JPS6212601B2 - - Google Patents

Info

Publication number
JPS6212601B2
JPS6212601B2 JP7065479A JP7065479A JPS6212601B2 JP S6212601 B2 JPS6212601 B2 JP S6212601B2 JP 7065479 A JP7065479 A JP 7065479A JP 7065479 A JP7065479 A JP 7065479A JP S6212601 B2 JPS6212601 B2 JP S6212601B2
Authority
JP
Japan
Prior art keywords
mesh
insulating material
dielectric
irradiated
conductive mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7065479A
Other languages
Japanese (ja)
Other versions
JPS55163703A (en
Inventor
Tooru Toida
Tanji Hoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7065479A priority Critical patent/JPS55163703A/en
Publication of JPS55163703A publication Critical patent/JPS55163703A/en
Publication of JPS6212601B2 publication Critical patent/JPS6212601B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は誘電体メツシユの製造方法に関し、特
に誘電体メツシユの開口部の寸法が一様な誘電体
メツシユの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a dielectric mesh, and more particularly to a method for manufacturing a dielectric mesh in which the openings of the dielectric mesh have uniform dimensions.

従来、静電記録方法においては、コロナ放電等
によるイオン流を誘電体メツシユにより制御する
記録方式がとられ、このような誘電体メツシユの
製造に当つては、金属メツシユ等の導電性メツシ
ユ基体の片側の面にスプレー法、蒸着法及びスピ
ナー法等により絶縁性物質を付着させる方法が行
なわれてきた。第1図はこのような従来法により
製造された誘電体メツシユの一部の断面概略図で
あり、1は導電性メツシユ基体、2は絶縁性物
質、3は開口部、4は誘電体メツシユを示す。第
1図に示されるように、従来法により製造した誘
電体メツシユにおいては、絶縁性物質2が導電性
メツシユ基体1の開口部3の部分にまわり込み、
開口部3の内壁そして更には導電性メツシユ基体
1の反対側の面にまで付着し、開口部3の寸法
(大きさ)が一様でなくなる欠点があつた。
Conventionally, electrostatic recording methods have used a recording method in which ion flow caused by corona discharge or the like is controlled using a dielectric mesh, and when manufacturing such a dielectric mesh, it is necessary to Methods have been used in which an insulating material is attached to one surface by a spray method, a vapor deposition method, a spinner method, or the like. FIG. 1 is a schematic cross-sectional view of a part of a dielectric mesh manufactured by such a conventional method, in which 1 is a conductive mesh base, 2 is an insulating material, 3 is an opening, and 4 is a dielectric mesh base. show. As shown in FIG. 1, in the dielectric mesh manufactured by the conventional method, the insulating material 2 wraps around the opening 3 of the conductive mesh base 1.
The problem was that the adhesive adhered to the inner wall of the opening 3 and even to the opposite surface of the conductive mesh substrate 1, resulting in uneven dimensions of the opening 3.

本発明はこのような現状に鑑みてなされたもの
であり、その目的は、従来法の欠点を解決し、誘
電体メツシユの開口部の寸法が一様な誘電体メツ
シユの製造方法を提供することである。
The present invention has been made in view of the current situation, and its purpose is to solve the drawbacks of the conventional method and provide a method for manufacturing a dielectric mesh in which the dimensions of the openings of the dielectric mesh are uniform. It is.

本発明につき概説すれば、本発明の誘電体メツ
シユの製造方法は、導電性メツシユ基体の片側の
面にエネルギー線の照射により溶剤に可溶性とな
る絶縁性物質を付着させ、次いで導電性メツシユ
基体の反対側の面からエネルギー線を照射し、そ
の後エネルギー線を照射された部分の絶縁性物質
を溶剤により溶解除去することを特徴とするもの
である。
To summarize the present invention, the method for manufacturing a dielectric mesh of the present invention involves depositing an insulating substance that becomes soluble in a solvent on one side of a conductive mesh base by irradiating it with energy rays, and then It is characterized by irradiating energy rays from the opposite side, and then dissolving and removing the insulating material in the area irradiated with energy rays using a solvent.

本発明においては、絶縁性物質としてエネルギ
ー線の照射により分解して適当な溶剤に可溶性と
なる特定の高分子材料(樹脂)を用い、これを導
電性メツシユ基体の片側の面に一様に付着させ
る。この場合の塗布の方法は特に限定されず、既
知の蒸着法、スプレー法及びスピナー法等を適宜
使用することができる。この際、絶縁性物質の一
部は導電性メツシユ基体の開口部にまわり込み更
には該基体の反対側の面にまで達して付着するこ
とがある。本発明によれば、次いで導電性メツシ
ユ基体の反対側の面から紫外線又は電子線のよう
なエネルギー線を照射することにより、上記開口
部の内壁及び該基体の反対側の面に付着した絶縁
性物質のみが照射を受けて分解し(構成分子の主
鎖が切断される)、特定の溶剤に可溶性となる。
次いで、このような処理を行なつた導電性メツシ
ユ基体を適当な溶剤中に浸漬することにより、照
射部の絶縁性物質を溶解除去し、照射を受けない
片側の面のみに一様に絶縁性物質が付着した誘電
体メツシユを製造することができる。このように
して製造した誘電体メツシユは、導電性メツシユ
基体のメツシユと一致した(対応した)寸法の開
口部を有し、コロナ放電等によるイオン流の通過
を正確に制御することができる。
In the present invention, a specific polymeric material (resin) that decomposes when irradiated with energy rays and becomes soluble in an appropriate solvent is used as the insulating material, and this is uniformly adhered to one side of the conductive mesh base. let The coating method in this case is not particularly limited, and known vapor deposition methods, spray methods, spinner methods, etc. can be used as appropriate. At this time, some of the insulating material may wrap around the opening of the conductive mesh base and even reach and adhere to the opposite surface of the base. According to the present invention, by irradiating an energy beam such as an ultraviolet ray or an electron beam from the opposite side of the conductive mesh base, the insulation attached to the inner wall of the opening and the opposite side of the base is When only the substance is irradiated, it decomposes (the main chains of its constituent molecules are cut) and becomes soluble in specific solvents.
Next, the conductive mesh substrate that has been treated in this way is immersed in a suitable solvent to dissolve and remove the insulating material in the irradiated area, and uniformly insulate only one side that is not irradiated. A dielectric mesh with a substance attached thereto can be produced. The dielectric mesh thus manufactured has openings with dimensions matching (corresponding to) the mesh of the conductive mesh base, and the passage of ion flow due to corona discharge or the like can be accurately controlled.

本発明における導電性メツシユ基体としては、
約100〜400メツシユのステンレス網、ステンレス
プレス網及びエツチング網等を適宜使用すること
ができ、又、その厚さは30μ程度とすることが適
当である。
The conductive mesh substrate in the present invention includes:
A stainless steel mesh, a stainless steel press mesh, an etched mesh, etc. having about 100 to 400 meshes can be used as appropriate, and the thickness thereof is suitably about 30 μm.

又、本発明における絶縁性物質は、誘電体であ
りかつエネルギー線の照射により分解して適当な
溶剤に可溶性となる物質であればよく、その種類
は特に限定されない。このような物質としては、
従来からイオンエツチング用ポジ型レジストとし
て用いられている各種高分子材料を挙げることが
でき、具体的には、ポリイミド樹脂系ポジ型レジ
スト(巴工業社販売、パリレン)、メタクリル酸
エステル系重合体又は共重合体、ノボラツク樹脂
系ポジ型レジスト〔シプレー社製、AZ1350〕、オ
ルトナフトキノンジアジド系ポジ型レジスト(シ
プレー社製、AZ系)及びミクロポジテイブレジ
スト(イーストマンコダツク社製)等を使用する
ことができる。これらの絶縁性物質の被膜の厚さ
は、約50μ程度とすることが適当である。
Further, the insulating substance in the present invention is not particularly limited as long as it is a dielectric substance and becomes decomposed by irradiation with energy rays and becomes soluble in a suitable solvent. Such substances include
Various polymer materials that have been conventionally used as positive resists for ion etching can be mentioned, and specifically, polyimide resin-based positive resists (Parylene, sold by Tomoe Kogyo Co., Ltd.), methacrylic acid ester polymers, Use copolymers, novolak resin-based positive resists (manufactured by Shipley Co., Ltd., AZ1350), orthonaphthoquinonediazide-based positive resists (manufactured by Shipley Co., Ltd., AZ series), micropositive resists (manufactured by Eastman Kodak Co., Ltd.), etc. I can do it. The thickness of the coating of these insulating substances is suitably about 50 μm.

本発明におけるエネルギー線としては、紫外線
の他、電子線等を適宜使用することができ、例え
ば500W程度の水銀ランプによる紫外線照射によ
り目的を達成することができる。
In addition to ultraviolet rays, electron beams and the like can be appropriately used as energy rays in the present invention. For example, the purpose can be achieved by irradiating ultraviolet rays with a mercury lamp of about 500 W.

又、本発明における溶剤は、上記絶縁性物質の
種類によつて異なり、α―クロルナフタリン及び
四塩化炭素のような塩素系溶剤の他、メチルイソ
ブチルケトン、イソプロピルアルコール及び適当
なアルカリ性溶剤等を適宜選択して用いることが
できる。本発明においては、絶縁性物質として前
記パリレンを、溶剤としてα―クロルナフタレン
を用いて特に良好な結果を得ている。この場合、
溶剤を適当な温度約100〜150℃程度まで加熱して
操作を行なつていつそう効果を挙げることができ
る。
The solvent used in the present invention varies depending on the type of the insulating substance, and in addition to chlorinated solvents such as α-chlornaphthalene and carbon tetrachloride, methyl isobutyl ketone, isopropyl alcohol, and appropriate alkaline solvents may be used as appropriate. It can be used selectively. In the present invention, particularly good results have been obtained using parylene as the insulating material and α-chloronaphthalene as the solvent. in this case,
The operation can be carried out by heating the solvent to a suitable temperature of about 100 to 150°C to obtain a more effective effect.

次に、本発明を図面を参照して実施例により説
明するが、本発明はこれによりなんら限定される
ものではない。
Next, the present invention will be described by way of examples with reference to the drawings, but the present invention is not limited thereto in any way.

実施例 第2図のaは本実施例における導電性メツシユ
基体の片側の面に絶縁性物質を付着させた状態を
示した一部の断面概略図、bは、aに示された導
電性メツシユ基体の反対側の面からエネルギー線
を照射した状態を示した断面概略図、cはエネル
ギー線を照射後、絶縁性物質の付着した導電性メ
ツシユ基体を溶剤中に浸漬して製造した本発明の
誘電体メツシユの断面概略図であり、1は導電性
メツシユ基体、2は絶縁性物質、3は開口部、4
は誘電体メツシユ、5はエネルギー線示す。
Example FIG. 2a is a schematic cross-sectional view of a portion of the conductive mesh substrate shown in this example with an insulating material attached to one surface, and b is a schematic cross-sectional view of the conductive mesh shown in a. A schematic cross-sectional view showing a state in which energy rays are irradiated from the opposite side of the substrate, and c is a cross-sectional diagram showing a state in which the conductive mesh substrate of the present invention with an insulating material attached is immersed in a solvent after being irradiated with energy rays. 1 is a schematic cross-sectional view of a dielectric mesh, in which 1 is a conductive mesh base, 2 is an insulating material, 3 is an opening, and 4 is a schematic cross-sectional view of a dielectric mesh;
5 indicates a dielectric mesh, and 5 indicates an energy line.

メツシユの寸法が200メツシユ、厚さが30μの
導電性メツシユ基体(ステンレス網)1の片側の
面から絶縁性物質(巴工業社販売、パリレン:ポ
リイミド系樹脂)2を蒸着し、厚さ50μの蒸着膜
を形成した。この場合、第2図のaに示されるよ
うに、蒸着膜は導電性メツシユ基体1の開口部3
の内壁及び反対側の面の一部にも形成された。次
いで、第2図のbに示されるように、導電体メツ
シユ基体1の反対側の面からエネルギー線
(500Wの水銀ランプからの紫外線)5を照射し
た。このものを、150℃に加熱した溶剤(α―ク
ロルナフタリン)中に浸漬したところ、上記開口
部3の内壁及び該基体1の反対側の面に付着した
絶縁性物質2(斜線部)は溶解除去され、第2図
のcに示されるような導電性メツシユ基体1の片
側の面のみに一様に絶縁性物質2が付着した誘電
体メツシユ4を製造することができた。
An insulating material (sold by Tomoe Kogyo Co., Ltd., parylene: polyimide resin) 2 is vapor-deposited on one side of a conductive mesh base (stainless steel mesh) 1 with a mesh size of 200 mesh and a thickness of 30 μm. A vapor deposited film was formed. In this case, as shown in FIG.
It was also formed on the inner wall and part of the opposite side. Next, as shown in FIG. 2b, an energy beam (ultraviolet light from a 500 W mercury lamp) 5 was irradiated from the opposite surface of the conductor mesh substrate 1. When this product was immersed in a solvent (α-chlornaphthalene) heated to 150°C, the insulating material 2 (hatched area) attached to the inner wall of the opening 3 and the opposite surface of the base 1 was dissolved. As a result, it was possible to manufacture a dielectric mesh 4 in which the insulating material 2 was uniformly adhered to only one side of the conductive mesh base 1 as shown in FIG. 2c.

以上説明したように、本発明によれば、導電性
メツシユ基体の片側の面に一様に絶縁性物質を付
着させ、次にエネルギー線を反対側の面から照射
することにより、導電性メツシユ基体の開口部か
らまわり込んで反対側の面及び開口部の内壁に付
着した絶縁性物質のみがエネルギー線を照射され
て溶剤に可溶性となり、次いで溶剤中に浸漬する
ことにより片側の面に付着した絶縁性物質のみを
残し他の部分の絶縁性物質を溶解除去することが
できる。したがつて、本発明により得られる誘電
体メツシユは、導電性メツシユ基体のメツシユと
一致した径の開口部を有し、かつ片側の面に一様
な厚さの絶縁性物質を有するため、コロナ放電等
によるイオン流の通過を正確に制御することがで
き、静電記録方法における部品として有効に利用
することができる。
As explained above, according to the present invention, an insulating material is uniformly adhered to one side of a conductive mesh base, and then an energy beam is irradiated from the opposite side to form a conductive mesh base. Only the insulating material that has gone around the opening and adhered to the opposite side and the inner wall of the opening is irradiated with energy rays and becomes soluble in the solvent, and then immersed in the solvent to dissolve the insulating material that has adhered to one side. It is possible to dissolve and remove the insulating material in other parts, leaving only the insulating material in place. Therefore, the dielectric mesh obtained according to the present invention has openings with a diameter matching that of the mesh of the conductive mesh base, and has an insulating material of uniform thickness on one side, so that it is free from corona. The passage of ion current due to discharge or the like can be accurately controlled, and it can be effectively used as a component in electrostatic recording methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法により製造された誘電体メツシ
ユの一部の断面概略図、第2図のaは本発明によ
り導電性メツシユ基体の片側の面に絶縁性物質を
付着させた状態を示した一部の断面概略図、第2
図のbはaに示された導電性メツシユ基体の反対
側の面からエネルギー線を照射した状態を示した
断面概略図、第2図のcはエネルギー線を照射
後、絶縁性物質の付着した導電性メツシユ基体を
溶剤中に浸漬して製造した本発明の誘電体メツシ
ユの断面概略図である。 1……導電性メツシユ基体、2……絶縁性物
質、3……開口部、4……誘電体メツシユ、5…
…エネルギー線。
Fig. 1 is a schematic cross-sectional view of a part of a dielectric mesh manufactured by a conventional method, and Fig. 2 a shows a state in which an insulating material is attached to one surface of a conductive mesh base according to the present invention. Partial cross-sectional schematic diagram, 2nd
Figure b is a schematic cross-sectional view showing the state in which energy rays are irradiated from the opposite side of the conductive mesh substrate shown in a, and Figure 2c is a schematic cross-sectional view showing the state in which an insulating material is attached after irradiation with energy rays. 1 is a schematic cross-sectional view of a dielectric mesh of the present invention manufactured by immersing a conductive mesh substrate in a solvent. DESCRIPTION OF SYMBOLS 1... Conductive mesh base, 2... Insulating material, 3... Opening, 4... Dielectric mesh, 5...
...Energy lines.

Claims (1)

【特許請求の範囲】 1 導電性メツシユ基体の片側の面にエネルギー
線の照射により溶剤に可溶性となる絶縁性物質を
付着させ、次いで導電性メツシユ基体の反対側の
面からエネルギー線を照射し、その後エネルギー
線を照射された部分の絶縁性物質を溶剤により溶
解除去することを特徴とする誘電体メツシユの製
造方法。 2 絶縁性物質としてパリレンを導電性メツシユ
基体に付着させ、エネルギー線として紫外線を照
射し、その後溶剤としてα―クロルナフタリンで
紫外線を照射された部分の絶縁性物質を溶解除去
する特許請求の範囲第1項記載の誘電体メツシユ
の製造方法。
[Scope of Claims] 1. An insulating substance that becomes soluble in a solvent is attached to one side of a conductive mesh base by irradiation with energy rays, and then an energy ray is irradiated from the opposite side of the conductive mesh base, A method for manufacturing a dielectric mesh, characterized in that the insulating material in the portion irradiated with energy rays is then dissolved and removed using a solvent. 2. Claim No. 2, in which parylene is attached as an insulating material to a conductive mesh base, irradiated with ultraviolet rays as energy rays, and then the insulating material in the portions irradiated with ultraviolet rays is dissolved and removed using α-chlornaphthalene as a solvent. A method for manufacturing a dielectric mesh according to item 1.
JP7065479A 1979-06-07 1979-06-07 Method of manufacturing dielectric mesh Granted JPS55163703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7065479A JPS55163703A (en) 1979-06-07 1979-06-07 Method of manufacturing dielectric mesh

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7065479A JPS55163703A (en) 1979-06-07 1979-06-07 Method of manufacturing dielectric mesh

Publications (2)

Publication Number Publication Date
JPS55163703A JPS55163703A (en) 1980-12-20
JPS6212601B2 true JPS6212601B2 (en) 1987-03-19

Family

ID=13437848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7065479A Granted JPS55163703A (en) 1979-06-07 1979-06-07 Method of manufacturing dielectric mesh

Country Status (1)

Country Link
JP (1) JPS55163703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667416U (en) * 1993-03-05 1994-09-22 株式会社ジュニアー Information processing device for hanger products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201432380A (en) * 2013-02-06 2014-08-16 Univ Nat Taiwan Method of forming a photoresist structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667416U (en) * 1993-03-05 1994-09-22 株式会社ジュニアー Information processing device for hanger products

Also Published As

Publication number Publication date
JPS55163703A (en) 1980-12-20

Similar Documents

Publication Publication Date Title
US3113896A (en) Electron beam masking for etching electrical circuits
JPH033378B2 (en)
US4619894A (en) Solid-transformation thermal resist
KR100626037B1 (en) Method of descaling mask
DE2726813C2 (en) Method of making a patterned substrate
US4195108A (en) Electrolithographic process which makes it possible to improve the sensitivity of masking resins, and a mask obtained by this kind of process
US5269890A (en) Electrochemical process and product therefrom
JPS6212601B2 (en)
US4045318A (en) Method of transferring a surface relief pattern from a poly(olefin sulfone) layer to a metal layer
US4208242A (en) Method for color television picture tube aperture mask production employing PVA and removing the PVA by partial carmelizing and washing
US3272670A (en) Two-stable, high-resolution electronactuated resists
US3434940A (en) Process for making thin-film temperature sensors
JPS6137774B2 (en)
JPH0122976B2 (en)
US4647523A (en) Production of a resist image
JPH0624747B2 (en) How to make a micromachined injection molding core
JP3117687B2 (en) Aperture plate and processing method thereof
JPH07168368A (en) Formation of resist pattern and thin-film metallic pattern
JPH0626246U (en) Mask for forming a pattern on the lacquer layer by X-ray lithography
SU1019017A1 (en) Free mask for spraying film members and method for making the same
DE2109108A1 (en) Process for etching a layer carrier
JPS58132927A (en) Formation of pattern
CN116568124A (en) Preparation method of Josephson junction
JPS63190396A (en) Method of forming conductive layer
JPS63213343A (en) Formation of fine pattern