JPS62124245A - Fiber-reinforced metal and its production - Google Patents

Fiber-reinforced metal and its production

Info

Publication number
JPS62124245A
JPS62124245A JP26206185A JP26206185A JPS62124245A JP S62124245 A JPS62124245 A JP S62124245A JP 26206185 A JP26206185 A JP 26206185A JP 26206185 A JP26206185 A JP 26206185A JP S62124245 A JPS62124245 A JP S62124245A
Authority
JP
Japan
Prior art keywords
fiber
base material
alloy
continuous fibers
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26206185A
Other languages
Japanese (ja)
Other versions
JPH0218374B2 (en
Inventor
Shinichi Towata
真一 砥綿
Senichi Yamada
山田 銑一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP26206185A priority Critical patent/JPS62124245A/en
Publication of JPS62124245A publication Critical patent/JPS62124245A/en
Publication of JPH0218374B2 publication Critical patent/JPH0218374B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To disperse fiber into base material and to improve strength by cooling Al molten alloy containing fiber of silicon carbide, etc., and prescribed percentage of Ni and Mn from a prescribed direction so as to alloy a needlelike phase to crystallize out in the direction perpendicular to the direction of the length of fiber. CONSTITUTION:A molten metal in which one or more kinds among respective continuous fibers of silicon carbide, alumina, and carbon are incorporated in an Al alloy containing 0.5-6wt% Ni and 0.1-2wt% Mn is prepared. This molten metal is solidified by means of high-pressure solidification casting. At this time, cooling is effected from the direction perpendicular to the direction of the length of continuous fiber, so that needlelike phase is crystallized out in the direction perpendicular to the direction of continuous fiber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は繊維強化金属とその製造方法、更に詳しくは連
続繊維で強化したアルミニウム合金とその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fiber-reinforced metal and a method for producing the same, and more particularly to an aluminum alloy reinforced with continuous fibers and a method for producing the same.

〔従来の技術〕[Conventional technology]

繊維強化金属(F’l’LM)は強度や剛性が優れてい
るため、近年、各種機械部品や構造材として使用されて
いる。そのうちでもアルミニウム合全母材をセラミック
又は炭素等の連続繊維で強化したPR,Mは軽く、剛性
も高く且つ強度特に高温(例えば200〜400℃)で
の強度か高いため、これを用いると軽量で高温での機械
特性の優れたものが得られる。
Fiber-reinforced metals (F'l'LM) have excellent strength and rigidity, and have recently been used as various mechanical parts and structural materials. Among these, PR and M, which are made by reinforcing an aluminum composite base material with continuous fibers such as ceramic or carbon, are light, have high rigidity, and have high strength, especially at high temperatures (e.g. 200 to 400 degrees Celsius), so if you use them, you can reduce the weight. With this method, products with excellent mechanical properties at high temperatures can be obtained.

又、FRMの製造方法としては例えば高圧凝固鋳造法な
どの鋳造法を用いると自動車用部品、精密機械部品等の
複雑な形状の部品が容易に製造できる。
Furthermore, if a casting method such as a high-pressure solidification casting method is used as a manufacturing method for FRM, parts with complex shapes such as automobile parts and precision machine parts can be easily manufactured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら連続繊維で強化したFRMを高圧凝固鋳造
法で製造する場合連続繊維が母材中に均一に分散しにく
い。このため重量比で40〜60チの連続繊維を混入す
る必要があるが、多量に混入すると繊維同志の接触が生
じ複合剤(ROM)を満足するgi度が出にくい。
However, when FRM reinforced with continuous fibers is manufactured by high-pressure coagulation casting, it is difficult for the continuous fibers to be uniformly dispersed in the base material. For this reason, it is necessary to mix 40 to 60 inches of continuous fiber by weight, but if a large amount is mixed, the fibers will come into contact with each other, making it difficult to obtain a gi that satisfies the composite agent (ROM).

又、繊維と母材との適合性においては、合金母材の組成
が重要となり、連続繊維の性状に応じて選択する必要が
ある。すなわち、献物に用いるアルミニウム合金母材は
マグネシウム(Mg)。
Furthermore, the composition of the alloy base material is important for the compatibility between the fibers and the base material, and must be selected depending on the properties of the continuous fibers. In other words, the aluminum alloy base material used for the offering is magnesium (Mg).

ケイ素(Si) 、銅(Cu)等を含むが、例えば連続
繊維として炭化ケイ素繊維を用いた場合にはMgとSi
は繊維を劣化させ又脆いシリコン結晶が出やすく、Cu
はFRM中の晶出物を大きくし多量の繊維を含むFRM
では一層機械特性を悪くする。
Contains silicon (Si), copper (Cu), etc., but for example, when silicon carbide fiber is used as continuous fiber, Mg and Si
Cu deteriorates the fibers and easily produces brittle silicon crystals.
is an FRM that increases the size of crystallized substances in the FRM and contains a large amount of fibers.
This further deteriorates the mechanical properties.

又、アルミナ繊維を用いた場合にはSlは繊維を劣化さ
せ、MgとCuはFRM中の晶出物を大きくする。更に
炭素繊維を用いた場合にはMgは横方向の強度を向上さ
せる点では良いが、高温時には繊維を劣化させ、Cuと
SiはFRM中の晶出物を粗大にし、該FILMの横方
向強度は低い。それ故、母材としては晶出物を出さず、
繊維を劣化させない純アルミニウムが適しているといわ
れていたがしかし、純アルミニウムを母材金属としたF
R,Mは母材自体の強度が小さいために連続繊維の長さ
方向と直交する方向すなわち横方向の強度が小さいとい
う問題点があった。
Furthermore, when alumina fibers are used, Sl deteriorates the fibers, and Mg and Cu increase the size of crystallized substances in the FRM. Furthermore, when carbon fibers are used, Mg is good in improving the transverse strength, but it deteriorates the fibers at high temperatures, and Cu and Si coarsen the crystallized substances in the FRM, reducing the transverse strength of the FILM. is low. Therefore, as a base material, it does not produce crystallized substances,
Pure aluminum was said to be suitable because it does not deteriorate the fibers, but F
R and M have a problem in that the strength of the base material itself is low, so that the strength in the direction perpendicular to the length direction of the continuous fibers, that is, the transverse direction, is low.

本発明は上記従来技術における問題点を解決するための
ものであり、その目的とするところはPR,M製造時に
繊維の劣化を生じず、また母材中に針状微細結晶を晶出
させることによって総合的に優れ九機械特性を有する繊
維強化金属とその製造方法を提供することにある。
The present invention is intended to solve the above-mentioned problems in the prior art, and its purpose is to prevent fiber deterioration during the production of PR and M, and to crystallize acicular microcrystals in the base material. The object of the present invention is to provide a fiber-reinforced metal having comprehensively excellent mechanical properties and a method for producing the same.

すなわち本発明の繊維強化金属は炭化ケイ素、アルミナ
又は炭素の各連続繊維の一種又は二種従来技術における
問題点を解決するためには晶出物すなわち第2相の形状
を制御することが重要となる。この場合の方法としては
例えばFRMの製造工程において凝固時に制御する方法
とFRMの熱処理によつて制御する方法とがあるが、後
者の方法は高温で熱処理を行わなければならない九め強
化繊維の劣化が生ずる可能性がある。そこで本発明にお
いては凝固時に合金母材中の第2相の制御を行うもので
ある。
In other words, the fiber-reinforced metal of the present invention is made of one or two continuous fibers of silicon carbide, alumina, or carbon.In order to solve the problems in the prior art, it is important to control the shape of the crystallized product, that is, the second phase. Become. In this case, there are two methods, for example, one that controls during solidification in the FRM manufacturing process and one that controls by heat treatment of the FRM, but the latter method requires heat treatment at high temperatures to prevent deterioration of the reinforcing fibers. may occur. Therefore, in the present invention, the second phase in the alloy base material is controlled during solidification.

凝固速度や合金母材組成は適切に選択する必要がある。It is necessary to appropriately select the solidification rate and alloy base material composition.

本発明者らは種々検討の結果、AtにNii重量比で(
15〜6%含む2元合金か又は更にマンガン(Mn)を
重量比で(Ll〜2チ含む3元合金であれば凝固の際に
合金母材中に直径が15μ又はそれ以下の微細なウィス
カー状の第2相が晶出し、高圧凝固鋳造法によれば更に
効果的であることが判った。
As a result of various studies, the present inventors found that the weight ratio of At to Nii (
If it is a binary alloy containing 15 to 6% manganese (Mn) or a ternary alloy containing manganese (Mn) by weight (Ll to 2%), fine whiskers with a diameter of 15 μm or less are formed in the alloy base material during solidification. It was found that the high-pressure solidification casting method is more effective.

Niの添加量としては重量比でα5〜6%程度が有効で
あるが、漬ましくけ2〜5チが良い。
As for the amount of Ni added, α5 to 6% by weight is effective, but it is preferably 2 to 5% by weight.

又、更に強度を向上させるために第5成分を添加するが
、この場合第5成分の選択には注意を要する。例えば、
Cuの添加は晶出物が粗大粒状になり易く望ましくない
。その点Mnの添加であれば重量比でα1〜2チ添加す
ることにより、微細なウィスカー状の晶出物が得られて
よい。
Further, in order to further improve the strength, a fifth component is added, but in this case care must be taken in selecting the fifth component. for example,
Addition of Cu is undesirable because the crystallized material tends to become coarse particles. On the other hand, if Mn is added, fine whisker-like crystallized substances may be obtained by adding α1 to 2 times by weight.

本発明に使用し得る連続繊維としては、通常FRM用と
して供給されるものであれば何でも用いることができる
が、例えば炭化ケイ素(SiC)、アルミナ(A403
 )又は炭素(C)よりなる連続繊維が好ましい。これ
らの連続繊維は一種のみでも、又は二種以上を組み合わ
せてもよい。連続繊維の種類、長さ、太さ、断面形状等
の性状は製造するF’ll、Mに対する要求特性や製造
の難易度等を考慮して選択する。特に極細の繊維を用い
た場合に好ましい結果が得られる。
Continuous fibers that can be used in the present invention can be of any kind as long as they are normally supplied for FRM, such as silicon carbide (SiC), alumina (A403
) or continuous fibers made of carbon (C) are preferred. These continuous fibers may be used alone or in combination of two or more types. Properties such as the type, length, thickness, and cross-sectional shape of the continuous fibers are selected in consideration of the required characteristics of F'll and M to be manufactured, the difficulty of manufacturing, and the like. Particularly favorable results are obtained when ultrafine fibers are used.

前記合金母材と連続繊維を組み合わせることにより晶出
物が微細針状(又はウィスカー状)に連続繊維の間の合
金母材中に晶出し、従って連続繊維同志の接触を少なく
し、又、SiC。
By combining the alloy matrix and the continuous fibers, crystallized substances are crystallized in the alloy matrix between the continuous fibers in the form of fine needles (or whiskers), thus reducing the contact between the continuous fibers. .

A t! Os及びCの各連続繊維を劣化させないため
高強度のト’ RMが得られる。
At! Since the continuous fibers of Os and C are not deteriorated, a high-strength T'RM can be obtained.

連続繊維と合金母材とを複合化させる方法としては、鋳
造方法が宅ましく、特に高圧凝固鋳造法を用いれば、短
時間で凝固し、微細な針状晶析物が生成するので効果的
である。凝固時の圧力としては数百ky / crA程
度が使用し易い。又、凝固の際連続繊維の配向方向と直
交する方向から冷却することにより微細針状(ウィスカ
ー状)の晶出物が連Ifc繊維間に該連続繊維に対して
垂直な方向に絡まって晶出し、これが連続繊維同志をつ
なぐ架橋の役割を果すことによって優れた層間剪断強度
を示す。
Casting is the preferred method for compositing continuous fibers and alloy matrix, and high-pressure solidification casting is particularly effective because it solidifies in a short time and produces fine needle-shaped crystallized substances. It is. A pressure of several hundred ky/crA is easily used during solidification. In addition, by cooling from a direction perpendicular to the orientation direction of the continuous fibers during solidification, fine needle-like (whisker-like) crystallized substances become entangled between the continuous Ifc fibers in a direction perpendicular to the continuous fibers and crystallize. , which acts as a crosslink between continuous fibers, exhibiting excellent interlaminar shear strength.

〔実施例〕〔Example〕

以下の実施例において本発明を更に詳細に説明する。な
お、本発明は下記実施ψ0.に限定されるものではない
The invention will be explained in further detail in the following examples. Note that the present invention is carried out in the following manner ψ0. It is not limited to.

遭」、製」− 炭化ケイ素繊維(日本カーボン製“ニカロン”)1を1
50■に切断し、体積率で50優になるように秤量して
鋼製パイプに詰めた。この試料を720℃のN2雰囲気
中で15分間予熱した後、250℃に加熱した型内に設
置し、720℃のAt−5%Ni合金溶湯を注いで25
0℃のパンチにて500kf/dに加圧し凝固させた。
- Silicon carbide fiber (Nicalon made by Nippon Carbon) 1 to 1
It was cut into 50 square pieces, weighed to a volume ratio of 50 yu, and packed into a steel pipe. After preheating this sample at 720°C for 15 minutes in a N2 atmosphere, it was placed in a mold heated to 250°C, and molten At-5% Ni alloy at 720°C was poured into the mold for 25 minutes.
It was pressurized to 500 kf/d using a punch at 0° C. to solidify it.

これを試料Aとする。同様の方法にてAt−2%Cu−
2%Ni合金マトリックスと純AtのFRMも作製した
。これを試料B及びCとする。
This is designated as sample A. At-2%Cu-
FRMs with 2% Ni alloy matrix and pure At were also fabricated. These will be referred to as samples B and C.

インゴット中より採取したFRM試料Aの顕微鏡観察結
果を第1図に示すが、炭化ケイ素繊維1の間隙に微細な
At、Niウィスカー2が比較的に均一に分布していた
。又、これらのFRMを用いて5点曲げ試験とAE測測
定同時に行なった。その結果を第2図に示す。曲げ強度
は純AtFRMの場合120kf/−を示すが、破壊に
至るまでのAEイベント数は著しく多かった。又、At
−2%Cu−2%Ni合金FRMg、lqBではAEイ
ベント数は純AtFRM 試料Cに比べて減少するもの
の、曲げ強度は著しく小さかった。しかし、At−5%
NiFRM試刺At−用いた場合には曲げ強度は0.0
吟/−を示し、純Aυ場合に比べてそん色なく、又、A
Eイベント数は著しく減少し、微視的な破壊が減少した
ことを示している。
The results of microscopic observation of FRM sample A taken from the ingot are shown in FIG. 1, and it was found that fine At and Ni whiskers 2 were relatively uniformly distributed in the gaps between silicon carbide fibers 1. Furthermore, using these FRMs, a five-point bending test and an AE measurement were conducted simultaneously. The results are shown in FIG. Although the bending strength of pure AtFRM was 120 kf/-, the number of AE events leading to failure was significantly large. Also, At
Although the number of AE events in the -2% Cu-2% Ni alloys FRMg and lqB decreased compared to pure AtFRM sample C, the bending strength was significantly lower. However, At-5%
When NiFRM test stick At- is used, the bending strength is 0.0
It shows Gin/-, which is similar to that of pure Aυ, and also shows A
The number of E-events was significantly reduced, indicating a reduction in microscopic destruction.

本慣維を用いたFRMについてはより多くのマトリック
ス組成で実験を行ない第5図及び第4図の結果を得た。
Regarding FRM using this conventional fiber, experiments were conducted with more matrix compositions and the results shown in FIGS. 5 and 4 were obtained.

第5図及び第4図から明らかなようにAt−Ni合金及
びA t−N i −M n合金であれば、F RMの
強度を減することなく、AEの発生を抑制することが出
来た。
As is clear from Figures 5 and 4, the At-Ni alloy and the At-Ni-Mn alloy were able to suppress the occurrence of AE without reducing the strength of the F RM. .

実施例2 炭素繊維(東し製M40)3を150gの長さに切断し
て体積率で60チとなるように秤量し鋼製パイプに詰め
た。この試料t760℃のNZ雰囲気中で15分間予熱
を行ない、250°に加熱した型内に設置し、760℃
のAt−5%Ni合金溶湯を注いで200℃のパンチに
て500にり/cIIiに加圧し、凝固させた。これを
試料りとする。又、同様の方法でAl、−3チSiとA
t−0.%Si合金のF’RMを作製した。これを各々
試料E及びFとする。
Example 2 Carbon fiber (M40 manufactured by Toshi) 3 was cut into a length of 150 g, weighed to have a volume ratio of 60 g, and packed into a steel pipe. This sample was preheated for 15 minutes in a NZ atmosphere at 760°C, placed in a mold heated to 250°, and heated to 760°C.
A molten At-5% Ni alloy was poured into the mold and pressed to 500 mm/cII with a punch at 200° C. to solidify it. Use this as a sample. Also, in the same way, Al, -3Si and A
t-0. %Si alloy F'RM was produced. These are designated as samples E and F, respectively.

インゴット中よシ採取したFRM試料りの組織を第5図
に示す。繊維間隙には微細なAz、Niウィスカー2が
多数観察された。又、5点曲げ試験と同時にAEを測定
したが、第6図から明ら力・なようにAt−5チNiF
″R,M試料りの場合にはAl−3チSiFRM試料E
やAt−zチ5iFR,へ1試刺Fに比べて曲げ強度は
大きく、しかもA E ’Jングダウン数は少なかった
。これは、ト上M内部での微視的な破壊の数、又は1つ
の微視的な破壊の而Ntが小さくなったためと考えられ
る。
Figure 5 shows the structure of the FRM sample taken from the ingot. Many fine Az and Ni whiskers 2 were observed in the fiber gaps. In addition, AE was measured at the same time as the 5-point bending test, and it is clear from Figure 6 that the At-5-chi NiF
``In the case of R, M samples, Al-3-SiFRM sample E
The bending strength was greater than that of , At-z Chi5iFR, and He1 test F, and the number of AE'J downs was small. This is considered to be because the number of microscopic fractures inside the top M, or Nt for one microscopic fracture, became smaller.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明の繊維強化金属は炭化ケイ素、アル
ミナ又は炭素の各連続繊維の一種又は二種以上と所定量
のニッケル、又はニッケルとマンガンとを添加したアル
ミニウム合金母材とよりなるものであるため凝固時に連
続繊維の間の合金母材中に針状晶析物が生成し、母材と
して純アルミニウムを使用しまた場合と同程度の強度を
得ることができ、且つ応力が加わった場合の微視的な破
壊が純アルミニウム母材を使用した場合に比べて著しく
減少し、総合的な特性の優れたものとなった。
As mentioned above, the fiber-reinforced metal of the present invention is made of an aluminum alloy base material to which one or more types of continuous fibers of silicon carbide, alumina, or carbon are added and a predetermined amount of nickel or nickel and manganese. Therefore, during solidification, needle-shaped crystallized substances are generated in the alloy matrix between continuous fibers, and when pure aluminum is used as the matrix, the same strength can be obtained, and when stress is applied. Microscopic fractures were significantly reduced compared to when pure aluminum base material was used, resulting in superior overall properties.

又、本発明の繊維強化金属の製造方法は連続繊維と母材
金属を高圧凝固鋳造法を用いて製造するにあたり、該連
続繊維の長さ方向と直交する方向から低温状態のパンチ
にて加圧し、繊維の長さ方向に対して直角方向に温度勾
配を生ずる鋳造方案を使用する。したがって、該合金母
材中に該合金の針状相を該連続繊維の長さ方向と直交す
る方向に晶出させるものであるため、簡便迅速に総合特
性の優れた繊維強化金属を得ることができる。
In addition, in the method for manufacturing fiber reinforced metal of the present invention, when manufacturing continuous fibers and base metal using a high-pressure solidification casting method, the continuous fibers are pressurized with a punch in a cold state from a direction perpendicular to the length direction of the continuous fibers. , using a casting strategy that creates a temperature gradient perpendicular to the length of the fiber. Therefore, since the acicular phase of the alloy is crystallized in the alloy matrix in a direction perpendicular to the longitudinal direction of the continuous fibers, it is possible to easily and quickly obtain a fiber-reinforced metal with excellent overall properties. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の繊維強化金属の゛一実施例の金属組織
の躬億全見写負、 第2図は各睡繊維強化金属のたわみとアコースティック
エミンンヨンイベンl−数、!:の関係全表わすグラフ
、 第5図は本発明の繊維強化金属のニンヶル添加量と曲げ
強度との関係を表わすグラフ、第4図は本発明の繊維強
化金属のニッケル及びマンガン添加量と曲げ強度との関
係を表わすグラフ、 紀5図は本発明の繊維強化金属の別の実施例の金輌組織
の数厭饋74、 第6図は各種繊維強化金属のたわみとアコースティック
エミッションリングダウン数との関係を表わすグラフで
ある。 1刃中、 特許出願人  株式会社 豊田中央研究所(ほか1名)
′・+5・ 牙1図 2・Aち船>イX6〜 才2図 たわh(mm) 第5図 (9gQ(ξ〕 3・・−!を穢′繊 才6図
Fig. 1 is a complete sketch of the metal structure of one embodiment of the fiber-reinforced metal of the present invention, and Fig. 2 shows the deflection and acoustic emission number of each fiber-reinforced metal. Figure 5 is a graph showing the relationship between the amount of nickel added and the bending strength of the fiber-reinforced metal of the present invention, and Figure 4 is the graph showing the relationship between the amount of nickel and manganese added and the bending strength of the fiber-reinforced metal of the present invention. Figure 5 is a graph showing the relationship between the number of metal structures of another embodiment of the fiber reinforced metal of the present invention, and Figure 6 is a graph showing the relationship between the deflection and acoustic emission ring down number of various fiber reinforced metals. It is a graph showing a relationship. 1 blade, patent applicant Toyota Central Research Institute Co., Ltd. (and 1 other person)
′・+5・ tusk 1 figure 2・Achi ship>I

Claims (5)

【特許請求の範囲】[Claims] (1)炭化ケイ素、アルミナ又は炭素の各連続繊維の一
種又は二種以上と、重量比でニッケル0.5〜6%を含
むアルミニウム合金母材とよりなり、かつ該合金母材中
に該合金の針状相を含むことを特徴とする繊維強化金属
(1) Consisting of one or more types of continuous fibers of silicon carbide, alumina, or carbon and an aluminum alloy base material containing 0.5 to 6% of nickel by weight, and containing the alloy in the alloy base material. A fiber-reinforced metal characterized by containing an acicular phase.
(2)アルミニウム合金母材が、重量比でニッケル0.
5〜6%、マンガン0.1〜2%を含み、かつ該合金母
材中に該合金の針状相を含むことを特徴とする特許請求
の範囲第1項記載の繊維強化金属。
(2) The aluminum alloy base material has a weight ratio of nickel of 0.
5-6% of manganese and 0.1-2% of manganese, and contains an acicular phase of the alloy in the alloy matrix.
(3)連続繊維と合金母材とを複合化させるにあたり、
高圧凝固鋳造法を用いたことを特徴とする特許請求の範
囲第1項又は第2項記載の繊維強化金属。
(3) In compositing continuous fibers and alloy matrix,
The fiber-reinforced metal according to claim 1 or 2, characterized in that a high-pressure solidification casting method is used.
(4)炭化ケイ素、アルミナ又は炭素の各連続繊維の一
種又は二種以上と重量比でニッケル0.5〜6%を含む
アルミニウム合金母材とを高圧凝固鋳造法を用いて複合
化させるにあたり、凝固させる際に該連続繊維の長さ方
向と直交する方向から冷却して該合金母材中に針状相を
該連続繊維の長さ方向と直交する方向に晶出させること
を特徴とする繊維強化金属の製造方法。
(4) When compounding one or more continuous fibers of silicon carbide, alumina, or carbon with an aluminum alloy base material containing 0.5 to 6% nickel by weight using a high-pressure solidification casting method, A fiber characterized in that during solidification, the continuous fiber is cooled in a direction perpendicular to the longitudinal direction of the continuous fiber to crystallize an acicular phase in the alloy matrix in a direction perpendicular to the longitudinal direction of the continuous fiber. Method of manufacturing reinforced metal.
(5)アルミニウム合金母材が、重量比でニッケル0.
5〜6%、マンガン0.1〜0.2%を含むことを特徴
とする特許請求の範囲第4項記載の繊維強化金属の製造
方法。
(5) The aluminum alloy base material has a weight ratio of nickel of 0.
5-6% of manganese and 0.1-0.2% of manganese.
JP26206185A 1985-11-21 1985-11-21 Fiber-reinforced metal and its production Granted JPS62124245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26206185A JPS62124245A (en) 1985-11-21 1985-11-21 Fiber-reinforced metal and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26206185A JPS62124245A (en) 1985-11-21 1985-11-21 Fiber-reinforced metal and its production

Publications (2)

Publication Number Publication Date
JPS62124245A true JPS62124245A (en) 1987-06-05
JPH0218374B2 JPH0218374B2 (en) 1990-04-25

Family

ID=17370482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26206185A Granted JPS62124245A (en) 1985-11-21 1985-11-21 Fiber-reinforced metal and its production

Country Status (1)

Country Link
JP (1) JPS62124245A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415335A (en) * 1987-07-07 1989-01-19 Isuzu Motors Ltd Fiber reinforced metallic material and its production
JPS6487732A (en) * 1987-04-17 1989-03-31 Nippon Carbon Co Ltd Manufacture of fiber reinforced composite material
JPH01195248A (en) * 1987-10-06 1989-08-07 Nippon Carbon Co Ltd Manufacture of metal-based conjugated material
JPH01252741A (en) * 1988-04-01 1989-10-09 Ube Ind Ltd Fiber-reinforced composite material
JPH0257648A (en) * 1989-07-15 1990-02-27 Toyota Central Res & Dev Lab Inc Fiber-reinforced metal
US4963439A (en) * 1988-04-19 1990-10-16 Ube Industries, Ltd. Continuous fiber-reinforced Al-Co alloy matrix composite
US5449421A (en) * 1988-03-09 1995-09-12 Toyota Jidosha Kabushiki Kaisha Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements
US6086688A (en) * 1997-07-28 2000-07-11 Alcan International Ltd. Cast metal-matrix composite material and its use

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487732A (en) * 1987-04-17 1989-03-31 Nippon Carbon Co Ltd Manufacture of fiber reinforced composite material
JPS6415335A (en) * 1987-07-07 1989-01-19 Isuzu Motors Ltd Fiber reinforced metallic material and its production
JPH01195248A (en) * 1987-10-06 1989-08-07 Nippon Carbon Co Ltd Manufacture of metal-based conjugated material
US5449421A (en) * 1988-03-09 1995-09-12 Toyota Jidosha Kabushiki Kaisha Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements
JPH01252741A (en) * 1988-04-01 1989-10-09 Ube Ind Ltd Fiber-reinforced composite material
US4980242A (en) * 1988-04-01 1990-12-25 Ube Industries, Ltd. Fiber-reinforced metal composite
US4963439A (en) * 1988-04-19 1990-10-16 Ube Industries, Ltd. Continuous fiber-reinforced Al-Co alloy matrix composite
JPH0257648A (en) * 1989-07-15 1990-02-27 Toyota Central Res & Dev Lab Inc Fiber-reinforced metal
US6086688A (en) * 1997-07-28 2000-07-11 Alcan International Ltd. Cast metal-matrix composite material and its use

Also Published As

Publication number Publication date
JPH0218374B2 (en) 1990-04-25

Similar Documents

Publication Publication Date Title
US6918970B2 (en) High strength aluminum alloy for high temperature applications
JP5344527B2 (en) Aluminum alloy for casting, aluminum alloy casting and method for producing the same
EP2653578B1 (en) Aluminum die casting alloy
JP2730847B2 (en) Magnesium alloy for castings with excellent high temperature creep strength
US6592687B1 (en) Aluminum alloy and article cast therefrom
JP7500726B2 (en) Heat-resistant aluminum powder material
JP2019527299A (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
US20190017150A1 (en) Cr Filament-Reinforced CrMnFeNiCu(Ag)-Based High-Entropy Alloy and Method for Manufacturing the Same
Jayaramanavar et al. Tailoring the tensile/compressive response of magnesium alloy ZK60A using Al 2 O 3 nanoparticles
JPH0317884B2 (en)
JPS62124245A (en) Fiber-reinforced metal and its production
US2519406A (en) Wrought alloy
Gui M.-C. et al. Microstructure and mechanical properties of cast (Al–Si)/SiCp composites produced by liquid and semisolid double stirring process
JP4093221B2 (en) Aluminum alloy for casting, aluminum alloy casting and method for producing the same
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
Senan et al. Determination on the effect of al2o3/b4c on the mechanical behaviour of al-6.6 si-0.5 mg alloy cast in permanent mould
JP3838803B2 (en) Composite high strength material and manufacturing method thereof
US20040256031A1 (en) Cu-based amorphous matrix composite materials containing high fusion point element and production method thereof
JPS6244547A (en) Composite aluminum alloy material
Das et al. Study on mechanical properties of AA6061/SiC/B4C hybrid nano metal matrix composites
JPH0230726A (en) Fiber-reinforced metallic composite material
Yılmaz Characterization of silicon carbide particulate reinforced squeeze cast Aluminum 7075 matrix composite
US20210285077A1 (en) High temperature cast aluminum-copper-manganese-zirconium alloys with low temperature ductility
Essam et al. Microstructure and mechanical characterizations of lm6-al/al2o3 metal matrix composites produced by stir casting technique
Gecü et al. Prevention of Hot Crack Formation in 304 Stainless Steel Reinforced AA7075 Aluminium Matrix Bimetal Composites