JPS62126356A - Optical transformer - Google Patents

Optical transformer

Info

Publication number
JPS62126356A
JPS62126356A JP60264861A JP26486185A JPS62126356A JP S62126356 A JPS62126356 A JP S62126356A JP 60264861 A JP60264861 A JP 60264861A JP 26486185 A JP26486185 A JP 26486185A JP S62126356 A JPS62126356 A JP S62126356A
Authority
JP
Japan
Prior art keywords
light
common
optical
wavelength
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60264861A
Other languages
Japanese (ja)
Other versions
JPH0690230B2 (en
Inventor
Kazutsugu Sano
佐野 和注
Yukito Seshima
瀬島 幸人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60264861A priority Critical patent/JPH0690230B2/en
Publication of JPS62126356A publication Critical patent/JPS62126356A/en
Publication of JPH0690230B2 publication Critical patent/JPH0690230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To make it possible to independently detect voltage/current informations for protection and control by a common sensor part, by simultaneously passing light outputs from a plurality of light emitting sources different in wavelength and independently detecting the angle of rotation of a polarizing surface. CONSTITUTION:Lights emitted from two light emitting elements different in a light emitting wavelength are guided to a common polarizer 32 by a light insert device 311 through an optical fiber F1 and respectively individually receive the rotation of a plane of polarization surface by a common Faraday element 33 and, after the respective specific components thereof are taken out by a common analyser 34, said lights are guided to a light branching device 35 through a common optical fiber F2 to be applied to two light receiving elements 35A, 35B. If it is set that the light receiving element 35A receives only light with a wavelength lambda1 and the light receiving element 35B receives only light with a wavelength lambda2, current informations for protection and control can be independently obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は、変電所の制御、保護システムに電力系統の
情報を導入するだめの混流、電圧変成器に係り、特に、
オプトエレクトロニクス技術ヲ活用した光電流、光′電
圧変成器に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a mixed current and voltage transformer for introducing power system information into a substation control and protection system, and in particular,
This article relates to photocurrent and photovoltage transformers that utilize optoelectronic technology.

〔発明の背景〕[Background of the invention]

第4図は、従来の変電所における制御、保護装置の配置
とそれらと変を機器との接続関係の一例を示したもので
ある。
FIG. 4 shows an example of the arrangement of control and protection devices in a conventional substation and the connection relationship between them and the equipment.

図に於いて、例えば、送電線LA、Lm、Lc用のnl
流変成器CT、電圧変成器PTの場合を述べると、それ
らの−次出力は、保護装置用と制御装置用は夫々独立に
設けられている。その理由の最も大きなものは、−流変
成器のVlで述べると、保護用と制御用では扱うダイナ
ミックレンジが大きく異なるからである。
In the figure, for example, nl for power transmission lines LA, Lm, Lc
In the case of the current transformer CT and the voltage transformer PT, their -order outputs are provided independently for the protection device and the control device, respectively. The biggest reason for this is that, in terms of Vl of the -current transformer, the dynamic ranges handled are significantly different for protection and control.

即ち、保護用の場合には、系統の千虐時は勿論のこと、
異常時の通過電流(その値は超変圧系では過渡直流分も
含み最大50v’2X2kA中141に人にもなる)に
対しても、拮式よく二次出力として保護リレー装置に導
かねばならないのに対し、制御用の場曾には、常時の定
格嵯流近傍以下(超高圧系の場合4000A以下程度)
を扱えばよいからであり、これら双方に共通のCTを用
いる場合には、両者の要求精度を経済的に満たすことが
できないことによる。
In other words, in the case of protection, of course, when the lineage is destroyed,
Even in the event of an abnormality, the passing current (in a super-transformation system, the value can be as high as 50V'2 x 2kA or 141V, including the transient DC component) must be guided to the protective relay device as a secondary output. On the other hand, in the case of control, the current should always be around the rated current or below (approximately 4000A or below in the case of ultra-high pressure systems).
This is because if a common CT is used for both, it is not possible to economically satisfy the required accuracy for both.

また、第二の理由は、保護用とびj御用全市気的に独立
とし、一方の不具合が、他方に影響しないようにするた
めである。
The second reason is to make the protective jumpers independent in terms of commercial use, so that a malfunction in one does not affect the other.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、保護用と制御用の電圧、電流情報を共
通の七ンサ部をもちなからrl、気的に独立に検出でき
、かつ、双方の用途に適したダイナミックレンジで横変
よ〈検出できる電圧、電流変成器を提供することにある
The object of the present invention is to have a common sensor section for voltage and current information for protection and control, so that it can be detected independently and independently, and it can also detect lateral changes with a dynamic range suitable for both uses. <Our objective is to provide a voltage/current transformer that can be detected.

〔発明の概要〕[Summary of the invention]

電流変成器を光と磁界の相互作用を用いて実現する方法
には、第21Aに示すように、ファラデー効果を応用し
たものが・らり、これ1よ、鉛ガラスなどの物質の中に
直線偏光波を通したとき、外部の磁界によりそのti光
方向が回転することを利用したものである。その構成は
偏光子32、ファラデー素子33、検光子34から成り
、電流検出の原理は、光源31から偏光子32に通して
得られたそO直流1扁光成分が、導体の近傍に置かれた
ファラデー素子33を通過するときの磁界Hの大きさに
比例して回転を受けるので、検光子34によってその出
力強度(図示のように偏波面の回転角θ成分)を検出し
、これを電気的に処理して電流値を求めるようにしたも
のである。
A method of realizing a current transformer using the interaction of light and a magnetic field is one that applies the Faraday effect, as shown in Section 21A. This method utilizes the fact that when a polarized wave is passed through, the direction of the ti light is rotated by an external magnetic field. Its configuration consists of a polarizer 32, a Faraday element 33, and an analyzer 34, and the principle of current detection is that the polarized light component of the direct current obtained from the light source 31 through the polarizer 32 is placed near the conductor. Since the magnetic field H is rotated in proportion to the magnitude of the magnetic field H when it passes through the Faraday element 33, the output intensity (the rotation angle θ component of the polarization plane as shown) is detected by the analyzer 34, and this is converted into an electric field. The current value is determined by processing the current value.

第3図は、その例を示し、ガス絶縁開閉装置(GIS)
100の中の一次導木しムの近傍にファラデー素子33
、偏光子32、検光子34を設け、光源には発光ダイオ
ード責LED)31を用いこの光を光ファイバF1で偏
光子32まで導き、かつ、検光子34で得た光は光ファ
イバF2を介して受光素子である光ダイオード(PD)
35へ導き、そこで電気信号に変えた出力をアナログデ
ジタル変換器(AD)36でデジタル置に変え、更に1
後役の並直変換回路(PS)37によりデジタルデータ
として伝送できるようにした例である。
Figure 3 shows an example of this, gas insulated switchgear (GIS)
A Faraday element 33 is placed near the primary guide beam in 100.
, a polarizer 32, and an analyzer 34, a light emitting diode (LED) 31 is used as a light source, and the light is guided to the polarizer 32 through an optical fiber F1, and the light obtained by the analyzer 34 is transmitted through an optical fiber F2. A photodiode (PD), which is a light-receiving element,
35, where the output is converted into an electrical signal, converted into a digital signal by an analog-to-digital converter (AD) 36, and further converted into a digital signal.
This is an example in which data can be transmitted as digital data using a secondary parallel-to-serial conversion circuit (PS) 37.

第3図のような構成の延長で、初めに目的とした事項を
達成するには、ガス絶縁開閉装置100の中の一次導体
LAの近くにファラデー素子33、偏光子32、検光子
34を二組設け、これらのそれぞれの−組ずつに発光素
子や受光素子を設ける必要があり、高価なシステムとな
る。
In order to achieve the first objective by extending the configuration shown in FIG. It is necessary to provide a light emitting element and a light receiving element for each set, resulting in an expensive system.

〔発明の実施例〕[Embodiments of the invention]

本発明では、発光波長の異なる二つの発光素子から発せ
られる光(夫々波長入1と入2の光)を第1図に示す代
表的実施例のようK、光挿入器311で共通の光ファイ
バF1を介して共通の偏光子32へ導き、かつ共通のフ
ァラデー素子33により、それぞれ個々に偏波面の回転
を受け、これが共通の検光子34によりそれぞれの特定
成分を取り出し、共通の光ファイバF2を介して光分岐
(f351で導かれ、二つの受光素子35人、35Bに
与えられろうここで一方の受光索子35Aは入、の光を
、他方の受光索子35Bのみを受光するようにすれば、
保赴用と制御用の電流+′f!報を独立に、それぞれ電
気的に独立を保ちながら獲得することができる。
In the present invention, the light emitted from two light emitting elements having different emission wavelengths (wavelength input 1 and wavelength input 2 light, respectively) is connected to a common optical fiber by an optical inserter 311, as shown in the typical embodiment shown in FIG. F1 is guided to a common polarizer 32, and the plane of polarization is individually rotated by a common Faraday element 33, which extracts each specific component by a common analyzer 34, and is connected to a common optical fiber F2. The light is guided through a light branch (f351) and given to two light receiving elements 35B, where one light receiving element 35A receives the light, and the other light receiving element 35B receives only the light. Ba,
Current for maintenance and control +′f! information can be acquired independently, each maintaining electrical independence.

1だ、このようにして得られた二つの受光素子の出力を
、例えば、受光素子35人の後段のAD変換器36Aに
12ピツ)AD変換器を用い、受光水子35Bの後段の
AD変換器368に15ビツトAD変換器をそれぞれ用
いるようにすれば、前者は保護用としてダイナミックレ
ンジ100V2kA(過渡直流分を含む)の最大入力の
、1合でも単位d igi tで検出でき所要の性能を
得ることができる。
1. The outputs of the two light-receiving elements obtained in this way are transferred to, for example, an AD converter 36A after the 35 light-receiving elements. If a 15-bit AD converter is used for each of the converters 368, the former can detect in units of digits even one signal of the maximum input with a dynamic range of 100V2kA (including transient DC components) for protection, and can achieve the required performance. Obtainable.

また、後者を計測用としてかつ、その16ビツト出力の
うちの12ピツトを用いれば、100V2に人工1= 
12.5V’2kA  を12ピツトでAD変換した゛
 8 ト等価トナリ、  ”””、   =  6.1v’2
A/2048di gx t dig であり、この値は通常の超高HE系統送示時6
.1人 の定格電流400OAに対しても楕llが 、。0OA
X100=0.15俤 で、計測用(fl、IJ御用)
としての所要精度±0.3チ以下を充分溝たし得ること
がわかる。
Moreover, if the latter is used for measurement and 12 pits of its 16-bit output are used, the artificial 1 = 100V2
12.5V'2kA was AD converted with 12 pits, 8 bit equivalent toner, ``'''', = 6.1v'2
A/2048digxtdig, and this value is 6 when sending a normal ultra-high HE system.
.. Even for a single person's rated current of 400 OA, there is an oval. 0OA
X100=0.15t, for measurement (for fl, IJ)
It can be seen that the required accuracy of ±0.3 inch or less can be sufficiently completed.

本発明による光変成器によれば、保護用と制御用の独立
性を維持しつつ、当初ねらいとじ九ダイナミックレンジ
の違いによる問題点の解消をはかりつる。
According to the optical transformer according to the present invention, it is possible to solve the problems caused by the difference in dynamic range, which was originally intended, while maintaining the independence of the protection and control functions.

なお、以上では、充電流変成器の例を述べたが、光PT
の原理が第5図のような構成により実現できることから
、実施列と同様の考え方を光PTの場合にも適用できる
ことは容易に理解できる。
In addition, although the example of the charging current transformer has been described above, the optical PT
Since the principle of can be realized by the configuration shown in FIG. 5, it is easy to understand that the same concept as that of the implementation column can be applied to the case of optical PT.

第5図における31は光源でLEDのような発光素子を
用い、32は偏光子で、光源の発光成分から、直線側光
分のみを取り出す機能を果す。計測すべき一次側のは圧
101の両端を電界−光一効果素子であるポッケルス素
子40に印加し、そのtic界方内方向光子32を通っ
たあとの光を通過させると、ポッケルス素子40の通過
光は一次側電圧による電界Eの大きさに比例した分だけ
偏光するのでその位相差成分のみを174波長板41で
取り出し更にこの光を検光子34を通過させることによ
って計測に有利な有効成分のみを取り出すようにしたも
のである。
In FIG. 5, 31 is a light source using a light emitting element such as an LED, and 32 is a polarizer, which functions to extract only the linear side light component from the light emission components of the light source. On the primary side to be measured, both ends of the pressure 101 are applied to the Pockels element 40 which is an electric field-optical effect element, and when the light after passing through the tic field inward photon 32 is passed through the Pockels element 40. Since the light is polarized by an amount proportional to the magnitude of the electric field E due to the primary side voltage, only the phase difference component is extracted by the 174-wave plate 41, and this light is passed through the analyzer 34, so that only the effective component that is advantageous for measurement is extracted. It is designed to take out the .

なお、図中38A、38Bは伝送路である。Note that 38A and 38B in the figure are transmission lines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系統図、第2図、第3図は
電流変成器を光と磁界の相互作用を用いて実現する方法
の説明図、第4図は従来の変義所における制御、保護装
置と土器との接続、配置列を示す図、第5図は電圧変成
器を光と磁界の相互作用を用いて実現する方法の説明図
である。
Figure 1 is a system diagram of an embodiment of the present invention, Figures 2 and 3 are explanatory diagrams of a method for realizing a current transformer using the interaction of light and magnetic fields, and Figure 4 is a conventional variation. FIG. 5 is an explanatory diagram of a method for realizing a voltage transformer using the interaction of light and magnetic fields.

Claims (1)

【特許請求の範囲】[Claims] 1、光磁気効果素子を一次導体の近傍に、置き、前記光
磁気効果素子を通過する光信号の偏光面が、前記一次導
体に流れる電流により発生する磁界に比例して回転する
ことを利用した光変成器において、単一の前記光磁気効
果素子に、波長の異なる複数の発光源からの光出力を同
時に通過させ、前記光信号それぞれが受ける光信号偏光
面の回転角を個々独立に検出できるようにしたことを特
徴とする光変成器。
1. A magneto-optical effect element is placed near the primary conductor, and the polarization plane of the optical signal passing through the magneto-optical effect element rotates in proportion to the magnetic field generated by the current flowing through the primary conductor. In the optical transformer, optical outputs from a plurality of light emitting sources having different wavelengths are simultaneously passed through the single magneto-optical effect element, and rotation angles of optical signal polarization planes received by each of the optical signals can be individually detected. An optical transformer characterized by:
JP60264861A 1985-11-27 1985-11-27 Light transformer Expired - Fee Related JPH0690230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60264861A JPH0690230B2 (en) 1985-11-27 1985-11-27 Light transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60264861A JPH0690230B2 (en) 1985-11-27 1985-11-27 Light transformer

Publications (2)

Publication Number Publication Date
JPS62126356A true JPS62126356A (en) 1987-06-08
JPH0690230B2 JPH0690230B2 (en) 1994-11-14

Family

ID=17409236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60264861A Expired - Fee Related JPH0690230B2 (en) 1985-11-27 1985-11-27 Light transformer

Country Status (1)

Country Link
JP (1) JPH0690230B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142840A (en) * 2018-09-18 2019-01-04 江门市新会区炎泰电子有限公司 A kind of current measuring method and its all -fiber leakage current protector based on dual wavelength

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118675A (en) * 1980-02-25 1981-09-17 Iwatsu Electric Co Ltd Method for measuring optical modulation
JPS5724863A (en) * 1980-07-22 1982-02-09 Iwatsu Electric Co Ltd Modulation measuring method of and apparatus for intensity of light
JPS57196965A (en) * 1981-05-29 1982-12-03 Sumitomo Electric Industries Measuring of gas partial pressure in blood

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118675A (en) * 1980-02-25 1981-09-17 Iwatsu Electric Co Ltd Method for measuring optical modulation
JPS5724863A (en) * 1980-07-22 1982-02-09 Iwatsu Electric Co Ltd Modulation measuring method of and apparatus for intensity of light
JPS57196965A (en) * 1981-05-29 1982-12-03 Sumitomo Electric Industries Measuring of gas partial pressure in blood

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142840A (en) * 2018-09-18 2019-01-04 江门市新会区炎泰电子有限公司 A kind of current measuring method and its all -fiber leakage current protector based on dual wavelength
CN109142840B (en) * 2018-09-18 2023-07-25 江门市新会区炎泰电子有限公司 Current measurement method and all-fiber leakage current protector thereof

Also Published As

Publication number Publication date
JPH0690230B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
CN101521104B (en) Full optical fiber current transformer adopting double closed loop control
US6621258B2 (en) Electro-optic high voltage sensor
EP0254396B1 (en) A direct current magneto-optic current transformer
JPH0224349B2 (en)
CN103698571A (en) Current transformer equipment with effects of self energy supply and low consumption and bus current detecting method
JPS62126356A (en) Optical transformer
RU2663545C1 (en) Optical measurement of variable and constant currents in high-voltage networks
JPS62272158A (en) Voltage detector
KR100288157B1 (en) Optoelectronic Overcurrent Protection Relay System
JPS62110162A (en) Apparatus for detecting zero phase current
JP2668127B2 (en) Optical current measurement device
CN117039791B (en) Optical computing system and method for optical differential protection
JP3131011B2 (en) Photocurrent transformer for DC
KR20040020345A (en) The Apparatus and Method for Simultaneous Measurement of Current and Voltage Using Optic Fiber
KR0177874B1 (en) Nonsinusoidal High Frequency Large Current Measuring Device Using Photocurrent Sensor
CN111224387B (en) Phase difference protection method and system based on magneto-optical measurement element
JPS6350761A (en) Optical fiber zero phase current transformer
CN110988431A (en) Optical fiber current transformer with high integration level
JPH0720158A (en) Optical current transformer
Ye et al. New optical fiber voltage transformer
UA29750A (en) ellIpsometer
KR20100073710A (en) Senor for detecting degradation
JPH01276074A (en) Optical demodulator
JPS63265177A (en) Zero-current detector
CN111198290A (en) Optical fiber type current transformer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees