JPS62124261A - Super hard high-speed tool steel - Google Patents
Super hard high-speed tool steelInfo
- Publication number
- JPS62124261A JPS62124261A JP14642886A JP14642886A JPS62124261A JP S62124261 A JPS62124261 A JP S62124261A JP 14642886 A JP14642886 A JP 14642886A JP 14642886 A JP14642886 A JP 14642886A JP S62124261 A JPS62124261 A JP S62124261A
- Authority
- JP
- Japan
- Prior art keywords
- less
- tool steel
- ceq
- speed tool
- hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、通常の焼入−焼もどしにより、HRC71以
上の超高硬度が得られる高速度工具鋼に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high-speed tool steel that can obtain ultra-high hardness of HRC 71 or higher by ordinary quenching and tempering.
HRC71以上の超硬度が得られる高速度工具鋼の例は
少なく、特公昭55−6096号、「硬質合金」。There are few examples of high-speed tool steels that have a superhardness of HRC71 or higher, and are listed in Japanese Patent Publication No. 55-6096, "Hard Alloys."
特公昭57−2142号、「炭化物を富化した高速度工
具鋼」、特開昭57−181367号、「焼結高V高速
度工具鋼とその製造方法」、特開昭58−181848
号、「含窒化物焼結高■高速度工具鋼とその製造方法」
に部分的な開示があるのみである。JP 57-2142, ``Carbide-enriched high-speed tool steel'', JP 57-181367, ``Sintered high-V high-speed tool steel and its manufacturing method'', JP 58-181848
No. 1, “Nitride-containing sintered high-speed tool steel and its manufacturing method”
There is only partial disclosure.
ところが、従来の技術でHRC71以上を得ようとする
と、W、Mo、V等の高価な合金元素を多量に含有させ
しめるか、TiN等の硬質物質を多量に分散させしめる
必要があり、材料が高価になる、被研削性が悪くなる、
靭性が低下する等の問題があった。例えば、特公昭57
−2142号に開示されている実施例では、HRC71
以上の超硬度が得られるのは、N o 、 5,11.
13の合金(第1表、第2表)のみであるが、これらは
、W + 2 M o量(N o。However, in order to obtain an HRC of 71 or higher using conventional technology, it is necessary to contain a large amount of expensive alloying elements such as W, Mo, and V, or to disperse a large amount of hard substances such as TiN. Becomes expensive, has poor grindability,
There were problems such as a decrease in toughness. For example,
In the embodiment disclosed in No.-2142, HRC71
The superhardness above can be obtained with N o , 5, 11.
There are only 13 alloys (Tables 1 and 2) that have a W + 2 Mo content (N o.
5.11)あるいはV量(No、13)が著しく高い合
金系であることがわかる。5.11) or an alloy system with a significantly high V content (No. 13).
また、特開昭57−181367号に開示されている実
施例でも、20%以上のVを含有させしめないとHRC
71以上の超硬度は得られていない(第2図)。Furthermore, even in the embodiment disclosed in JP-A No. 57-181367, HRC is
A superhardness of 71 or higher was not obtained (Figure 2).
さらに、特開昭58−181848号においても、15
%以上のTiNを分散させしめないとHRC71以上の
超硬度は達成されていない。Furthermore, in JP-A-58-181848, 15
% or more of TiN is not dispersed, superhardness of HRC 71 or higher cannot be achieved.
そこで、本発明は、W、Mo、V等の合金元素、あるい
はT j、 N等の硬質物質の含有量が比較的少なくて
も、HRC71以上の超硬度が通常の焼入−焼もどしに
より得られる高速度工具鋼を提供しようとするものであ
る。Therefore, the present invention aims at achieving a superhardness of HRC 71 or higher through normal quenching and tempering even if the content of alloying elements such as W, Mo, and V or hard substances such as Tj and N is relatively small. The aim is to provide a high-speed tool steel that can be used.
本発明は、Ceq =0.06Cr+0.033W +
0.063M。In the present invention, Ceq =0.06Cr+0.033W +
0.063M.
+0.2Vとするとき、C1.7〜2.8%の範oで、
カッ、0≦C−Ceq≦0.6を満足し、さらにCr
3〜10%、W 1〜20%、Mo 1〜11%(ただ
し、18≦W + 2 M o≦24) 、 V 1〜
5.5%、 Co 15%以下、Si2%以下、Mn1
%以下、残Feおよび不純物よりなる高速度工具鋼基質
に、Ti、V、Zr、Nb、Hf、Taの窒化物、炭化
物、炭窒化物の1種または2種以上を合計で、2〜12
%を均一に分散させしめること、更に前記高速度工具鋼
基質にNi2%以下、 N 0.12以下を適宜含有せ
しめることにより、首記の問題点を解決するものである
。When +0.2V, in the range of C1.7 to 2.8%,
Ka, satisfies 0≦C-Ceq≦0.6, and further Cr
3 to 10%, W 1 to 20%, Mo 1 to 11% (however, 18≦W + 2 Mo≦24), V 1 to
5.5%, Co 15% or less, Si 2% or less, Mn1
% or less, one or more types of nitrides, carbides, and carbonitrides of Ti, V, Zr, Nb, Hf, and Ta are added to a high-speed tool steel matrix consisting of residual Fe and impurities in a total of 2 to 12%.
The above problem is solved by uniformly dispersing Ni and not more than 0.12% of Ni and 0.12% or less of Ni in the high-speed tool steel matrix.
本発明において、Cの含有量は最も重要な構成要素であ
る。Cは、同時に含有されるCr、W、Mo、VとM、
C,MCなどの炭化物を形成し、耐摩耗性を付与する作
用とともに、焼入硬化熱処理によりマルテンサイト基地
の硬度を高め、さらに焼もどし二次硬化量を増す作用が
ある。上記の炭化物形成元素であるCr、W、Mo、■
とCが過不足なく結合して、炭化物を形成する平衡炭素
量Ceqは、次式となることが理論的に知られている。In the present invention, the C content is the most important component. C is Cr, W, Mo, V and M contained at the same time,
In addition to forming carbides such as C and MC to impart wear resistance, the quench hardening heat treatment increases the hardness of the martensite base and further increases the amount of secondary hardening through tempering. The above carbide-forming elements Cr, W, Mo, ■
It is theoretically known that the equilibrium carbon amount Ceq at which carbon and C combine in just the right amount to form a carbide is expressed by the following formula.
Ceq=0.06(%Cr) + 0.033(%w)
+0.063(%Mo)+0.2(%V)
従来の高速度工具鋼においては、C含有量と平衡炭素量
Ceqの差、C−Ceqはマイナスとなるように調整さ
れている(例えば5KH59では、はぼ−0,3、AI
SIM42でも一〇、OS)。Ceq=0.06(%Cr) + 0.033(%w)
+0.063 (%Mo) +0.2 (%V) In conventional high-speed tool steel, the difference between the C content and the equilibrium carbon content Ceq, C-Ceq, is adjusted to be negative (for example, 5KH59 So, Habo-0,3, AI
Even SIM42 is 10, OS).
本発明において、W、Mo、V量やTiN等の分散粒子
の量が比較的少なくても、HRC71以上の超硬度が得
られ、実用性の高い高速度工具鋼を得る目的で多数の合
金系につき、実験、検討したところ、Ceq=0.06
Cr+0.033W+0.063Mo+0.2■とする
とき、18≦W+2Mo≦24の範囲で、O≦C−Ce
q≦0.6を満足するようにCを含有させればよいこと
を新規に発見した。C−Ceqが、0未満では、上述し
たように多量のW、Mo、V。In the present invention, even if the amount of W, Mo, V and the amount of dispersed particles such as TiN are relatively small, a large number of alloy systems are used for the purpose of obtaining a highly practical high-speed tool steel that has a superhardness of HRC 71 or higher. After experimenting and considering, Ceq=0.06
When Cr+0.033W+0.063Mo+0.2■, in the range of 18≦W+2Mo≦24, O≦C-Ce
It has been newly discovered that it is sufficient to contain C so that q≦0.6 is satisfied. When C-Ceq is less than 0, large amounts of W, Mo, and V are present as described above.
T i Nを含有せしめないと、HRC71以上の超硬
度が得られない。逆にC−Ceqが、0.6を越えると
、焼入硬化熱処理時に安定な残留オーステナイトが著し
く増加し、また、残留オーステナイトの分解温度が高温
側に移行するので、焼もどし二次硬化させでも、HRC
71以上の超硬度が得られなくなる。すなわち、18≦
W + 2 M、 o≦24の範囲で。Unless T i N is contained, superhardness of HRC 71 or higher cannot be obtained. On the other hand, when C-Ceq exceeds 0.6, stable retained austenite increases significantly during quench hardening heat treatment, and the decomposition temperature of retained austenite shifts to a high temperature side, so even if secondary hardening is performed by tempering, , H.R.C.
A super hardness of 71 or higher cannot be obtained. That is, 18≦
W + 2 M, in the range o≦24.
0≦C−Ceq≦0.6の条件でのみ、本願の目的は達
成できる。The object of the present application can be achieved only under the condition of 0≦C-Ceq≦0.6.
Cは同時に含有されるCr、W、Mo、Vの量によって
適宜に変えるべきであることは上述したごとくである。As mentioned above, C should be appropriately changed depending on the amounts of Cr, W, Mo, and V contained at the same time.
後述する本発明のCr、 W−Mo、 Vの含有量の範
囲で、かつ0≦C−Ceq≦0.6を満足させるにはC
は少なくとも1.7%は必要である。一方、上記の条件
を満たしていてもC含有量が2.8%を越えると靭性の
低下が著しくなるのでC含有量は1.7−2.8%の範
囲で、かつO≦C−Ceq≦0.6と限定ビた。In order to satisfy 0≦C-Ceq≦0.6 within the content range of Cr, W-Mo, and V of the present invention described later, C
is required to be at least 1.7%. On the other hand, even if the above conditions are met, if the C content exceeds 2.8%, the toughness will decrease significantly, so the C content should be in the range of 1.7-2.8% and O≦C-Ceq ≦0.6 and limited bit.
Crは焼入れ硬化性を高める作用があるが、3%未満で
はこの効果が少なく、逆に10%を越えると残留オース
テナイト量が増大し焼入れ・焼き戻し硬さを下げるので
Crの含有量は3〜1咋に限定した。Cr has the effect of increasing quench hardenability, but if it is less than 3%, this effect is small; on the other hand, if it exceeds 10%, the amount of retained austenite will increase and the hardness of quenching and tempering will decrease, so the content of Cr should be 3 to 3%. Limited to 1 ku.
WおよびMoは前述のととくCと結合してM&C型の炭
化物を形成し、耐摩耗性を高める作用と焼入れ硬化熱処
理時に基地中に固溶し、焼き戻し熱処理によってこれが
微細な炭化物として析出し二次硬化度を高める作用があ
る。本発明の安定してHRC71以上の超硬度を得ると
いう目的を達成するには、W1〜20%、Mo 1〜1
1%の範囲でW + 2 M 。W and Mo combine with the aforementioned Totoku C to form an M&C type carbide, which has the effect of increasing wear resistance and solid solution in the matrix during quenching and hardening heat treatment, which precipitates as fine carbides during tempering heat treatment. It has the effect of increasing the degree of secondary hardening. In order to achieve the purpose of stably obtaining superhardness of HRC 71 or higher according to the present invention, W1 to 20%, Mo 1 to 1
W + 2 M in the range of 1%.
量が18%以上を含有せしめる必要がある。しかし。It is necessary to contain the amount of 18% or more. but.
W+2Mo量が24%を越えると材料が高価になるのみ
ならず靭性も低下するのでW、Moの含有量はW +
2 M o量で18〜24%に限定した。なお、本発明
では等量(原子パーセントで)のWとMOはほぼ等価の
作用を有してる。If the amount of W + 2Mo exceeds 24%, the material will not only become expensive but also have lower toughness, so the content of W and Mo should be W +
The amount of 2 Mo was limited to 18-24%. In the present invention, equal amounts (atomic percent) of W and MO have approximately equivalent effects.
V+JW、Moと同じくCと結合して、MC型炭化物を
形成し、耐摩耗性を高める作用がある。また、焼もどし
二次硬化にも寄与するが、M(、型炭化物が安定のため
基地への固溶量が少ないので。Like V+JW and Mo, it combines with C to form MC type carbide, which has the effect of increasing wear resistance. It also contributes to secondary hardening during tempering, but since the M(, type carbide is stable, the amount of solid solution in the base is small).
W、Moはど大きな作用効果はない。したがって、■含
有量を必要以上に多くしても、被研削性、靭性を低下さ
せるだけなので、本発明においてはV含有量は5.5%
を上限とした。一方、1%未満では、MC型炭化物が晶
出しないため、耐摩耗性に不足するのでV含有量は、1
〜5.5%に限定した。W and Mo have no significant effect. Therefore, ■ If the content is increased more than necessary, it will only reduce the grindability and toughness, so in the present invention, the V content is 5.5%.
was set as the upper limit. On the other hand, if the V content is less than 1%, the MC type carbide will not crystallize, resulting in insufficient wear resistance.
It was limited to ~5.5%.
Coは、基地に固溶し、焼もどし硬度、高温硬度を高め
る作用がある。しかし、多量に含有すると、靭性が著し
く低下するので、Coの含有量は、18以下に限定した
。Co dissolves in the matrix and has the effect of increasing tempering hardness and high-temperature hardness. However, if it is contained in a large amount, the toughness will be significantly reduced, so the content of Co was limited to 18 or less.
Siは、脱酸剤として、さらに基地の硬度を高める作用
があるので、2%以下含有せしめた。Since Si acts as a deoxidizer and further increases the hardness of the base, it is contained in an amount of 2% or less.
Mnも脱酸効果があり、さらに焼入硬度性を高める作用
があるので、1%以下含有させしめた。Mn also has a deoxidizing effect and also has the effect of increasing quenching hardness, so it is contained in an amount of 1% or less.
Niは、基地の靭性を高める効果があるが、2%を越え
ると、残留オーステナイト量を極度に増加させ、焼もど
し硬さが低下するので、本発明では2%以下の範囲で適
宜含有せしめるものとする。なお高速度工具鋼において
、微量のNiが含有され。Ni has the effect of increasing the toughness of the matrix, but if it exceeds 2%, the amount of retained austenite increases extremely and the tempering hardness decreases, so in the present invention, it is appropriately contained within the range of 2% or less. shall be. Note that high-speed tool steel contains a trace amount of Ni.
Ni 0.25%以下の範囲はJISでは不純物量とし
て扱わわている。The range of Ni 0.25% or less is treated as an impurity amount in JIS.
Nは、基地の硬さを高める作用と、MC型炭化物中に固
溶して、MCN型の炭窒化物を形成して耐溶着性を高め
る作用とがある。しかし、工業的に含有できる量は、上
限が0.1%であるので、本発明では0.1%の範囲で
適宜含有せしめるものとする。N has the effect of increasing the hardness of the matrix and the effect of forming a solid solution in the MC type carbide to form an MCN type carbonitride to improve the welding resistance. However, since the upper limit of the amount that can be contained industrially is 0.1%, in the present invention, it is appropriately contained within the range of 0.1%.
なお、高速度工具鋼において、通常N 0.05%程度
以下は不純物量として含有されうる。In addition, in high-speed tool steel, normally about 0.05% or less of N may be contained as an impurity amount.
Ti、V、Zr、Nb、Hf、Taの窒化物、炭化物、
炭窒化物を分散させしめると、硬さを高める効果がある
。さらに本発明のごとく、C含有量が平衡炭素量(Ce
q)より、0〜0.6高めとなれば、焼入硬化処理時に
オーステナイト結晶粒が粗大化し、マルテンサイト組織
が粗れて、靭性が極端に低下するのが、従来の常識であ
ったが、本発明によってTi、V、Zr、Nb、Hf、
Taの窒化物、炭化物、炭窒化物の1種または2種以上
を合計で、2〜12%を均一に分散させしめることによ
り、この欠点を解消することができ、溶融開始温度直下
の高いオーステナイト化温度で焼入硬化処理を行なって
も、著しく微細な組織となることを発見した。Nitride, carbide of Ti, V, Zr, Nb, Hf, Ta,
Dispersing carbonitrides has the effect of increasing hardness. Furthermore, as in the present invention, the C content is changed to the equilibrium carbon amount (Ce
It is conventional wisdom that if the value is higher than 0 to 0.6 from q), the austenite crystal grains will become coarse during the quench hardening process, the martensite structure will become rough, and the toughness will be extremely reduced. , according to the present invention, Ti, V, Zr, Nb, Hf,
This drawback can be overcome by uniformly dispersing one or more Ta nitrides, carbides, and carbonitrides in a total amount of 2 to 12%. It was discovered that even if quench hardening treatment is performed at a temperature of
すなわち、上記窒化物、炭化物、炭窒化物を分散させし
めることがC含有量がCeq量より高めとすることによ
り生じる欠点をうまく補い、本発明の目的を達成させて
いる。しかし、2%未満では、上記効果が少なく、一方
、12%を越えると効果が飽和するばかりでなく、被研
削性、靭性を著しく低下させるので、上記窒化物、炭化
物、炭窒化物の分散量は合計で、2〜12%に限定した
。窒化物、炭化物、炭窒化物を基質中に均一に分散させ
しめる方法としては、上記の化学組成からなる高速度工
具鋼の粉末を水、ガス、油などのアトマイズ法により製
造し、この粉末と窒化物、炭化物、炭窒化物の粉末とを
混合した後、成形、焼結するのが、最も適している。な
お、混合に際しては、焼結後の最終炭素含有量を調節す
ること、および焼結性を向上させるなどの目的で、黒鉛
粉末、ブラックカーボンなどの炭素粉末を同時に添加混
合するとよい。さらに、Cr、Ni、Mo、W、Cu、
Co。That is, dispersing the nitrides, carbides, and carbonitrides effectively compensates for the drawbacks caused by the C content being higher than the Ceq content, thereby achieving the object of the present invention. However, if it is less than 2%, the above effect will be small, while if it exceeds 12%, the effect will not only be saturated, but also the grindability and toughness will be significantly reduced. was limited to 2 to 12% in total. A method for uniformly dispersing nitrides, carbides, and carbonitrides in a matrix is to produce high-speed tool steel powder with the above chemical composition by atomizing water, gas, oil, etc. The most suitable method is to mix the powder with nitride, carbide, or carbonitride powder, and then mold and sinter it. In addition, upon mixing, it is preferable to add and mix carbon powder such as graphite powder and black carbon at the same time for the purpose of adjusting the final carbon content after sintering and improving sinterability. Furthermore, Cr, Ni, Mo, W, Cu,
Co.
Fe粉末の1種または2種以上を合計で5%以下同時に
混合させると、焼結性を向上させる効果がある。Mixing one or more Fe powders in a total amount of 5% or less has the effect of improving sinterability.
次に、実施例によって、本発明をさらに詳細に説明する
。Next, the present invention will be explained in more detail with reference to Examples.
実施例1
第1表に示す合計15種類のベース組成からなる粉末を
水アトマイズ法によって製造した。この粉末をさらに粉
砕し、350メツシユの篩で分級した後、平均粒径1〜
10μのTiN、TiC,T1CN、N b C、N
b N 、 V N 、 Z r N 、 T a C
粉末を第1表に示す割合で混合した。さらに、上記粉末
の酸素含有量と等量の炭素粉末を添加後、ボールミルを
用い、36Hr湿式混合して乾燥後、冷間静水圧プレス
で、6t/cn!の圧力で成形した。この成形体を真空
中12Co〜1250℃で焼結し、その後、熱間静水圧
プレスで真密度化させた。Example 1 Powders having a total of 15 types of base compositions shown in Table 1 were produced by a water atomization method. This powder was further crushed and classified with a 350 mesh sieve, and the average particle size was 1 to 1.
10μ TiN, TiC, T1CN, N b C, N
b N , V N , Z r N , T a C
The powders were mixed in the proportions shown in Table 1. Furthermore, after adding carbon powder in an amount equal to the oxygen content of the above powder, wet-mixing using a ball mill for 36 hours, drying, and cold isostatic pressing at 6t/cn! It was molded at a pressure of This molded body was sintered in vacuum at 12Co to 1250°C, and then true densified by hot isostatic pressing.
このようにして得られた高速度工具[(第1表N o
、 1〜No、15)を焼なまし後、焼入−焼もどしを
行なって硬さを測定した。焼入は、12Co〜1260
℃に加熱したソルトバス中に浸漬後油冷し、焼もどしは
、いずれも大気中560℃X (1+1+1)Hrで行
なった。焼もどし後の硬さを第1表に併記したが、本発
明鋼のNo、1〜N o、 12においては、いずれも
1〜I RC71以上の超硬度が得られた。High speed tools obtained in this way [(Table 1 No
, 1 to No. 15) were annealed, quenching and tempering were performed, and the hardness was measured. Quenching is from 12Co to 1260
After being immersed in a salt bath heated to .degree. C., the sample was cooled in oil and tempered in the atmosphere at 560.degree. C. for (1+1+1) hours. The hardness after tempering is also listed in Table 1, and in the steels of the present invention No. 1 to No. 12, superhardness of 1 to IRC71 or higher was obtained in all cases.
比較鋼No、13.14はベース組成、硬質分散粒子含
有量は本発明の範囲にあるものの、いずれもC−Ceq
が低いレベルにあるため、硬度が本発明鋼に及ばない。Comparative steel No. 13.14 has a base composition and hard dispersed particle content within the range of the present invention, but both C-Ceq
Since the hardness is at a low level, the hardness is not as high as that of the steel of the present invention.
従来鋼のNo、15では、C−Ceqは、約−0,13
と低いことおよび、W+2Mo=16.4と少ないため
、TiN粒子を約10%分散させたにもかかわらず、I
(RC68,9の硬さしか得られていない、また、第1
図に第1表中N o 、 3の合金を12Co−126
0℃で焼入、5Co〜650℃で焼もどしたときの焼入
−焼もどし硬さ曲線を、同じく、第2図にN o 、
4合金の焼入−焼もどし硬さ曲線を示す、No、3合金
は、520−570℃の焼もどしで)(Rc72以上と
なり、最高硬さは540℃焼もどしで得られる。一方、
No、4合金は、HnC72以上の硬さが得られる焼も
どし温度範囲は、No、3合金より広く、最高硬さも高
い。しかし、最高硬さの得られる焼もどし温度は、56
0℃と高温側に移行している。これは、残留オーステナ
イトの分解がしだいに困難になりはじめたことを示して
おり、これ以上ピーク温度が高温側に移行すると最高硬
さは逆に低下する。For conventional steel No. 15, C-Ceq is approximately -0.13
and W + 2Mo = 16.4, so even though the TiN particles were dispersed by about 10%, the I
(The hardness is only RC68.9, and the first
The figure shows the alloy No.3 in Table 1 as 12Co-126.
Similarly, Fig. 2 shows the quenching-tempering hardness curve when quenching at 0°C and tempering at 5Co to 650°C.
The quenching-tempering hardness curve of No. 4 alloy is shown. Alloy No. 3 is tempered at 520-570°C) (Rc 72 or more, and the highest hardness is obtained by tempering at 540°C.
The tempering temperature range in which No. 4 alloy can obtain a hardness of HnC72 or higher is wider than that of No. 3 alloy, and the maximum hardness is also higher. However, the tempering temperature that gives the highest hardness is 56
It is moving towards the high temperature side of 0℃. This indicates that the decomposition of retained austenite is becoming increasingly difficult, and as the peak temperature moves further to the high temperature side, the maximum hardness decreases.
さらに、第1表中、No、2、NCo3、No、4、N
o。Furthermore, in Table 1, No, 2, NCo3, No, 4, N
o.
6およびNo、15の高速度工具鋼を用いて真剣バイト
を作成し、切削試験を行なった。その結果を第3図およ
び第4図に示す。第3図は、5KD61をI(RC45
に調質した被削材を高速−低送りの条件で切削した結果
を示す図である。切削耐久寿命時間は、はぼ高硬度の得
られる高速度工具鋼の順となっており、本発明鋼はいず
れも、従来鋼より耐久寿命に優れている。A serious cutting tool was made using No. 6, No. 15, and high speed tool steel, and a cutting test was conducted. The results are shown in FIGS. 3 and 4. Figure 3 shows 5KD61 I (RC45
FIG. 3 is a diagram showing the results of cutting a work material that has been tempered to a high speed and a low feed condition. In terms of cutting durability, high-speed tool steels with the highest hardness are ranked first, and all of the steels of the present invention are superior in durability to conventional steels.
第4図は、5KD61をH+tC40に調質した被削材
を高速−高送りの条件で切削した結果である。この条件
でも本発明鋼は従来鋼に比較し、優れた切削耐久性を示
している。これは1本発明鋼が高硬度であるにもかかわ
らず、高送り条件にも耐える切刃の靭性をも有している
ためである。FIG. 4 shows the results of cutting a workpiece material in which 5KD61 was tempered to H+tC40 under high speed and high feed conditions. Even under these conditions, the steel of the present invention exhibits superior cutting durability compared to conventional steel. This is because, although the steel of the present invention has high hardness, it also has the toughness of the cutting edge to withstand high feed conditions.
実施例2
化学組成が重量%で、C1,77%、 Si 0.4%
。Example 2 Chemical composition in weight%: C1.77%, Si 0.4%
.
Mn0.3%、 Ni 0.1%、Cr 6.3%、W
2.2%、M。Mn 0.3%, Ni 0.1%, Cr 6.3%, W
2.2%, M.
10.3%、■2.1%、Co 6.2%、N 0.0
4%の高速度工具鋼粉末を水アトマイズ法により製造し
た。この粉末を機械的に粉砕して後、350メツシユの
篩にて分級し、44μ以下の粉末を得た。この粉末の酸
素量を分析したところ、45CoPPmであった。10.3%, ■2.1%, Co 6.2%, N 0.0
A 4% high speed tool steel powder was produced by water atomization method. This powder was mechanically pulverized and then classified using a 350-mesh sieve to obtain a powder of 44 μm or less. When the oxygen content of this powder was analyzed, it was found to be 45CoPPm.
次に、上記粉末88%と平均粒径1.3μのTiN粉末
8%、平均粒径2.1μのVC粉末2%と上記高速度工
具鋼粉末の表面酸化物を還元する目的で、0.45%の
黒鉛粉末と焼結性を向上する目的で1.55%のCO粒
粉末粒径1.2μ)をボールミルにいれて湿式混合を行
なった。この混合粉を乾燥後、 5t/aJの圧力でプ
レス成形し、つづいて真空中1220℃X211rの焼
結を行なった。焼結後の比重は、はぼ真密度に達してい
た。なお、焼結後の材料の炭素含有量は。Next, for the purpose of reducing surface oxides of 88% of the above powder, 8% of TiN powder with an average particle size of 1.3μ, 2% of VC powder with an average particle size of 2.1μ, and the above high speed tool steel powder, 0. 45% graphite powder and 1.55% CO grain powder (particle size: 1.2 μm) were placed in a ball mill and wet-mixed for the purpose of improving sinterability. After drying this mixed powder, it was press-molded at a pressure of 5t/aJ, and then sintered at 1220°C and 211r in vacuum. The specific gravity after sintering had almost reached the true density. Furthermore, the carbon content of the material after sintering is.
1.92%、酸素含有量は、230PPmであった。1.92%, and the oxygen content was 230 PPm.
このようにして得た焼結体を焼なまし後、1210℃−
560℃X (1+1+1)Hrの条件で焼入−焼もど
しを実施したところHRC72,8の硬さが得られた。After annealing the sintered body thus obtained,
When quenching and tempering was carried out under the conditions of 560°C and (1+1+1) hours, a hardness of HRC 72.8 was obtained.
以上に述べた如く、本発明の高速度工具鋼は、W、Mo
、V等の合金元素あるいは、TiN等の硬質物質の含有
量が比較的少なくてもHRC71以上の超硬度が通常の
焼入−焼もどしで得られ、優れた切削耐久性を有する切
削工具材として最適なものである。As mentioned above, the high speed tool steel of the present invention is made of W, Mo.
Even if the content of alloying elements such as , V, or hard substances such as TiN is relatively low, superhardness of HRC 71 or higher can be obtained through normal quenching and tempering, and it can be used as a cutting tool material with excellent cutting durability. It is the most suitable one.
1図面の簡単な説明l
第1図は、第1表中N o 、 3合金の焼入−焼もど
し硬さを示す図、第2図は、第1表中NCo4合金の焼
入−焼もどし硬さを示す図、第3図、第4図は本発明鋼
および従来鋼から作製した真剣バイトによる切削試験の
結果を示す図である。1 Brief description of the drawings Figure 1 is a diagram showing the quenching-tempering hardness of the No. 3 alloy in Table 1, and Figure 2 is a diagram showing the quenching-tempering hardness of the NCo4 alloy in Table 1. The hardness diagrams, FIGS. 3 and 4, are diagrams showing the results of cutting tests using serious cutting tools made from the steel of the present invention and the conventional steel.
第 1 目 入 娩ルビしiK度(0c)第、3 図Part 1 Enter
Claims (1)
Mo+0.2Vとするとき、C1.7〜2.8%の範囲
で、0≦C−Ceq≦0.6を満足し、さらにCr3〜
10%、W1〜20%、Mo1〜11%(ただし、18
≦W+2Mo≦24)、V1〜5.5%、Co15%以
下、Si2%以下、Mn1%以下、残Feおよび不純物
よりなる高速度工具鋼基質にTi、V、Zr、Nb、H
f、Taの窒化物、炭化物、炭窒化物の1種または2種
以上を合計で、2〜12%を均一に分散させしめたこと
を特徴とする超硬度高速度工具鋼。 2 Ceq=0.06Cr+0.033W+0.063
Mo+0.2Vとするとき、C1.7〜2.8%の範囲
で、0≦C−Ceq≦0.6を満足し、さらにCr3〜
10%、W1〜20%、Mo1〜11%(ただし、18
≦W+2Mo≦24)、V1〜5.5%、Co15%以
下、Si2%以下、Mn1%以下、Ni2%以下、残F
eおよび不純物よりなる高速度工具鋼基質にTi、V、
Zr、Nb、Hf、Taの窒化物、炭化物、炭窒化物の
1種または2種以上を合計で、2〜12%を均一に分散
させしめたことを特徴とする超硬度高速度工具鋼。 3 Ceq=0.06Cr+0.033W+0.063
Mo+0.2Vとするとき、C1.7〜2.8%の範囲
で、0≦C−Ceq≦0.6を満足し、さらにCr3〜
10%、W1〜20%、Mo1〜11%(ただし、18
≦W+2Mo≦24)、V1〜5.5%、Co15%以
下、Si2%以下、Mn1%以下、N0.1%以下、残
Feおよび不純物よりなる高速度工具鋼基質にTi、V
、Zr、Nb、Hf、Taの窒化物、炭化物、炭窒化物
の1種または2種以上を合計で、2〜12%を均一に分
散させしめたことを特徴とする超硬度高速度工具鋼。 4 Ceq=0.06Cr+0.033W+0.063
Mo+0.2Vとするとき、C1.7〜2.8%の範囲
で、0≦C−Ceq≦0.6を満足し、さらにCr3〜
10%、W1〜20%、Mo1〜11%(ただし、18
≦W+2Mo≦24)、V1〜5.5%、Co15%以
下、Si2%以下、Mn1%以下、Ni2%以下、N0
.1%以下、残Feおよび不純物よりなる高速度工具鋼
基質にTi、V、Zr、Nb、Hf、Taの窒化物、炭
化物、炭窒化物の1種または2種以上を合計で、2〜1
2%を均一に分散させしめたことを特徴とする超硬度高
速度工具鋼。 5 Ceq=0.06Cr+0.033W+0.063
Mo+0.2Vとするとき、C1.7〜2.8%の範囲
で、かつ、0≦C−Ceq≦0.6を満足し、さらにC
r3〜10%、W1〜20%、Mo1〜11%(ただし
、18≦W+2Mo≦24)、V1〜5.5%、Co1
5%以下、Si2%以下、Mn1%以下、Ni2%以下
、N0.1%以下、残Feおよび不純物よりなる高速度
工具鋼、さらにNi2%以下、N0.1%以下を適宜添
加した高速度工具鋼のアトマイズ粉末を88〜98%と
Ti、V、Zr、Nb、Hf、Taの窒化物、炭化物、
炭窒化物の1種または2種以上を合計で、2〜12%を
均一に混合した後、成形、焼結してなる特許請求の範囲
第1〜第4項のいずれか記載の超硬度高速度工具鋼。 6 焼入−焼もどし後の硬さがH_RC71以上である
特許請求の範囲第1〜第5項のいずれか記載の超硬度高
速度工具鋼。[Claims] 1 Ceq=0.06Cr+0.033W+0.063
When Mo+0.2V, 0≦C-Ceq≦0.6 is satisfied in the range of C1.7 to 2.8%, and Cr3 to
10%, W1~20%, Mo1~11% (however, 18%
≦W+2Mo≦24), V1 ~ 5.5%, Co 15% or less, Si 2% or less, Mn 1% or less, remaining Fe and impurities in a high speed tool steel matrix containing Ti, V, Zr, Nb, and H.
1. A superhard high-speed tool steel characterized in that a total of 2 to 12% of one or more of Ta nitrides, carbides, and carbonitrides is uniformly dispersed therein. 2 Ceq=0.06Cr+0.033W+0.063
When Mo+0.2V, 0≦C-Ceq≦0.6 is satisfied in the range of C1.7 to 2.8%, and Cr3 to
10%, W1~20%, Mo1~11% (however, 18%
≦W+2Mo≦24), V1 to 5.5%, Co 15% or less, Si 2% or less, Mn 1% or less, Ni 2% or less, remaining F
Ti, V,
A superhard high-speed tool steel characterized in that a total of 2 to 12% of one or more of nitrides, carbides, and carbonitrides of Zr, Nb, Hf, and Ta are uniformly dispersed. 3 Ceq=0.06Cr+0.033W+0.063
When Mo+0.2V, 0≦C-Ceq≦0.6 is satisfied in the range of C1.7 to 2.8%, and Cr3 to
10%, W1~20%, Mo1~11% (however, 18%
≦W+2Mo≦24), V1 to 5.5%, Co 15% or less, Si 2% or less, Mn 1% or less, N 0.1% or less, remaining Fe and impurities in a high speed tool steel matrix containing Ti, V
, Zr, Nb, Hf, and Ta nitrides, carbides, and carbonitrides, and a total of 2 to 12% of one or more of these nitrides, carbides, and carbonitrides are uniformly dispersed therein. . 4 Ceq=0.06Cr+0.033W+0.063
When Mo+0.2V, 0≦C-Ceq≦0.6 is satisfied in the range of C1.7 to 2.8%, and Cr3 to
10%, W1~20%, Mo1~11% (however, 18%
≦W+2Mo≦24), V1 to 5.5%, Co15% or less, Si2% or less, Mn1% or less, Ni2% or less, N0
.. A total of 2 to 1% of one or more of nitrides, carbides, and carbonitrides of Ti, V, Zr, Nb, Hf, and Ta is added to a high-speed tool steel matrix consisting of 1% or less of residual Fe and impurities.
A super hard high speed tool steel characterized by uniformly dispersing 2%. 5 Ceq=0.06Cr+0.033W+0.063
When Mo+0.2V, C is in the range of 1.7 to 2.8% and satisfies 0≦C-Ceq≦0.6, and further C
r3-10%, W1-20%, Mo1-11% (however, 18≦W+2Mo≦24), V1-5.5%, Co1
High-speed tool steel consisting of 5% or less, Si 2% or less, Mn 1% or less, Ni 2% or less, N 0.1% or less, residual Fe and impurities, and a high-speed tool with appropriate additions of Ni 2% or less and N 0.1% or less. 88 to 98% of steel atomized powder and nitrides and carbides of Ti, V, Zr, Nb, Hf, Ta,
The high hardness according to any one of claims 1 to 4, which is obtained by uniformly mixing a total of 2 to 12% of one or more carbonitrides, and then molding and sintering the mixture. Speed tool steel. 6. The superhard high-speed tool steel according to any one of claims 1 to 5, which has a hardness of H_RC71 or more after quenching and tempering.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18155785 | 1985-08-19 | ||
JP60-181557 | 1985-08-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62124261A true JPS62124261A (en) | 1987-06-05 |
JPH0575822B2 JPH0575822B2 (en) | 1993-10-21 |
Family
ID=16102866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14642886A Granted JPS62124261A (en) | 1985-08-19 | 1986-06-23 | Super hard high-speed tool steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62124261A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07248849A (en) * | 1994-03-09 | 1995-09-26 | Nippon Software Prod:Kk | Portable personal computer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5240410A (en) * | 1975-09-27 | 1977-03-29 | Hitachi Ltd | Tool steel |
JPS61146427A (en) * | 1984-12-18 | 1986-07-04 | Inoue Japax Res Inc | Fluid jet machining system |
-
1986
- 1986-06-23 JP JP14642886A patent/JPS62124261A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5240410A (en) * | 1975-09-27 | 1977-03-29 | Hitachi Ltd | Tool steel |
JPS61146427A (en) * | 1984-12-18 | 1986-07-04 | Inoue Japax Res Inc | Fluid jet machining system |
Also Published As
Publication number | Publication date |
---|---|
JPH0575822B2 (en) | 1993-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4880461A (en) | Super hard high-speed tool steel | |
US3369891A (en) | Heat-treatable nickel-containing refractory carbide tool steel | |
US10233793B2 (en) | Valve seat of sintered iron-based alloy | |
KR101499707B1 (en) | Metallurgical powder composition and method of production | |
US3053706A (en) | Heat treatable tool steel of high carbide content | |
US4121930A (en) | Nitrogen containing high speed steel obtained by powder metallurgical process | |
CN113512687A (en) | Preparation method of composite rare earth reinforced powder metallurgy high-speed steel | |
JPS62124259A (en) | Super head high-speed tool steel | |
JPS62124261A (en) | Super hard high-speed tool steel | |
JPH02109619A (en) | Throw away drill tip | |
JP3294980B2 (en) | Alloy steel powder for high-strength sintered materials with excellent machinability | |
JPS62124260A (en) | Super hard high-speed tool steel | |
US4212670A (en) | Titanium oxycarbonitride based hard alloy | |
JPS5952227B2 (en) | high speed tool steel | |
US5599377A (en) | Mixed iron powder for powder metallurgy | |
JPH0143017B2 (en) | ||
JPS5839222B2 (en) | Manufacturing method of wear-resistant sintered alloy | |
JPS61295302A (en) | Low-alloy iron powder for sintering | |
JPS61146763A (en) | Manufacture of sintered body for cutting tool | |
JPH0321621B2 (en) | ||
JPH01309737A (en) | Blanking punch | |
JPH025811B2 (en) | ||
JPH01139741A (en) | Warm forging mold | |
JPH0941102A (en) | Sintered head alloy | |
JPH04371317A (en) | Fin for forming roll |