned donor type point defects are reduced and the carrier concentration is reduced. As the carrier concentration decreases, scattering due to grain boundaries other than point defects becomes dominant as the carrier scattering origin. FIG. 4 shows that the In 2-2x Ga 2x O 3 thin film having a large Ga 2 O 3 molar fraction has a large mosaicness due to increased lattice mismatch with the substrate (many macro defects such as dislocations and grain boundaries). This is suggested by the results of XRD rocking curve half width. For this reason, it is considered that with the increase of the Ga 2 O 3 molar fraction, the mobility decreased, and the resistivity increased together with the effect of decreasing the carrier concentration.
However, although the In 2-2x Ga 2x O 3 thin film having a large Ga 2 O 3 molar fraction has a large mosaicness , its mobility is relatively large among the general oxide thin films (˜30 cm 2 / Vs). ). From this result, by introducing a growth process with measures for reducing defects, it is possible to improve the quality of the thin film and realize further higher mobility.
Thin film quality improvement methods include selection of a substrate with less mismatch between the thin film material and the lattice and thermal expansion coefficient, insertion of a buffer layer suitable for the growth of the thin film material, and growth of group III nitride semiconductors. For example, a two-stage growth method or insertion of a low-temperature buffer layer may be used.

上記の結果より、本発明のIII族酸化物半導体は、In、Ga、アルミニウムAl、およびボロンBから選ばれる少なくとも二つの元素の組成量を変化させることにより禁制帯幅、しいては価電子帯及び伝導体のエネルギー位置の制御が可能な禁制帯幅の大きい半導体であることが分かる。
よって、図13−15に示すように本発明のIII族酸化物半導体をカルコパイライト系太陽電池の窓層として用い、InとGaの組成比を変えることにより光吸収層であるCuIn1−xGaSeとの伝導帯オフセット量を調整した高効率太陽電池、III族酸化物半導体を二つの電極ではさみこんだ構造の紫外線検出素子、III族酸化物半導体をクラッド層として用いた発光素子を得ることが出来る。
図13は本発明のIII族酸化物半導体をカルコパイライト系太陽電池の窓層として用いたカルコパイライト系太陽電池の断面図である。基板(21)上に金属薄膜(22)、カルコパイライト系光吸収層(23)、本発明のn型III族酸化物半導体窓層(24)、透明導電膜(25)、櫛形電極(26)より構成される。
From the above results, the Group III oxide semiconductor of the present invention has a forbidden band width, that is, a valence band by changing the composition amount of at least two elements selected from In, Ga, aluminum Al, and boron B. It can also be seen that the semiconductor has a large forbidden band width capable of controlling the energy position of the conductor.
Therefore, as shown in FIG. 13-15, the group III oxide semiconductor of the present invention is used as a window layer of a chalcopyrite solar cell, and the composition ratio of In and Ga is changed to change the light absorption layer of CuIn 1-x Ga. x High-efficiency solar cell in which the conduction band offset amount with Se 2 is adjusted, a UV detection element having a structure in which a group III oxide semiconductor is sandwiched between two electrodes, and a light emitting element using a group III oxide semiconductor as a cladding layer Can be obtained.
FIG. 13 is a cross-sectional view of a chalcopyrite solar cell using the group III oxide semiconductor of the present invention as a window layer of the chalcopyrite solar cell. A metal thin film (22), a chalcopyrite light absorption layer (23), an n-type group III oxide semiconductor window layer (24) of the present invention, a transparent conductive film (25), a comb electrode (26) on a substrate (21). Consists of.

図14は本発明のIII族酸化物半導体を光検出層として用いた光検出素子の断面図である。図14(a)は基板(31)上に透明導電膜(32)、本発明の無添加III族酸化物半導体光検出層(33)、紫外線透過電極膜(34)より構成される。光検出層は図14(b)に示すように複数の層からなっていても良い。図14(b)においては、ガラス基板(31)上に透明導電膜(32)、p型半導体(35)、n型半導体(36)、紫外線透過電極膜(34)が順次設けられている。尚、図14(b)においては、p型半導体(35)、n型半導体(36)がこの順に設けられているが、p型半導体(35)、n型半導体(46)の順序が逆に設けられていても良い。
図15(a)(b)は本発明のIII族酸化物半導体をクラッド層として用いた発光ダイオード素子の断面図である。 図15(a)は基板(41)上にクラッド層(42)、発光層(43)を複数接合させた多重量子井戸構造より構成されている。図15(b)は電流注入型の発光ダイオード素子であり、基板(41)上にn側オーミック電極(44)、n型コンタクト層(45)、n型クラッド層(46)、発光層(47)、p型クラッド層(48)、p型コンタクト層(49)、p型オーミック電極(50)から構成される。コンタクト層、クラッド層の少なくとも一つに本発明のIII族酸化物半導体を用い、発光層及びクラッド層の組成を変化させることにより伝導帯及び価電子帯オフセットを制御し、電子・正孔の閉じ込め確率および発光波長を制御することが出来る。尚、図15(b)の発光層として図15(a)に記した多重量子井戸構造を用いても良い。
FIG. 14 is a cross-sectional view of a photodetecting element using the group III oxide semiconductor of the present invention as a photodetecting layer. FIG. 14A is composed of a transparent conductive film (32), an additive-free group III oxide semiconductor photodetection layer (33) of the present invention, and an ultraviolet transmissive electrode film (34) on a substrate (31). The light detection layer may be composed of a plurality of layers as shown in FIG. In FIG. 14B, a transparent conductive film (32), a p-type semiconductor (35), an n-type semiconductor (36), and an ultraviolet transmissive electrode film (34) are sequentially provided on a glass substrate (31). In FIG. 14B, the p-type semiconductor (35) and the n-type semiconductor (36) are provided in this order, but the order of the p-type semiconductor (35) and the n-type semiconductor (46) is reversed. It may be provided.
15 (a) and 15 (b) are cross-sectional views of a light emitting diode element using the group III oxide semiconductor of the present invention as a cladding layer. FIG. 15A includes a multiple quantum well structure in which a plurality of cladding layers (42) and light emitting layers (43) are joined on a substrate (41). FIG. 15B shows a current injection type light emitting diode element. On the substrate (41), an n-side ohmic electrode (44), an n-type contact layer (45), an n-type cladding layer (46), and a light-emitting layer (47). ), A p-type cladding layer (48), a p-type contact layer (49), and a p-type ohmic electrode (50). The group III oxide semiconductor of the present invention is used for at least one of the contact layer and the cladding layer, and the conduction band and valence band offset are controlled by changing the composition of the light emitting layer and the cladding layer, thereby confining electrons and holes. Probability and emission wavelength can be controlled. Note that the multiple quantum well structure shown in FIG. 15A may be used as the light emitting layer in FIG.

本発明の実施の形態について例を挙げて説明したが、上記実施例のIn2−2xGa2xに限定されるものではなく、III族酸化物半導体(In2−2x−2y―2zGa2xAl2y2z)での適用が可能であり、本発明の範囲から排除するものではない。
また、上記実施の形態に限定されず本発明の技術的思想に基づき他の実施形態に適用することが出来る。
Although the embodiment of the present invention has been described with reference to an example, it is not limited to the In 2-2x Ga 2x O 3 of the above example, but is a group III oxide semiconductor (In 2-2x-2y-2z Ga 2x Al 2y application in B 2z O 3) are possible, it is not excluded from the scope of the present invention.
Further, the present invention is not limited to the above embodiment, and can be applied to other embodiments based on the technical idea of the present invention.

Ga −In系の熱力学的安定相図である。It is thermodynamically stable phase diagram of Ga 2 O 3 -In 2 O 3 system. 本発明の実施例に示すYSZ基板上に設けたIn2−2xGa2x薄膜のx線回折パターンを示す図である。It is a diagram showing the In 2-2x Ga 2x O 3 thin film of x-ray diffraction pattern which is provided on the YSZ substrate shown in the embodiment of the present invention. 本発明の実施例に示すYSZ基板、In薄膜、InGaO薄膜の{220}、{440}、{10―11}回折面のφスキャン測定パターンを示す図である。YSZ substrate shown in the embodiment of the present invention, an In 2 O 3 thin film, InGaO 3 {220} of the thin film, {440} is a diagram showing the φ scan measurement pattern of {10-11} diffraction plane. 本発明の実施例に示すYSZ基板上In2−2xGa2x薄膜の(a)面間方向の軸長(立方晶構造に対しては(222)面(白丸)、六方晶構造に対しては(0004)面(黒菱形))及び(b)ロッキングカーブ半値幅(立方晶構造に対しては(222)面(白丸)、六方晶構造に対しては(0004)面(黒菱形))を示す図である。The axial length in the (a) inter-plane direction of the In 2-2x Ga 2x O 3 thin film on the YSZ substrate shown in the examples of the present invention (for the cubic structure, the (222) plane (white circle), for the hexagonal structure (B) rocking curve half-width ((222) plane (white circle) for cubic structure, (0004) plane (black rhombus) for hexagonal structure) ). 本発明の実施例に示すIn2−2xGa2x薄膜のGaモル分率(x)、立方晶構造In2−2xGa2x薄膜の(222)面間隔(d(222)(Å))、六方晶構造In2−2xGa2x薄膜の(0004)面間隔(d(0004)(Å))、立方晶構造In2−2xGa2x薄膜の(222)面のロッキングカーブ半値幅(Δω(222)(°:degree))、六方晶構造In2−2xGa2x薄膜の(0004)面のロッキングカーブ半値幅(Δω(0004)(°:degree))を示す表である。Ga 2 O 3 molar fraction (x) of In 2-2x Ga 2x O 3 thin film shown in the examples of the present invention, (222) spacing (d (222) of cubic structure In 2-2x Ga 2x O 3 thin film ) (Å)), (0004) spacing of hexagonal structure In 2-2x Ga 2x O 3 thin film (d (0004) (Å)), (222) of cubic structure In 2-2x Ga 2x O 3 thin film Rocking curve half-value width (Δω (222) (°: degree)) of surface, rocking curve half-value width (Δω (0004) (°: degree) of (0004) surface of hexagonal structure In 2-2x Ga 2x O 3 thin film ). 本発明の実施例に示すAl基板上InGaO/ZnO薄膜のx線回折パターンを示す図である。Is a diagram showing an x-ray diffraction pattern of the Al 2 O 3 substrate on InGaO 3 / ZnO film in Examples of the present invention. 本発明の実施例に示す高移動度電子素子構造を示す図である。It is a figure which shows the high mobility electronic device structure shown in the Example of this invention. 本発明の実施例に示すIn2−2xGa2x薄膜の室温における透過スペクトルを示す図である。It is a diagram showing the transmission spectrum at room temperature of In 2-2x Ga 2x O 3 thin film in Examples of the present invention. 本発明の実施例に示すIn2−2xGa2x薄膜の室温における透過率を示す表である。The In 2-2x Ga 2x O 3 transmittance at room temperature of the thin film shown in the embodiment of the present invention is a table showing. 本発明の実施例に示すIn2−2xGa2x薄膜の室温における光学的禁制帯幅を示す図である。Is a diagram showing an optical band gap of In 2-2x Ga 2x O 3 thin films at room temperature shown in the embodiment of the present invention. 本発明の実施例に示すIn2−2xGa2x薄膜の室温における電気特性を示す図である。It is a diagram showing the electric characteristics in In 2-2x Ga 2x O 3 thin films at room temperature shown in the embodiment of the present invention. 本発明の実施例に示すIn2−2xGa2x薄膜の室温における比抵抗、キャリア濃度、移動度を示す表である。 In 2-2x Ga 2x O 3 resistivity of the thin film at room temperature, the carrier concentration shown in the examples of the present invention, a table showing mobility. 図13:本発明の実施例に示す光電変換素子構造を示す図である。FIG. 13 is a diagram showing a photoelectric conversion element structure shown in an example of the present invention. 図14:本発明の実施例に示す光検出素子構造を示す図である。FIG. 14 is a diagram showing a photodetecting element structure according to an embodiment of the present invention. 図15:本発明の実施例に示す発光素子構造を示す図である。FIG. 15 is a diagram showing a light-emitting element structure shown in an example of the present invention.

符号の説明Explanation of symbols

1、21、31、41 基板
2 緩衝層
3 無添加半導体活性層
4 無添加半導体障壁層
5 不純物添加半導体障壁層
6 ソース電極
7 ドレイン電極
8 ゲート電極
22 金属薄膜
23 カルコパイライト系光吸収層
24 n型III族酸化物半導体窓層
25、32 透明導電膜
26 櫛形電極
33 無添加III族酸化物半導体光検出層
34 紫外線透過電極膜
35 p型半導体
36 n型半導体
42 クラッド層
43、47 発光層
44 n側オーミック電極
45 n型コンタクト層
46 n型クラッド層
48 p型クラッド層
49 p型コンタクト層
50 p型オーミック電極
1, 2, 31, 41 Substrate 2 Buffer layer 3 Additive-free semiconductor active layer 4 Additive-free semiconductor barrier layer 5 Impurity-added semiconductor barrier layer 6 Source electrode 7 Drain electrode 8 Gate electrode 22 Metal thin film 23 Chalcopyrite light absorption layer 24 n Type III oxide semiconductor window layers 25, 32 Transparent conductive film 26 Comb electrode 33 Additive group III oxide semiconductor photodetection layer 34 UV transmitting electrode film 35 P type semiconductor 36 N type semiconductor 42 Clad layer 43, 47 Light emitting layer 44 n-side ohmic electrode 45 n-type contact layer 46 n-type cladding layer 48 p-type cladding layer 49 p-type contact layer 50 p-type ohmic electrode

Claims (12)

Aを任意の元素記号としたとき、Aなる構成を有すると共にAの元素がIn、Ga、アルミニウムAl、およびボロンBの少なくとも二つより成るIII族酸化物半導体を含み、禁制帯幅を変調するようにIn、Ga、アルミニウムAl、およびボロンBから選ばれる少なくとも二つの元素の組成量を変化させることを特徴とする半導体素子。 When A is an arbitrary element symbol, it has a structure of A 2 O 3 and the element of A includes a group III oxide semiconductor composed of at least two of In, Ga, aluminum Al, and boron B, and has a forbidden band width. A semiconductor element, wherein the composition amount of at least two elements selected from In, Ga, aluminum Al, and boron B is changed so as to modulate. 請求項1記載のIII族酸化物を含む半導体素子において、六方晶構造あるいは歪を有した六方晶構造を有することを特徴とするIII族酸化物半導体を含むことを特徴とする半導体素子。 2. A semiconductor device comprising a group III oxide semiconductor according to claim 1, comprising a group III oxide semiconductor characterized by having a hexagonal crystal structure or a hexagonal crystal structure having a strain. 基板側から順に第一の電極層、p型半導体層、層A及び第二の電極層を含み、前記第二の電極層側から入射する光によって光起電力を発生させる光電変換素子であって、前記Aを請求項1又は2のいずれか1項記載のIII族酸化物半導体としたことを特徴とする光電変換素子。 A photoelectric conversion element that includes a first electrode layer, a p-type semiconductor layer, a layer A, and a second electrode layer in order from the substrate side, and generates a photovoltaic force by light incident from the second electrode layer side. A photoelectric conversion element, wherein the A is the group III oxide semiconductor according to claim 1. 請求項3記載の光電変換素子において、前記p型半導体層をCuおよびAgから選べられる少なくとも一つの元素と、In及びGaから選べられる少なくとも一つの元素と、Se及びSから選ばれる少なくとも一つの元素とを含むp型の化合物半導体又はCdTeとしたことを特徴とする光電変換素子。 4. The photoelectric conversion device according to claim 3, wherein the p-type semiconductor layer is at least one element selected from Cu and Ag, at least one element selected from In and Ga, and at least one element selected from Se and S. And a p-type compound semiconductor or CdTe. 請求項1又は2のいずれか1項記載のIII族酸化物半導体を一対の電極で挟み込んだことを特徴とする紫外線検出素子。 An ultraviolet detection element, wherein the group III oxide semiconductor according to claim 1 is sandwiched between a pair of electrodes. 基板上に少なくともp型とn型の半導体層を有した紫外線検出素子において、少なくとも一つの半導体層に請求項1又は2のいずれか1項記載のIII族酸化物半導体を含むことを特徴とする紫外線検出素子。 An ultraviolet detection element having at least a p-type and an n-type semiconductor layer on a substrate, wherein the group III oxide semiconductor according to claim 1 or 2 is included in at least one semiconductor layer. UV detection element. 請求項6記載の紫外線検出素子において、半導体層として請求項1又は2のいずれか1項記載のIII族酸化物半導体薄膜とIn、Ga、アルミニウムAl、ボロンBから選べられる少なくとも一つの元素とNを含むIII族窒化物半導体又はZn、Mg、Cdから選べられる少なくとも一つの元素とOを含むII族酸化物半導体を用いることを特徴とする紫外線検出素子。 7. The ultraviolet detection element according to claim 6, wherein the semiconductor layer is a group III oxide semiconductor thin film according to claim 1 or at least one element selected from In, Ga, aluminum Al and boron B, and N. A UV-detecting element comprising a group III nitride semiconductor containing at least one element selected from Zn, Mg, and Cd and a group II oxide semiconductor containing O. 基板上に少なくともn型クラッド層、活性層、p型クラッド層を含む半導体発光素子において、前記活性層より禁制帯幅の大きいクラッド層として請求項1又は2のいずれか1項記載のIII族酸化物半導体薄膜を用いることを特徴とする発光素子。 3. The group III oxidation according to claim 1, wherein the semiconductor light emitting device includes at least an n-type clad layer, an active layer, and a p-type clad layer on a substrate, and the clad layer has a larger forbidden band than the active layer. A light-emitting element using a semiconductor thin film. 請求項8記載の発光素子において、前記活性層をIn、Ga、アルミニウムAl、ボロンBから選べられる少なくとも一つの元素とNを含むIII族窒化物半導体又はZn、Mg、Cdから選べられる少なくとも一つの元素とOを含むII族酸化物半導体のいずれか1つとしたことを特徴とする発光素子。 9. The light emitting device according to claim 8, wherein the active layer is a group III nitride semiconductor containing at least one element selected from In, Ga, aluminum Al, and boron B and N, or at least one selected from Zn, Mg, and Cd. A light-emitting element comprising any one of a group II oxide semiconductor containing an element and O. 請求項1又は2のいずれか1項記載のIII族酸化物半導体薄膜を電界効果型トランジスタの活性層とする薄膜電界効果型トランジスタ。 A thin film field effect transistor comprising the group III oxide semiconductor thin film according to claim 1 as an active layer of the field effect transistor. 基板上に少なくとも活性層と障壁層を含み、両者界面に発生する二次元電子ガスあるいは二次元正孔ガスの流れを制御する半導体素子であって、活性層あるいは障壁層の少なくとも一つに請求項1又は2のいずれか1項記載のIII族酸化物半導体薄膜を含むことを特徴とする半導体素子。 A semiconductor device comprising at least an active layer and a barrier layer on a substrate and controlling a flow of a two-dimensional electron gas or a two-dimensional hole gas generated at an interface between the active layer and the barrier layer. A semiconductor element comprising the group III oxide semiconductor thin film according to claim 1. 請求項11記載の半導体素子において、活性層あるいは障壁層の少なくとも一つにIn、Ga、アルミニウムAl、ボロンBから選べられる少なくとも一つの元素とNを含むIII族窒化物半導体又はZn、Mg、Cdから選べられる少なくとも一つの元素とOを含むII族酸化物半導体薄膜を用いることを特徴とする半導体素子。 12. The semiconductor element according to claim 11, wherein at least one of the active layer and the barrier layer is a group III nitride semiconductor containing at least one element selected from In, Ga, aluminum Al, and boron B and N, or Zn, Mg, Cd. A semiconductor element comprising a group II oxide semiconductor thin film containing at least one element selected from the group consisting of O and O.
JP2007101353A 2006-04-13 2007-04-09 Semiconductor device containing group iii oxide semiconductor Pending JP2007305975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007101353A JP2007305975A (en) 2006-04-13 2007-04-09 Semiconductor device containing group iii oxide semiconductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006111188 2006-04-13
JP2007101353A JP2007305975A (en) 2006-04-13 2007-04-09 Semiconductor device containing group iii oxide semiconductor

Publications (1)

Publication Number Publication Date
JP2007305975A true JP2007305975A (en) 2007-11-22

Family

ID=38839603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007101353A Pending JP2007305975A (en) 2006-04-13 2007-04-09 Semiconductor device containing group iii oxide semiconductor

Country Status (1)

Country Link
JP (1) JP2007305975A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146100A (en) * 2007-12-13 2009-07-02 Sony Corp Display device and light sensor element
JP2011139045A (en) * 2009-12-04 2011-07-14 Semiconductor Energy Lab Co Ltd Semiconductor device having ultraviolet sensor, and method of fabricating the same
WO2011118629A1 (en) * 2010-03-23 2011-09-29 日亜化学工業株式会社 Nitride semiconductor light emitting element
JPWO2010032431A1 (en) * 2008-09-17 2012-02-02 出光興産株式会社 Thin film transistor having crystalline indium oxide semiconductor film
JP2012250910A (en) * 2008-09-19 2012-12-20 Idemitsu Kosan Co Ltd Thin film transistor, and method for manufacturing the same
JP2014007395A (en) * 2012-06-01 2014-01-16 Semiconductor Energy Lab Co Ltd Light-emitting device
JP2014022564A (en) * 2012-07-18 2014-02-03 Asahi Kasei Corp Compound semiconductor substrate and manufacturing method therefor
JP2015227279A (en) * 2014-05-08 2015-12-17 株式会社Flosfia Crystalline laminated structure and semiconductor device
JP2017082317A (en) * 2015-10-30 2017-05-18 出光興産株式会社 Novel laminate
JP2018170509A (en) * 2018-05-17 2018-11-01 株式会社Flosfia Semiconductor device
JP2019163200A (en) * 2017-08-21 2019-09-26 株式会社Flosfia Method of manufacturing crystal film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340308A (en) * 2004-05-24 2005-12-08 Koha Co Ltd Method of manufacturing semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340308A (en) * 2004-05-24 2005-12-08 Koha Co Ltd Method of manufacturing semiconductor device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146100A (en) * 2007-12-13 2009-07-02 Sony Corp Display device and light sensor element
JPWO2010032431A1 (en) * 2008-09-17 2012-02-02 出光興産株式会社 Thin film transistor having crystalline indium oxide semiconductor film
JP5631213B2 (en) * 2008-09-17 2014-11-26 出光興産株式会社 Thin film transistor having crystalline indium oxide semiconductor film
JP2014098211A (en) * 2008-09-19 2014-05-29 Idemitsu Kosan Co Ltd Oxide sintered body, and sputtering target
TWI460144B (en) * 2008-09-19 2014-11-11 Idemitsu Kosan Co Oxide sintered body and sputtering target
JP2012250910A (en) * 2008-09-19 2012-12-20 Idemitsu Kosan Co Ltd Thin film transistor, and method for manufacturing the same
JP2013139385A (en) * 2008-09-19 2013-07-18 Idemitsu Kosan Co Ltd Oxide sintered body and sputtering target
US9209257B2 (en) 2008-09-19 2015-12-08 Idemitsu Kosan Co., Ltd. Oxide sintered body and sputtering target
US8647537B2 (en) 2008-09-19 2014-02-11 Idemitsu Kosan Co., Ltd. Oxide sintered body and sputtering target
JP2011139045A (en) * 2009-12-04 2011-07-14 Semiconductor Energy Lab Co Ltd Semiconductor device having ultraviolet sensor, and method of fabricating the same
EP2551925A4 (en) * 2010-03-23 2016-03-16 Nichia Corp Nitride semiconductor light emitting element
WO2011118629A1 (en) * 2010-03-23 2011-09-29 日亜化学工業株式会社 Nitride semiconductor light emitting element
JP5633560B2 (en) * 2010-03-23 2014-12-03 日亜化学工業株式会社 Nitride semiconductor light emitting device
CN102834939A (en) * 2010-03-23 2012-12-19 日亚化学工业株式会社 Nitride semiconductor light emitting element
JP2014007395A (en) * 2012-06-01 2014-01-16 Semiconductor Energy Lab Co Ltd Light-emitting device
JP2014022564A (en) * 2012-07-18 2014-02-03 Asahi Kasei Corp Compound semiconductor substrate and manufacturing method therefor
JP2015227279A (en) * 2014-05-08 2015-12-17 株式会社Flosfia Crystalline laminated structure and semiconductor device
JP2017082317A (en) * 2015-10-30 2017-05-18 出光興産株式会社 Novel laminate
JP2019163200A (en) * 2017-08-21 2019-09-26 株式会社Flosfia Method of manufacturing crystal film
JP7166522B2 (en) 2017-08-21 2022-11-08 株式会社Flosfia Crystalline film manufacturing method
JP2018170509A (en) * 2018-05-17 2018-11-01 株式会社Flosfia Semiconductor device

Similar Documents

Publication Publication Date Title
JP2007305975A (en) Semiconductor device containing group iii oxide semiconductor
US7323356B2 (en) LnCuO(S,Se,Te)monocrystalline thin film, its manufacturing method, and optical device or electronic device using the monocrystalline thin film
Zhang et al. Multi-component ZnO alloys: Bandgap engineering, hetero-structures, and optoelectronic devices
Nakahara et al. Nitrogen doped MgxZn1− xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates
US6423983B1 (en) Optoelectronic and microelectronic devices including cubic ZnMgO and/or CdMgO alloys
WO2003040441A1 (en) Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
Yang et al. Characteristics of unannealed ZnMgO∕ ZnO pn junctions on bulk (100) ZnO substrates
JP2004119525A (en) Oxide semiconductor pn junction device
JP7357883B2 (en) Oxide laminate and method for manufacturing the same
Lashkarev et al. Properties of zinc oxide at low and moderate temperatures
Aggarwal et al. Semipolar r-plane ZnO films on Si (100) substrates: Thin film epitaxy and optical properties
O’Reilly et al. Room-temperature ultraviolet luminescence from γ-CuCl grown on near lattice-matched silicon
KR20090023094A (en) Manufacture method for zno-containing compound semiconductor layer
JP5507234B2 (en) ZnO-based semiconductor device and manufacturing method thereof
JP2012136759A (en) Ito film, method of manufacturing the ito film, semiconductor light-emitting element, and method of manufacturing the light-emitting element
JP5229715B2 (en) ZnO-based thin film and semiconductor device
Cheng et al. Fabrication of tunable n-Zn1-xCdxO/p-GaN heterojunction light-emitting diodes
Hullavarad et al. Homo-and hetero-epitaxial growth of hexagonal and cubic MgxZn1− x O alloy thin films by pulsed laser deposition technique
KR100745811B1 (en) Formation Method of p-type ZnO Thin Film and Fabrication Method of Opto-Electronic Device Using the Same
US8921851B2 (en) Non-polar plane of wurtzite structure material
JP2008273814A (en) ZnO THIN FILM
TWI834732B (en) Oxide laminate and manufacturing method thereof
JP2883504B2 (en) Stacked semiconductor
Zhao et al. Effect of LaNiO3 Buffer Layer on the Electrical and Optical Properties of Nonpolar ZnO Film Deposited on (100) Si Substrate
Shinozaki et al. Fabrication of GaN epitaxial thin film on InGaZnO4 single-crystalline buffer layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011