JPH01195248A - Manufacture of metal-based conjugated material - Google Patents

Manufacture of metal-based conjugated material

Info

Publication number
JPH01195248A
JPH01195248A JP24749588A JP24749588A JPH01195248A JP H01195248 A JPH01195248 A JP H01195248A JP 24749588 A JP24749588 A JP 24749588A JP 24749588 A JP24749588 A JP 24749588A JP H01195248 A JPH01195248 A JP H01195248A
Authority
JP
Japan
Prior art keywords
alloy
composite material
matrix composite
metal matrix
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24749588A
Other languages
Japanese (ja)
Inventor
Toshiisa Ishikawa
石川 敏功
Giichi Imai
今井 義一
Katsuya Tokutomi
徳富 勝也
Yoichi Nagata
陽一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP24749588A priority Critical patent/JPH01195248A/en
Publication of JPH01195248A publication Critical patent/JPH01195248A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the strength of a conjugated material at a high temp. by impregnating an eutectic alloy into a ceramic reinforced material, subjecting it to pressurizing and molding and thereafter to cooling in a one-way direction at a specific solidifying speed. CONSTITUTION:The eutectic alloy such as an Al-10% Ni alloy is impregnated into the integrated body of the ceramic reinforced material such as silicon carbide and they are compounded by pressurizing and molding. It is subjected to rapid solidification a one-way direction at >=50cm/hr solidifying speed to arrange an alloy phase in the shape of a lamella or a rod for the solidifying direction. By this method, the metal-based composite material retaining high strength at a high temp. and having homogeneous characteristics can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属基複合材料の製造法に関し、詳しくは、炭
化ケイ素繊維等のセラミック強化材の集合体にアルミニ
ウムー10%ニッケル等の共晶合金を含浸し、加圧、成
形したのち、一定速度以上で一方向に冷却することによ
り、強度や耐熱性等の諸特性に優れ、特に高温での強度
特性を大幅に向上させた金属基複合材料の製造法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a metal matrix composite material, and more specifically, a eutectic material such as aluminum and 10% nickel is added to an aggregate of ceramic reinforcement such as silicon carbide fiber. A metal matrix composite that has excellent properties such as strength and heat resistance, and has significantly improved strength properties especially at high temperatures, by impregnating it with an alloy, pressurizing it, forming it, and then cooling it in one direction at a constant rate or higher. Concerning the manufacturing method of materials.

[従来の技術] 従来、耐熱構造用に用いられていたチタン等の金属が不
足し高騰化していることから、これら耐熱構造用の金属
の代替品として複合材料が注目されつつある。これらの
複合材料は、一般に耐熱性、強度、破壊靭性等の諸特性
に優れており、航空機、ロケット、宇宙船等に使用され
る高機能材料として広範な用途に利用が見込まれ期待さ
れている。
[Prior Art] Since metals such as titanium, which have been conventionally used for heat-resistant structures, are in short supply and their prices are rising, composite materials are attracting attention as a substitute for these metals for heat-resistant structures. These composite materials generally have excellent properties such as heat resistance, strength, and fracture toughness, and are expected to be used in a wide range of applications as high-performance materials used in aircraft, rockets, spacecraft, etc. .

これらの複合材料としては、■金属間化合物強化金属、
■長繊維強化金属、■ハイブリッド(長繊維+ウィスカ
ー)繊維強化金属等が提案されている。
These composite materials include: ■ intermetallic compound-reinforced metals;
■Long fiber reinforced metal, ■Hybrid (long fiber + whisker) fiber reinforced metal, etc. have been proposed.

[発明が解決しようとする課題] しかしながら、上記した■金属間化合物強化金属におい
ては、ベース金属と比較して大幅な特性の向上は見られ
ず、強度や耐熱性の向上効果が顕著ではない。また、■
長繊維強化金属は、常温においては比較的高い強度を示
すものの、高温時にマトリックスが軟化し強度が低下す
る。■ハイブリッド(長繊維+ウィスカー)繊維強化金
属は、長繊維の繊維間にウィスカーを分散させる工程を
要し、またウィスカーの均一な分散が得られにくいとい
う問題に加えて耐熱性が十分とは言えない。
[Problems to be Solved by the Invention] However, in the intermetallic compound-reinforced metal described above, no significant improvement in properties is observed compared to the base metal, and the effect of improving strength and heat resistance is not significant. Also, ■
Although long fiber reinforced metals exhibit relatively high strength at room temperature, the matrix softens and the strength decreases at high temperatures. ■Hybrid (long fibers + whiskers) fiber-reinforced metals require a process to disperse whiskers between the long fibers, and in addition to the problem that it is difficult to obtain uniform dispersion of whiskers, they do not have sufficient heat resistance. do not have.

また、これら繊維強化金属は、繊維直角方向の強度が弱
いという欠点も有する。
Furthermore, these fiber-reinforced metals also have the disadvantage of low strength in the direction perpendicular to the fibers.

本発明は、かかる課題に鑑み、繊維強化金属等の長所を
維持しつつ、特に高温時における強度を向上させた複合
材料の製造法を提供することを目的とする。
In view of this problem, an object of the present invention is to provide a method for manufacturing a composite material that maintains the advantages of fiber-reinforced metals and has improved strength particularly at high temperatures.

[課題を解決するための手段] 本発明のこの目的は、共晶合金を用いた金属基複合材料
の製造法によって達成される。
[Means for Solving the Problems] This object of the present invention is achieved by a method of manufacturing a metal matrix composite material using a eutectic alloy.

すなわち本発明は、セラミック強化材の集合体に共晶合
金を含浸し、加圧、成形した後、凝固速度50cm/h
r以上で一方向に冷却することを特徴とする金属基複合
材料の製造法にある。
That is, the present invention impregnates an aggregate of ceramic reinforcing materials with a eutectic alloy, pressurizes and shapes, and then solidifies at a solidification rate of 50 cm/h.
A method for manufacturing a metal matrix composite material characterized by cooling in one direction at a temperature of r or more.

本発明における共晶合金は、合金を一方向に急冷し、凝
固方向に対してほぼ平行に合金相をラメラまたはロッド
状に配列させたもので、本発明の製造法は強化材にマト
リックス合金を溶融してベッセル法、高圧鋳造法等によ
り複合成形し、次いで一方向に急冷することによって達
成される。強化材が繊維の場合、合金との体積比率、す
なわち繊維体積率(vr >は60〜25%が好ましい
。60%を超えると繊維と金属の濡れ性が低下し、25
%未満では繊維が偏在して好ましくない。強化材がウィ
スカーの場合は、同様な理由によりVrは10〜30%
が好ましい。また、複合は合金の融点以上の温度(+2
0〜+200℃)で行ない、凝固速度(R)を50cm
+/hr以上で急冷するのがよい。
The eutectic alloy of the present invention is one in which the alloy is rapidly cooled in one direction and the alloy phases are arranged in lamella or rod shapes almost parallel to the solidification direction, and the manufacturing method of the present invention uses a matrix alloy as a reinforcing material. This is achieved by melting and composite molding by the Bessel method, high-pressure casting method, etc., and then rapidly cooling in one direction. When the reinforcing material is fiber, the volume ratio with the alloy, that is, the fiber volume ratio (vr >) is preferably 60 to 25%. If it exceeds 60%, the wettability of the fiber and metal decreases,
If it is less than %, the fibers will be unevenly distributed, which is not preferable. When the reinforcing material is whiskers, Vr is 10 to 30% for the same reason.
is preferred. In addition, the temperature of the composite is higher than the melting point of the alloy (+2
0 to +200℃), and the solidification rate (R) was 50cm.
It is best to rapidly cool at +/hr or more.

本発明に用いられるセラミック強化材は、炭化ケイ素繊
維、炭化ケイ素ウィスカー、炭素繊維、黒鉛ウィスカー
、アルミナ繊維、ホウ素繊維等の無機繊維やウィスカー
が用いられ、特に繊維のマルチフィラメントや大径のモ
ノフィラメントが好適に用いられる。
The ceramic reinforcing material used in the present invention includes inorganic fibers and whiskers such as silicon carbide fibers, silicon carbide whiskers, carbon fibers, graphite whiskers, alumina fibers, and boron fibers, and in particular fiber multifilaments and large diameter monofilaments. Suitably used.

本発明で使用する共晶合金は、アルミニウム−ニッケル
系、アルミニウム−マンガン系、チタン−アルミニウム
系、ニッケル−ニオブ系等の共晶合金で、特にAj−1
o%Nl、AU−2%Mn。
The eutectic alloy used in the present invention is an aluminum-nickel based, aluminum-manganese based, titanium-aluminum based, nickel-niobium based eutectic alloy, and especially Aj-1.
o%Nl, AU-2%Mn.

AJ−2%Cu、AJ−8%Feが好適に使用できる。AJ-2%Cu and AJ-8%Fe can be preferably used.

さらに、本発明の製造法の詳細は次の通りである。Furthermore, the details of the manufacturing method of the present invention are as follows.

第1図(a)に示すように、セラミック強化材1の集合
体とマトリックス合金2とを密閉容器3中に入れ、導管
4より減圧して真空封入し、これを合金の溶融点以上に
加熱した後、第1図(b)に示すように直ちにA−A’
の方向に加圧圧縮して溶撤したベース金属を繊維束間に
含浸複合化すると共にB−B’力方向急冷凝固して共晶
合金の強化相をマトリックス中に生成配位させ金属基複
合材料を得るものである。
As shown in FIG. 1(a), the aggregate of the ceramic reinforcing material 1 and the matrix alloy 2 are placed in a closed container 3, the pressure is reduced through the conduit 4, the vacuum is sealed, and the container is heated to a temperature above the melting point of the alloy. After that, immediately move A-A' as shown in Figure 1(b).
The base metal, which has been melted and compressed under pressure in the direction of , is impregnated between the fiber bundles to form a composite, and the reinforcing phase of the eutectic alloy is formed and coordinated in the matrix by rapidly solidifying in the B-B' force direction to form a metal matrix composite. It is used to obtain materials.

このようにして得られた金属基複合材料は、特に高温に
おける強度を高い水準に維持することができる。
The metal matrix composite material thus obtained can maintain a high level of strength, especially at high temperatures.

[実施例] 以下、本発明を実施例等に基づき具体的に説明する。[Example] Hereinafter, the present invention will be explained in detail based on examples and the like.

実施例1 炭化ケイ素繊維(直径12μのモノフィラメント170
本の繊維束)とアルミニウム−10%ニッケル合金とを
第1図に示す方法で密閉容器中で真空封入し、これを6
90℃に加熱した後、直ちに250Kg/ ciの圧力
で加圧圧縮して溶融したアルミニウムを繊維束間に含浸
複合化すると共に、1500cm/hrの速度で急冷凝
固して共晶合金の強化相(A43Ni)をアルミニウム
マトリックス中に生成させ、繊維体積率40%の金属基
複合材料を得た。
Example 1 Silicon carbide fiber (monofilament 170 with a diameter of 12μ)
A fiber bundle of fibers) and an aluminum-10% nickel alloy were vacuum-sealed in a sealed container by the method shown in Figure 1.
After heating to 90°C, the fibers are immediately compressed under a pressure of 250 kg/ci to impregnate the fiber bundles with molten aluminum, and are rapidly solidified at a rate of 1500 cm/hr to form a reinforcing phase of the eutectic alloy ( A43Ni) was produced in an aluminum matrix to obtain a metal matrix composite material with a fiber volume fraction of 40%.

また、この金属基複合材料の引張り強度と温度の関係を
第2図に示す。
Moreover, the relationship between the tensile strength and temperature of this metal matrix composite material is shown in FIG.

比較例1 実施例1で使用したのと同一の炭化ケイ素繊維と純アル
ミニウムを用い、実施例1と同様の方法によって、繊維
体積率40%の金属基複合材料を得た。
Comparative Example 1 A metal matrix composite material with a fiber volume fraction of 40% was obtained in the same manner as in Example 1 using the same silicon carbide fibers and pure aluminum as used in Example 1.

この金属基複合材料の引張り強度と温度の関係を第2図
に示す。
FIG. 2 shows the relationship between the tensile strength and temperature of this metal matrix composite material.

実施例2 アルミナ繊維(直径17μのモノフィラメント500本
の繊維束)とアルミニウムー2%マンガンを用い、実施
例1と同様の方法によって、共晶合金の強化相(Al3
Mn)をアルミニウムマトリックス中に形成させ、繊維
体積率35%の金属基複合材料を得た。
Example 2 A reinforcing phase of a eutectic alloy (Al3
Mn) was formed in an aluminum matrix to obtain a metal matrix composite material with a fiber volume fraction of 35%.

この金属基複合材料の引張り強度と温度の関係を第2図
に示す。
FIG. 2 shows the relationship between the tensile strength and temperature of this metal matrix composite material.

比較例2 実施例2で使用したのと同一のアルミナ繊維と純アルミ
ニウムを用い、実施例1と同様の方法によって、繊維体
積率35%の金属基複合材料を得た。
Comparative Example 2 Using the same alumina fibers and pure aluminum as used in Example 2, a metal matrix composite material with a fiber volume ratio of 35% was obtained in the same manner as in Example 1.

この金属基複合材料の引張り強度と温度の関係を第2図
に示す。
FIG. 2 shows the relationship between the tensile strength and temperature of this metal matrix composite material.

実施例3 炭化ケイ素ウィスカー(直径0.5μ、長さ60μ)と
アルミニウムー7.2%ニッケルを用い、実施例1と同
様の方法によって、共晶合金の強化相(AJ3N1)を
アルミニウムマトリックス中に形成させ、ウィスカーの
体積率15%の金属基複合材料を得た。
Example 3 A reinforcing phase of a eutectic alloy (AJ3N1) was injected into an aluminum matrix using silicon carbide whiskers (diameter 0.5μ, length 60μ) and aluminum-7.2% nickel in the same manner as in Example 1. A metal matrix composite material having a volume fraction of whiskers of 15% was obtained.

この金属基複合材料の引張り強度と温度の関係を第3図
に示す。
FIG. 3 shows the relationship between the tensile strength and temperature of this metal matrix composite material.

比較例3 実施例3で使用したのと同一の炭化ケイ素ウィスカーと
純アルミニウムを用い、実施例1と同様の方法によって
、ウィスカーの体積率15%の金属基複合材料を得た。
Comparative Example 3 Using the same silicon carbide whiskers and pure aluminum as used in Example 3, a metal matrix composite material with a whisker volume ratio of 15% was obtained in the same manner as in Example 1.

この金属基複合材料の引張り強度と温度の関係を第3図
に示す。
FIG. 3 shows the relationship between the tensile strength and temperature of this metal matrix composite material.

比較例4 純アルミニウムからなる金属材料の引張り強度と温度の
関係を第3図に示す。
Comparative Example 4 The relationship between the tensile strength and temperature of a metal material made of pure aluminum is shown in FIG.

第2〜3図に示されるように、本発明により得られる実
施例1〜3の金属基複合材料は、従来より用いられてい
る比較例1〜4の繊維強化金属等に比べて高い引張り強
度を示し、特に高温での引張り強度も高い水準に維持さ
れている。これに対して比較例1〜4では、高温での引
張り強度が大幅に低下している。
As shown in Figures 2 and 3, the metal matrix composite materials of Examples 1 to 3 obtained by the present invention have higher tensile strength than the conventionally used fiber-reinforced metals of Comparative Examples 1 to 4. The tensile strength, especially at high temperatures, is maintained at a high level. On the other hand, in Comparative Examples 1 to 4, the tensile strength at high temperatures is significantly reduced.

[発明の効果] 以上説明したように、本発明の金属基複合材料の製造法
によって、以下のような効果を奏する。
[Effects of the Invention] As explained above, the method for producing a metal matrix composite material of the present invention provides the following effects.

■ 繊維強化金属等と比較して強度が向上し、特に高温
で高い強度を維持した金属基複合材料が得られる。
■ A metal matrix composite material that has improved strength compared to fiber-reinforced metals and maintains high strength especially at high temperatures can be obtained.

■ 共晶合金を用いて金属間化合物が形成できるので、
工程が簡易で、均質性の金属基複合材料が安価に製造で
きる。
■ Intermetallic compounds can be formed using eutectic alloys, so
The process is simple and homogeneous metal matrix composite materials can be manufactured at low cost.

■ 強化材の含有比率を体積率で従来のものより 5〜
lO%上げることができ、高強度の金属基複合材料を得
ることができる。
■ The content ratio of reinforcing material in terms of volume ratio is 5~
1O% can be increased, and a metal matrix composite material with high strength can be obtained.

■ 急冷枦;際し、冷却方向をコントロールすることに
より、合金相の発達方向をアレンジし、フィラーと直角
方向の強度の向上を図ることができる。
■ Rapid cooling: By controlling the direction of cooling, the direction of development of the alloy phase can be arranged and the strength in the direction perpendicular to the filler can be improved.

従って、本発明により得られる金属基複合材料は、高温
において高い強度等を要求される部位等に好的に用いら
れる。
Therefore, the metal matrix composite material obtained by the present invention can be suitably used in areas that require high strength at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は、本発明の金属基複合材料
の製造法の一例を示す概略図、 第2図は、実施例1〜2と比較例1〜2の引張り強度と
温度の関係を示すグラフ、そして、第3図は、実施例3
と比較例3〜4の引張り強度と温度の関係を示すグラフ
である。 1:セラミック強化材の集合体、 2:マトリックス合金、  3:密閉容器、4:導管。 特許出願人 日本カーボン株式会社
FIGS. 1(a) and (b) are schematic diagrams showing an example of the manufacturing method of the metal matrix composite material of the present invention. FIG. 2 is a diagram showing the tensile strength and temperature of Examples 1 and 2 and Comparative Examples 1 and 2. FIG. 3 is a graph showing the relationship between Example 3.
It is a graph which shows the relationship between the tensile strength and temperature of Comparative Examples 3 and 4. 1: Assembly of ceramic reinforcement, 2: Matrix alloy, 3: Sealed container, 4: Conduit. Patent applicant Nippon Carbon Co., Ltd.

Claims (1)

【特許請求の範囲】 1、セラミック強化材の集合体に共晶合金を含浸し、加
圧、成形した後、凝固速度50cm/hr以上で一方向
に冷却することを特徴とする金属基複合材料の製造法。 2、前記強化材が、炭化ケイ素繊維、炭化ケイ素ウィス
カー、炭素繊維、黒鉛ウィスカー、アルミナ繊維、ホウ
素繊維から選択される特許請求の範囲第1項記載の金属
基複合材料の製造法。 3、前記共晶合金が、アルミニウム−ニッケル系、アル
ミニウム−マンガン系、チタン−アルミニウム系、ニッ
ケル−ニオブ系の共晶合金から選択される特許請求の範
囲第1項または第2項記載の金属基複合材料の製造法。
[Claims] 1. A metal matrix composite material, characterized in that an aggregate of ceramic reinforcing materials is impregnated with a eutectic alloy, pressed and formed, and then cooled in one direction at a solidification rate of 50 cm/hr or more. manufacturing method. 2. The method for producing a metal matrix composite material according to claim 1, wherein the reinforcing material is selected from silicon carbide fibers, silicon carbide whiskers, carbon fibers, graphite whiskers, alumina fibers, and boron fibers. 3. The metal base according to claim 1 or 2, wherein the eutectic alloy is selected from aluminum-nickel, aluminum-manganese, titanium-aluminum, and nickel-niobium eutectic alloys. Method of manufacturing composite materials.
JP24749588A 1987-10-06 1988-10-03 Manufacture of metal-based conjugated material Pending JPH01195248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24749588A JPH01195248A (en) 1987-10-06 1988-10-03 Manufacture of metal-based conjugated material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25066987 1987-10-06
JP62-250669 1987-10-06
JP24749588A JPH01195248A (en) 1987-10-06 1988-10-03 Manufacture of metal-based conjugated material

Publications (1)

Publication Number Publication Date
JPH01195248A true JPH01195248A (en) 1989-08-07

Family

ID=26538295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24749588A Pending JPH01195248A (en) 1987-10-06 1988-10-03 Manufacture of metal-based conjugated material

Country Status (1)

Country Link
JP (1) JPH01195248A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124245A (en) * 1985-11-21 1987-06-05 Toyota Central Res & Dev Lab Inc Fiber-reinforced metal and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124245A (en) * 1985-11-21 1987-06-05 Toyota Central Res & Dev Lab Inc Fiber-reinforced metal and its production

Similar Documents

Publication Publication Date Title
US4753690A (en) Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement
CA2081048C (en) Nickel coated carbon preforms
JPH0317884B2 (en)
JPH01252741A (en) Fiber-reinforced composite material
US5295528A (en) Centrifugal casting of reinforced articles
US5207263A (en) VLS silicon carbide whisker reinforced metal matrix composites
EP0754659B1 (en) Porous inorganic material and metal-matrix composite material containing the same and process therefor
JPH01195248A (en) Manufacture of metal-based conjugated material
KR102324737B1 (en) Manufacturing method carbon fiber reinforced metal composites and carbon fiber reinforced aluminum composites manufactured thereby
CN1060533C (en) Method for prepn. ceramic crystal whisker strengthened metallic compound-base composite material
JPS5943835A (en) Production of frm from sic whisker
JPS61257440A (en) Metallic composite material reinforced with fiber
JP3921761B2 (en) Method for producing aluminum borate whisker
US5697421A (en) Infrared pressureless infiltration of composites
JPH066764B2 (en) Alumina continuous fiber reinforced metal composite containing mullite crystals
JPH0230726A (en) Fiber-reinforced metallic composite material
JPH0469213B2 (en)
JPS63297277A (en) Sic whisker-reinforced metallic composite material and production thereof
JP3820769B2 (en) Whisker-generated alumina production method, alumina fiber, and piston combining the same
CA2054018A1 (en) Metal matrix composite composition and method
JPH05277705A (en) Production of metal matrix composite material reinforced by vls silicon carbide whisker
JPS62297425A (en) Fiber-reinforced metal and its production
JP2002294359A (en) Metal-matrix carbon-fiber-reinforced composite material and its manufacturing method
JPH0293030A (en) Manufacture of fiber reinforced aluminum alloy composite material
Gallerneault et al. Metal Matrix Composite With Silicon-Free Reinforcing Preform