JPH0122976B2 - - Google Patents

Info

Publication number
JPH0122976B2
JPH0122976B2 JP58036302A JP3630283A JPH0122976B2 JP H0122976 B2 JPH0122976 B2 JP H0122976B2 JP 58036302 A JP58036302 A JP 58036302A JP 3630283 A JP3630283 A JP 3630283A JP H0122976 B2 JPH0122976 B2 JP H0122976B2
Authority
JP
Japan
Prior art keywords
forming
etching
anode
oxide film
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58036302A
Other languages
Japanese (ja)
Other versions
JPS59161808A (en
Inventor
Koji Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGAI DENSHI KOGYO KYODOKUMIAI
Original Assignee
NAGAI DENSHI KOGYO KYODOKUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGAI DENSHI KOGYO KYODOKUMIAI filed Critical NAGAI DENSHI KOGYO KYODOKUMIAI
Priority to JP58036302A priority Critical patent/JPS59161808A/en
Publication of JPS59161808A publication Critical patent/JPS59161808A/en
Publication of JPH0122976B2 publication Critical patent/JPH0122976B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は特性が均一で精密な電解コンデンサの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electrolytic capacitor with uniform characteristics and precision.

従来の電解コンデンサはアルミニウム、タンタ
ル、ニオブ、チタンなどの陽極酸化皮膜生成性金
属箔を電気的または化学的にエツチングし表面積
を数10倍に拡大したのち陽極酸化により誘電体酸
化皮膜を生成し、これを電極として巻回または積
層して電解コンデンサを構成していた。しかし上
記の構成によるコンデンサはエツチングでの表面
積拡大率にバラツキがあるため静電容量のバラツ
キが±20%程度と大きい欠点がある。
Conventional electrolytic capacitors are made by electrically or chemically etching anodic oxide film-forming metal foil such as aluminum, tantalum, niobium, titanium, etc. to increase the surface area several tens of times, and then anodic oxidation to generate a dielectric oxide film. Electrolytic capacitors were constructed by winding or laminating these as electrodes. However, the capacitor having the above structure has a drawback that the capacitance varies widely, about ±20%, because the surface area expansion rate during etching varies.

本発明は上記の欠点を除去し静電容量、損失、
漏れ電流などのバラツキがなく均一で精密な特性
を有する電解コンデンサの製造方法を提供せんと
するものである。
The present invention eliminates the above-mentioned drawbacks and eliminates capacitance, loss,
It is an object of the present invention to provide a method for manufacturing an electrolytic capacitor that has uniform and precise characteristics without variations in leakage current, etc.

以下本発明の詳細について説明する。すなわち
アルミニウム、タンタル、ニオブ、チタンなどの
陽極酸化皮膜生成性金属箔の表面にポリビニルア
ルコール−重クロム酸塩系、ポリビニルアルコー
ル−桂皮酸エステル系などのホトレジストをスピ
ンナーやホアラーにより均一に塗布し乾燥する。
つぎに所要のコンデンサ容量を得るには必要なパ
ターンをもつた、例えば1辺が数μmの正方形の
不透明層を相互に数μm間隔で碁盤目状に配置し
たホトマスクを前記レジスト膜上に密着させ高圧
水銀灯やキセノンランプなどにより紫外線光を照
射する。現像はレジストに種類によつて水または
トリクロルエチレンなどの有機溶剤のスプレーや
蒸気でレジストの未感光部分を溶解して行い、要
すれば焼成して安定化する。かくしてレジストが
除去され開口した部分の下地金属すなわち電極の
エツチングは電解エツチング、化学エツチングま
たは電子ビームスパツタリングなどの方法で所定
の深さまで進行させる。ここで表面積拡大率すな
わちエツチング倍率はエツチング孔の深さおよび
孔の分布密度に依存する。また孔の1辺の長さや
孔間隔は陽極酸化電圧の値で適宜調節できる。つ
ぎに金属箔上に残留しているレジスト膜を有機溶
剤や剥離液に浸漬したりあるいは吹き付けて剥離
する。さらに金属箔は超音波などを併用して水洗
を行いエツチング孔中の溶解物を完全に除去す
る。ついで硼酸塩や有機酸塩の水溶液中で所要の
電圧まで陽極酸化を行い誘電体酸化皮膜を生成し
陽極とする。上記のような方法で得た第1図およ
び第2図に示すようなエツチング孔1を有する陽
極2を一定の大きさに裁断しその一方の端部に第
3図に示すように耐熱性のワニス3を塗布しエツ
チング孔1の有する部分を硝酸マンガンまたは硫
酸マンガンなどの水溶液に浸漬し含浸させ200〜
350℃の温度で焼成し二酸化マンガンなどの半導
体層を形成する。そしてこの陽極酸化−含浸−焼
成を数回くり返し前記エツチング孔1内まで完全
に半導体層を形成する。つぎに該半導体層の表面
にカーボングラフアイト層および銀または銅ペー
ストなどの導電層を形成してユニツトエレメント
を構成する。該ユニツトエレメントを第4図に示
すように所要の静電容量に応じて複数枚積層し、
導電層を形成していないワニス3塗布側の電極に
は超音波やレーザなどで一体化し外部端子4を接
続し陽極体5とする。導電層側はハンダなどで並
列に接続し陰極とし、要すれば外部端子6を接続
する。この積層体を容器に収納するか樹脂モール
ドあるいは樹脂コーテングなどを施しシート状の
電解コンデンサを得るものである。
The details of the present invention will be explained below. That is, a photoresist such as polyvinyl alcohol-dichromate type or polyvinyl alcohol-cinnamate ester type is applied uniformly to the surface of an anodic oxide film-forming metal foil such as aluminum, tantalum, niobium, or titanium using a spinner or a roller and then dried. .
Next, in order to obtain the required capacitance, a photomask with the necessary pattern, for example, square opaque layers with a side of several μm arranged in a grid pattern at intervals of several μm, is tightly adhered onto the resist film. Ultraviolet light is irradiated using a high-pressure mercury lamp or xenon lamp. Development is carried out by spraying or steaming water or an organic solvent such as trichlorethylene, depending on the type of resist, to dissolve the unexposed portions of the resist, and if necessary, baking to stabilize the resist. Etching of the base metal, that is, the electrode, in the openings where the resist is removed is performed to a predetermined depth by electrolytic etching, chemical etching, electron beam sputtering, or the like. Here, the surface area expansion rate, that is, the etching magnification, depends on the depth of the etching holes and the distribution density of the holes. Further, the length of one side of the holes and the hole spacing can be adjusted as appropriate by adjusting the anodic oxidation voltage. Next, the resist film remaining on the metal foil is peeled off by dipping or spraying it in an organic solvent or stripping solution. Further, the metal foil is washed with water using ultrasonic waves or the like to completely remove dissolved substances in the etching holes. Next, anodic oxidation is performed in an aqueous solution of borate or organic acid salt to a required voltage to form a dielectric oxide film, which is used as an anode. The anode 2 having the etched holes 1 as shown in FIGS. 1 and 2 obtained by the method described above is cut into a certain size, and a heat-resistant material is placed on one end of the anode 2 as shown in FIG. 3. Apply varnish 3 and immerse the part with etching holes 1 in an aqueous solution such as manganese nitrate or manganese sulfate to impregnate it to 200~
It is fired at a temperature of 350°C to form a semiconductor layer such as manganese dioxide. This process of anodic oxidation, impregnation and firing is repeated several times to form a semiconductor layer completely up to the etching hole 1. Next, a carbon graphite layer and a conductive layer such as silver or copper paste are formed on the surface of the semiconductor layer to form a unit element. A plurality of unit elements are stacked according to the required capacitance as shown in FIG.
The electrode on the side to which the varnish 3 is coated, on which no conductive layer is formed, is integrated using ultrasonic waves, a laser, or the like, and an external terminal 4 is connected thereto to form an anode body 5. The conductive layer side is connected in parallel with solder or the like to serve as a cathode, and an external terminal 6 is connected if necessary. This laminate is housed in a container or subjected to resin molding or resin coating to obtain a sheet-like electrolytic capacitor.

上記の方法によつて得られる本発明の電解コン
デンサは従来の電解コンデンサに使用する陽極用
エツチング箔に比べて表面積拡大率のバラツキが
極めて小さく完成品としての静電容量のバラツキ
は±1%以内に収められる。またエツチング孔の
大きさ、深さ、分布密度が一定しており生成する
誘電体酸化皮膜が均質のため損失、漏れ電流のバ
ラツキも小さく均一にできる。さらに積層枚数を
増減することによつて任意の静電容量が得られ
る。また樹脂モールドなどによつて薄形扁平状に
仕上げることができ、集積回路などに組込む超精
密の電解コンデンサやチツプ形電解コンデンサに
応用できる。
The electrolytic capacitor of the present invention obtained by the above method has extremely small variation in surface area expansion rate compared to the etched foil for anode used in conventional electrolytic capacitors, and the variation in capacitance as a finished product is within ±1%. It can be stored in Furthermore, the size, depth, and distribution density of the etching holes are constant, and the resulting dielectric oxide film is homogeneous, so that variations in loss and leakage current can be made small and uniform. Further, by increasing or decreasing the number of laminated layers, an arbitrary capacitance can be obtained. It can also be made into a thin, flat shape by resin molding, etc., and can be applied to ultra-precision electrolytic capacitors and chip-type electrolytic capacitors that are incorporated into integrated circuits.

以上詳述したように本発明によれば陽極酸化皮
膜生成性金属箔の表面にホトレジストを塗布して
乾燥しホトマスクを密着させ紫外線光を照射した
のち未感光部分を溶解しレジストが除去され開口
した部分の下地金属をエツチングし表面積を拡大
し残留レジスト膜を剥離してから誘電体酸化皮膜
を生成し陽極とし、該陽極の一端部に耐熱性ワニ
スを塗布し半導体層、カーボングラフアイト層、
導電層を順次形成してユニツトエレメントとし該
ユニツトエレメントを複数枚積層し前記ワニス塗
布側を超音波またはレーザなどで一体化し陽極体
とし前記導電層側はハンダなどで並列に接続し陰
極としたことによつて静電容量のバラツキを小さ
くし、しかも損失、漏れ電流のバラツキも小さく
均一にできる精密な薄形扁平状の電解コンデンサ
の製造方法を提供することができる。
As detailed above, according to the present invention, a photoresist is coated on the surface of an anodized film-forming metal foil, dried, a photomask is adhered, and ultraviolet light is irradiated, and the unexposed areas are dissolved, and the resist is removed to form an opening. After etching the base metal of the part to expand the surface area and peeling off the residual resist film, a dielectric oxide film is formed and used as an anode.A heat-resistant varnish is applied to one end of the anode, and a semiconductor layer, a carbon graphite layer,
Conductive layers are sequentially formed to form a unit element, and a plurality of unit elements are laminated, and the varnished side is integrated with ultrasonic waves or a laser to form an anode body, and the conductive layer side is connected in parallel with solder or the like to serve as a cathode. As a result, it is possible to provide a method for manufacturing a precise, thin, flat electrolytic capacitor that can reduce variations in capacitance, and can also make variations in loss and leakage current small and uniform.

【図面の簡単な説明】[Brief explanation of drawings]

図面はいずれも本発明に係るもので第1図はエ
ツチング後の金属箔を示す一部切欠平面図、第2
図はエツチング後の金属箔の断面図、第3図は裁
断しワニスを塗布した陽極を示す平面図、第4図
はユニツトエレメントを積層した完成品の電解コ
ンデンサを示す断面図である。 1……エツチング孔、2……陽極、3……ワニ
ス、4,6……外部端子、5……陽極体。
The drawings are all related to the present invention; Fig. 1 is a partially cutaway plan view showing the metal foil after etching, and Fig. 2 is a partially cutaway plan view showing the metal foil after etching.
Figure 3 is a cross-sectional view of the metal foil after etching, Figure 3 is a plan view showing an anode that has been cut and coated with varnish, and Figure 4 is a cross-sectional view showing a finished electrolytic capacitor in which unit elements are laminated. 1... Etching hole, 2... Anode, 3... Varnish, 4, 6... External terminal, 5... Anode body.

Claims (1)

【特許請求の範囲】[Claims] 1 陽極酸化皮膜生成性金属箔の表面にホトレジ
ストを塗布して乾燥する手段と、ホトマスクを密
着させ紫外線光を照射する手段と、未感光部分を
溶解しレジストが除去され開口した部分の下地金
属をエツチングし表面積を拡大する手段と、残留
レジスト膜を剥離する手段と、誘電体酸化皮膜を
生成し陽極を形成する手段と、該陽極の一端部に
耐熱性ワニスを塗布し半導体層、カーボングラフ
アイト層、導電層を順次形成しユニツトエレメン
トを形成する手段と、該ユニツトエレメントを複
数枚積層し前記ワニス塗布側を超音波またはレー
ザで一体化して陽極体とし前記導電層側をハンダ
で並列接続し陰極とする手段とを具備したことを
特徴とする電解コンデンサの製造方法。
1. A method for applying and drying a photoresist on the surface of the metal foil capable of forming an anodic oxide film, a method for applying a photomask to the surface and irradiating it with ultraviolet light, and a method for dissolving the unexposed areas and removing the resist and exposing the underlying metal to the open areas. means for enlarging the surface area by etching; means for peeling off the residual resist film; means for forming a dielectric oxide film to form an anode; means for forming a unit element by sequentially forming a conductive layer, and a means for laminating a plurality of unit elements, and integrating the varnished side with ultrasonic waves or a laser to form an anode body, and connecting the conductive layer side in parallel with solder. 1. A method for manufacturing an electrolytic capacitor, comprising: means for forming a cathode.
JP58036302A 1983-03-04 1983-03-04 Method of producing electrolytic condenser Granted JPS59161808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58036302A JPS59161808A (en) 1983-03-04 1983-03-04 Method of producing electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58036302A JPS59161808A (en) 1983-03-04 1983-03-04 Method of producing electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS59161808A JPS59161808A (en) 1984-09-12
JPH0122976B2 true JPH0122976B2 (en) 1989-04-28

Family

ID=12466020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58036302A Granted JPS59161808A (en) 1983-03-04 1983-03-04 Method of producing electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS59161808A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362888A (en) * 1986-09-01 1988-03-19 Showa Alum Corp Aluminum electrode material for electrolytic capacitor
JPS63157882A (en) * 1986-09-03 1988-06-30 Showa Alum Corp Production of aluminum electrode material for electrolytic capacitor
JPS63239917A (en) * 1987-03-27 1988-10-05 日通工株式会社 Laminated solid electrolytic capacitor and manufacture of the same
JP5128053B2 (en) * 2004-04-27 2013-01-23 昭和電工株式会社 Capacitor electrode foil manufacturing method, capacitor electrode foil, multilayer electrolytic capacitor, and wound electrolytic capacitor
WO2006013812A1 (en) * 2004-08-05 2006-02-09 Matsushita Electric Industrial Co., Ltd. Process for producing aluminum electrode foil for capacitor and aluminum foil for etching
JP5333582B2 (en) * 2009-05-12 2013-11-06 日本軽金属株式会社 Method for producing aluminum electrode plate for electrolytic capacitor
WO2022009799A1 (en) * 2020-07-07 2022-01-13 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor element, solid electrolytic capacitor and method for producing same

Also Published As

Publication number Publication date
JPS59161808A (en) 1984-09-12

Similar Documents

Publication Publication Date Title
US4805074A (en) Solid electrolytic capacitor, and method of manufacturing same
EP0464842B1 (en) A capacitor and a method for manufacturing the same
EP1030327B1 (en) Method of manufacturing solid electrolytic capacitor, and apparatus of manufacturing the same
JPH0122976B2 (en)
US4959754A (en) Electrolytic capacitor
US4764181A (en) Process for producing an electrolytic capacitor
US2709663A (en) Electrical capacitors
US3220938A (en) Oxide underlay for printed circuit components
US3365378A (en) Method of fabricating film-forming metal capacitors
JP2000216061A (en) Manufacture for solid-state electrolytic capacitor
JP4334423B2 (en) Capacitor element manufacturing method
JPH0794369A (en) Solid electrolytic capacitor
JP2834284B2 (en) Capacitor and its manufacturing method
JP3294362B2 (en) Structure of solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
US3156633A (en) Film-forming metal capacitors
JPH05283304A (en) Manufacture of solid-state electrolytic capacitor
JP2811915B2 (en) Method for manufacturing solid electrolytic capacitor
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2924252B2 (en) Method for manufacturing solid electrolytic capacitor
JPH05299311A (en) Array type solid electrolytic capacitor
JP2870805B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US3407465A (en) Techniques for charting and removing defects in thin film capacitors
JPS6032357B2 (en) Manufacturing method of capacitive element
JP2005268681A (en) Manufacturing method of solid electrolytic capacitor
JP2007123812A (en) Method of manufacturing solid electrolytic capacitor