JPS62297425A - Fiber-reinforced metal and its production - Google Patents

Fiber-reinforced metal and its production

Info

Publication number
JPS62297425A
JPS62297425A JP13929686A JP13929686A JPS62297425A JP S62297425 A JPS62297425 A JP S62297425A JP 13929686 A JP13929686 A JP 13929686A JP 13929686 A JP13929686 A JP 13929686A JP S62297425 A JPS62297425 A JP S62297425A
Authority
JP
Japan
Prior art keywords
fibers
fiber
continuous
base material
reinforced metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13929686A
Other languages
Japanese (ja)
Other versions
JPH06104871B2 (en
Inventor
Senichi Yamada
山田 銑一
Shinichi Towata
真一 砥綿
Taketami Yamamura
武民 山村
Toshihiro Ishikawa
敏弘 石川
Masaki Shibuya
昌樹 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Ube Corp
Original Assignee
Ube Industries Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd, Toyota Central R&D Labs Inc filed Critical Ube Industries Ltd
Priority to JP13929686A priority Critical patent/JPH06104871B2/en
Publication of JPS62297425A publication Critical patent/JPS62297425A/en
Publication of JPH06104871B2 publication Critical patent/JPH06104871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To provide a fiber-reinforced metal which has overall excellent mechanical characteristics by consisting the same of continuous inorg. fibers consisting of Si, Ti or Zr, C and O and an Al alloy base material contg. a prescribed ratio of Ni and incorporating the needle-like phase of said alloy into said Al base material. CONSTITUTION:The continuous inorg. fibers which consist of an amorphous material substantially composed of Si, M, C and O, or solid soln. such as beta-SiC, MC (M is Ti or Zr) and/or respective ultrafine crystalline particles and aggregate, etc., consisting of amorphous SiO2 and MO2 and consist of Si, Ti, or Zr, C and O are prepd. Such continuous inorg. fibers and the Al alloy member contg. 0.5-6wt% Ni are combined by a casting method, more particularly high-pressure casting method and are solidified in a short period. The combined material is cooled from the direction orthogonal with the continuous fibers in the stage of such solidification, by which the fine needle-like crystalline material is crystallized in entanglement with said fibers in the direction perpendicular to the fibers among the continuous fibers, by which the excellent inter- layer shearing strength is imparted. As a result, the fiber-reinforced metal (FRM) having high strength is obtd.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、繊維強化金属及びその製法に関し、さらに詳
しくは連続繊維で強化したアルミニウム合金及びその製
法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a fiber-reinforced metal and a method for producing the same, and more particularly to an aluminum alloy reinforced with continuous fibers and a method for producing the same.

(従来の技術及びその問題点) 繊維強化金属(FRM)は強度や剛性が優れているため
、近年、各種機械部品や構造材として使用されている。
(Prior art and its problems) Fiber reinforced metals (FRM) have excellent strength and rigidity, and have recently been used as various mechanical parts and structural materials.

中でもアルミニウム合金母ざいをセラミック又は炭素等
の連続繊維で強化したFRMは軽く、剛性も高く、かつ
高い温度での強度が良好である。
Among these, FRM, which is made by reinforcing an aluminum alloy matrix with continuous fibers such as ceramic or carbon, is light, has high rigidity, and has good strength at high temperatures.

また、FRMの製法として例えば高圧凝固鋳造法等の鋳
造法を採用すると自動車部品、精密機械部品等の複雑な
形状の部品が容易に製造できる。
Further, if a casting method such as a high-pressure solidification casting method is adopted as a manufacturing method for FRM, parts with complicated shapes such as automobile parts and precision machine parts can be easily manufactured.

しかし、上記の強化繊維を使用して高圧凝固鋳造法によ
ってFRMを製造する場合、連続繊維が母材中に均一に
分散し難く、このため重量比で40〜60%の連続繊維
を混入する必要があるが、連続繊維を多量に混入すると
、繊維同志の接触が生じ複合則を満足する強度が得られ
ない。さらに、この繊維強化金属は連続繊維の長さ方向
と直交する方向の強度が小さいという解決すべき問題点
を有している。
However, when manufacturing FRM using the above-mentioned reinforcing fibers by high-pressure coagulation casting, it is difficult for the continuous fibers to be uniformly dispersed in the base material, so it is necessary to mix 40 to 60% continuous fibers by weight. However, if a large amount of continuous fibers is mixed in, the fibers will come into contact with each other, making it impossible to obtain strength that satisfies the composite law. Furthermore, this fiber-reinforced metal has a problem to be solved in that its strength in a direction perpendicular to the length direction of the continuous fibers is low.

また、繊維と母材との適合性については、合金母材の組
成が重要であるが、提案されている強化用繊維と合金母
材との組合せでは、繊維強化金属の製造時に繊維が劣化
を起こし、所望の14.[的特性を有する複合材が得ら
れない。
In addition, the composition of the alloy matrix is important for the compatibility between fibers and the matrix, but the proposed combination of reinforcing fibers and alloy matrix does not cause the fibers to deteriorate during the production of fiber-reinforced metals. Raise the desired 14. A composite material with the following properties cannot be obtained.

(問題点を解決するための技術的手段)本発明の目的は
、FRM製造時に繊維の劣化を生ぜず、さらに母材中に
針状微細結晶を晶出させることによって、総合的に優れ
た機械的特性を有する繊維強化金属及びその製法を提供
することにある。
(Technical Means for Solving the Problems) The object of the present invention is to provide an overall excellent machine by not causing fiber deterioration during FRM production and by crystallizing acicular microcrystals in the base material. An object of the present invention is to provide a fiber-reinforced metal having excellent characteristics and a method for producing the same.

本発明の繊維強化金属は、 (i)S i、M、C及び0から実質的になる非晶質物
質、又は (ii )実質的にβ−3i C% MC%β−5iC
とMCの固溶体及び/又はMCt−にの粒径が500Å
以下の各結晶質超微粒子、及び非晶質のSiO2とMO
2からなる集合体、又は、 (iii )上記(i)の非晶質物質と上記(ii)の
結晶質超微粒子集合体の混合系、 (但し、上式中のMはTi又はZrを示し、Xは0より
大きく1未満の数である。)からなる珪素、チタン又は
ジルコニウム、炭素及び酸素からなる連続無機繊維と、
重量比でニッケル0.5〜6%を含むアルミニウム合金
母材とからなり、該合金母材中に該合金の針状相を含む
ことを特徴とするものである。
The fiber-reinforced metal of the present invention is (i) an amorphous material consisting essentially of Si, M, C and 0, or (ii) substantially consisting of β-3i C% MC% β-5iC
A solid solution of MC and/or MCt- has a particle size of 500 Å.
Each of the following crystalline ultrafine particles and amorphous SiO2 and MO
or (iii) a mixed system of the amorphous material of (i) above and the crystalline ultrafine particle aggregate of (ii) above, (However, M in the above formula represents Ti or Zr. , X is a number greater than 0 and less than 1), a continuous inorganic fiber made of silicon, titanium or zirconium, carbon and oxygen;
It consists of an aluminum alloy base material containing 0.5 to 6% nickel by weight, and is characterized by containing an acicular phase of the alloy in the alloy base material.

本発明における連続無機13N維は、例えば、ヨーロッ
パ特許第30145号明細書及び同第37209号明細
書に記載の下記方法に従って調製することができる。
The continuous inorganic 13N fiber in the present invention can be prepared, for example, according to the following method described in European Patent No. 30145 and European Patent No. 37209.

(1)数平均分子量が約500〜10000の主として
式+S 1−CH2士の構造単位からなる主鎖骨格を有
し、式中の珪素原子は実質的に水素原子、低級アルキル
基及びフェニル基からなる群から選ばれた側鎖基を21
[1i1有するポリカルボシラン、及び (2)数平均分子量が約500〜10000の、メタロ
キサン結合単位→M  O+(M : T i又はZr
)及びシロキサン結合単位+5i−0すからなる主鎖骨
格を有し、かつメタロキサン結合単位の全数体シロキサ
ン結合単位の全数の比率が30=1〜l:30の範囲内
にあり、該シロキサン結合単位の珪素原子の大部分が低
級アルキル基及びフェニル基からなる群から選ばれた側
鎖基を1(固又は2個有し、そして該メタロキサン結合
単位の全屈原子の大部分が側鎖基として低級アルキル基
を1個又は2個有するポリメタロシロキサンを、該ポリ
カルボシランの一+Si −CH2÷の構造単位の全数
体該ポリメタロシロキサンの+M−0±結合単位の全数
の比率が100:1〜1:100の範囲内となる量比で
混合し、得られた混合物を有機溶媒中で、かつ反応に対
して不活性な雰囲気下において加熱して、該ポリカルボ
シランの珪素原子の少なくとも一部を、該ポリメタロシ
ロキサンの珪素原子及び/又は金属原子の少なくとも一
部と酸素原子を介して結合させることによって、架橋し
たポリカルボシラン部分とポリメタロシロキサン部分と
からなる数平均分子量が約1000〜50000の有機
金属重合体を生成させる第1工程と、上記重合体の紡糸
原液を造り紡糸する第2工程と、該紡糸原繊維を張力あ
るいは無張力下で不融化する第3工程と、不融化した前
記紡糸繊維を真空中あるいは不活性ガス雰囲気中で80
0〜1800°Cの範囲の温度で焼成する第4工程から
、実質的にSi、Ti又はZr、C及びOからなる無機
繊維を製造することができる。
(1) It has a main chain skeleton mainly composed of structural units of the formula + S 1-CH2 with a number average molecular weight of about 500 to 10,000, and the silicon atoms in the formula are substantially composed of hydrogen atoms, lower alkyl groups, and phenyl groups. A side chain group selected from the group consisting of 21
[1i1 polycarbosilane, and (2) a metalloxane bonding unit with a number average molecular weight of about 500 to 10,000 → M O+ (M: Ti or Zr
) and a main chain skeleton consisting of +5i-0 siloxane bonding units, and the ratio of the total number of siloxane bonding units of the metalloxane bonding units is within the range of 30=1 to l:30, and the siloxane bonding units Most of the silicon atoms of the metalloxane bonding unit have one (or two) side chain groups selected from the group consisting of lower alkyl groups and phenyl groups, and most of the total bent atoms of the metalloxane bonding unit have as side chain groups. A polymetallosiloxane having one or two lower alkyl groups has a ratio of 1 + Si - CH2 ÷ total number of structural units of the polymetallosiloxane to +M-0± total number of bonding units of the polycarbosilane of 100:1. The resulting mixture is heated in an organic solvent in an atmosphere inert to the reaction to remove at least one of the silicon atoms of the polycarbosilane. The number average molecular weight of the crosslinked polycarbosilane portion and the polymetallosiloxane portion is approximately 1000 by bonding the polymetallosiloxane with at least a portion of the silicon atoms and/or metal atoms through oxygen atoms. A first step of producing an organometallic polymer of ~50,000, a second step of preparing and spinning a spinning dope of the polymer, a third step of infusibleizing the spun fibril under tension or no tension, and The melted spun fibers are heated for 80 minutes in a vacuum or in an inert gas atmosphere.
From the fourth step of firing at a temperature in the range of 0 to 1800°C, inorganic fibers consisting essentially of Si, Ti or Zr, C and O can be produced.

また、別法として、 主として式 %式% (但し、式中のRは水素原子、低級アルキル基又はフェ
ニル基を示す。) で表される主鎖骨格を有する数平均分子量が200〜1
0000のポリカルボシラン、及び式   MX& (但し、式中のMはTi又はZrを示し、Xは炭素数1
〜20個を有するアルコキシ基、フェノキシ基又はアセ
チルアセトキシ基を示す。)で表される有機金属化合物
を、前記ポリカルボシランの+S i −CH2±の構
造単位の全数体前記有機金冗化合藻の一+M−0+の構
造単位の全数の比率が2:1〜200 : 1の範囲内
となる量比に加え、反応に対して不活性な雰囲気中にお
いて加熱反応して、前記ポリカルボシランの珪素原子の
少なくとも一部を、前記有機金属化合物の金属原子と酸
素原子を介して結合させて、数平均分子量が約700〜
toooooの有機金属重合体を生成させる第1工程と
、上記有機金属重合体の紡糸原液を造り紡糸する第2工
程と、該紡糸繊維を張力あるいは無張力下で不融化する
第3工程と、不融化した前記紡糸繊維を真空中あるいは
不活性ガス雰囲気中で800〜1800°Cの範囲の温
度で焼成する第4工程から、実質的にS I ST i
又はZr、C及び○からなる無機繊維を製造することが
できる。
In addition, as an alternative method, the main chain skeleton mainly represented by the formula % formula % (wherein R in the formula represents a hydrogen atom, a lower alkyl group, or a phenyl group) and a number average molecular weight of 200 to 1
0000 polycarbosilane, and the formula MX& (where M in the formula represents Ti or Zr, and X has 1 carbon number
Indicates an alkoxy group, phenoxy group or acetylacetoxy group having ~20 groups. ), the organometallic compound represented by : In addition to the quantitative ratio within the range of 1, at least a portion of the silicon atoms of the polycarbosilane are converted into metal atoms and oxygen atoms of the organometallic compound by a heating reaction in an atmosphere inert to the reaction. with a number average molecular weight of about 700 to
a first step of producing toooooo organometallic polymer; a second step of preparing and spinning a spinning dope of the organometallic polymer; a third step of infusibleizing the spun fibers under tension or no tension; From the fourth step of firing the melted spun fibers at a temperature in the range of 800 to 1800°C in vacuum or in an inert gas atmosphere, substantially S
Alternatively, inorganic fibers made of Zr, C, and O can be produced.

連続無機繊維中の各元素の割合は Si:30〜60重量%、Ti又はZr:0.5〜35
重量%、特に好ましくは1〜10重量%、C:25〜4
0重量%、○:0.01〜30重量%である。
The proportion of each element in the continuous inorganic fiber is Si: 30 to 60% by weight, Ti or Zr: 0.5 to 35% by weight.
% by weight, particularly preferably 1-10% by weight, C: 25-4
0% by weight, ○: 0.01 to 30% by weight.

連続無機繊維は、繊維そのものを車軸方向、多軸方向に
引き揃えて使用する方法、あるいは手織、朱子織、模紗
織、綾織、袋熾、からみ職、らせん織物、三次元織物等
の各種織物にして使用する方法、あるいはチョソプドフ
ァイハーとして使用する方法等がある。
Continuous inorganic fibers can be used by aligning the fibers themselves in the axle direction or multi-axis direction, or by making them into various types of fabrics such as hand weaving, satin weaving, mock-sailing weaving, twill weaving, bag weaving, tangle weaving, spiral weaving, and three-dimensional weaving. There are two ways to use it: one method is to use it as an ice cream, and the other is to use it as a joseopdofaihar.

本発明における合金母材は、アルミニウムにニッケルを
0.5〜6重量%、好ましくは2〜5重量%含む2元合
金、又はさらにマンガンを0.1〜2ffiff1%含
む3元合金である。これらの合金を使用すると、凝固の
際に0.5μ以下の微細なウィスカ状の第2F目が晶出
し、高圧鋳造法によればさらに効率よく前記ウィスカ状
の第2相が晶出する。
The alloy base material in the present invention is a binary alloy containing aluminum and nickel in an amount of 0.5 to 6% by weight, preferably 2 to 5% by weight, or a ternary alloy further containing manganese in an amount of 0.1 to 2ffiff1%. When these alloys are used, fine whisker-like second F phases of 0.5 μm or less are crystallized during solidification, and the whisker-like second phase crystallizes more efficiently by high-pressure casting.

本発明の合金母材と連続繊維とを組み合わせることによ
り、晶出物が微細針状又はウィスカ状に連続繊維の間の
合金母材中に晶出する。従って、連続繊維同志の接触を
少なくし、さらに連続繊維を劣化させないため、高い強
度のFRMが得られる。  〜 連続繊維と合金母材とを複合化させる方法としては、鋳
造法が好ましく、特に高圧凝固鋳造法を採用すると、短
い時間で凝固し、微細な針状晶析物が生成するので効果
的である。凝固時の圧力として゛は数百kg / cI
A程度が使用しやすい。また、荷置の際に連続繊維と直
交する方向から冷却することにより、微細針状の晶出物
が連続繊維間に該連続繊維に対して垂直な方向に絡まっ
て晶出し、これが連続繊維同志をつなぐ架橋の役割を果
たすことによって優れた眉間剪断強度を示す。
By combining the alloy matrix of the present invention and continuous fibers, crystallized substances are crystallized in the alloy matrix between the continuous fibers in the form of fine needles or whiskers. Therefore, since contact between continuous fibers is reduced and the continuous fibers are not deteriorated, a high-strength FRM can be obtained. ~ Casting is preferable as a method for compositing continuous fibers and alloy matrix, and high-pressure solidification casting is particularly effective because it solidifies in a short time and produces fine needle-like crystallized substances. be. The pressure during solidification is several hundred kg/cI.
Grade A is easy to use. In addition, by cooling from the direction perpendicular to the continuous fibers during cargo storage, fine needle-shaped crystallized substances become entangled between the continuous fibers in a direction perpendicular to the continuous fibers and crystallize. It exhibits excellent glabella shear strength by acting as a bridge between the two.

(実施例) 以下に実施例によって本発明を説明する。(Example) The present invention will be explained below by way of examples.

連続無機繊維[1]の製法 ジメチルジクロロシランを金属ナトリウムで脱塩素縮合
して合成されるポリジメチルシラン100市量部に対し
ポリボロシロキサン3重量部を添加し、窒素中、350
℃で熱縮合して得られる、式+5i−CH2÷のカルボ
シラン単位から主としてなる主鎖骨格を有し、該カルボ
シラン単位の珪素原子に水素原子及びメチル基を有して
いるポリカルボシランに、チタンアルコキシドを加えて
、窒素中、340℃で架橋重合することにより、カルボ
シラン単位100部と式+Ti−0+のチタノキサン1
0部とからなるポリチタノカルボシランを得た。このポ
リマーを熔融紡糸し、空気中190℃で不融化処理し、
さらに引き続いて窒素中1300℃で焼成して、繊維径
13μm、引張強度310kg/鶴2、引張弾性°率1
5t/mm2の主として珪素、チタン、炭素及び酸素か
らなるチタン元素含量3重量%の連続無機繊維[I]を
得た。
Production method of continuous inorganic fiber [1] 3 parts by weight of polyborosiloxane was added to 100 parts by weight of polydimethylsilane synthesized by dechlorination condensation of dimethyldichlorosilane with metallic sodium, and 3 parts by weight of polyborosiloxane was added to 350 parts by weight in nitrogen.
Titanium is added to polycarbosilane, which is obtained by thermal condensation at °C and has a main chain skeleton mainly composed of carbosilane units of the formula +5i-CH2÷, and has a hydrogen atom and a methyl group on the silicon atom of the carbosilane unit. By adding alkoxide and crosslinking polymerization at 340°C in nitrogen, 100 parts of carbosilane units and 1 part of titanoxane of formula +Ti-0+
A polytitanocarbosilane consisting of 0 parts was obtained. This polymer was melt-spun and treated in the air at 190°C to make it infusible.
Furthermore, the fiber diameter was 13 μm, the tensile strength was 310 kg/Tsuru 2, and the tensile modulus was 1.
A continuous inorganic fiber [I] of 5 t/mm2 and containing 3% by weight of titanium element mainly composed of silicon, titanium, carbon and oxygen was obtained.

この繊維はS t s T i s C及びOからなる
非晶質物質と、β−SiCとTiCの固溶体及びT i
 C1−ス(Q<x<1)の粒径が50人の各結晶質超
微粒子及び非晶質のSiO2とTiO2からなる集合体
との混合系からなっていた。
This fiber is composed of an amorphous substance consisting of S t s T i s C and O, a solid solution of β-SiC and TiC, and a Ti
It consisted of a mixed system of 50 crystalline ultrafine particles with a grain size of C1-su (Q<x<1) and an aggregate of amorphous SiO2 and TiO2.

連続無機繊維[II]の製法 上記と同様にして得られたポリカルボシラン80gにジ
ルコニウムエトキシド10gを添加した以外は全く同様
の方法により、ポリジルコノカルボシランを調製した。
Manufacturing method of continuous inorganic fiber [II] Polyzirconocarbosilane was prepared in exactly the same manner as above except that 10 g of zirconium ethoxide was added to 80 g of polycarbosilane obtained in the same manner as above.

このポリマーをベンゼンに熔解して乾式紡糸し、空気中
で170℃で不融化処理し、引き続いて窒素中1200
 ’cで焼成して、繊維径10μ、引張強度350 k
g/m2、弾性率18t/mu2の主として珪素ジルコ
ニウム、炭S及び酸素からなるジルコニウム元素台ff
14.5f=ff1%の非晶質連続無機繊維[11Fを
得た。
This polymer was dissolved in benzene, dry spun, infusible at 170°C in air, and subsequently heated at 1200°C in nitrogen.
'c fired, fiber diameter 10μ, tensile strength 350k
g/m2, elastic modulus of 18t/mu2, zirconium element base consisting mainly of silicon zirconium, carbon S and oxygen ff
Amorphous continuous inorganic fiber [11F] with 14.5f=ff1% was obtained.

実施例1 無機繊維El]を150mに切断し、体積率で50%に
なるように秤量して鋼製パイプに充填した。これを72
0 ’Cの窒素ガス雰囲気中で15分間予熱した後、2
50°Cに加熱した型内に設置し、720℃のA1−5
%Ni合金溶湯を注いで250℃のパンチにて500k
g/cIiIに加圧し凝固させた。これを試料Aとする
。同様の方法でA2−2%Cu−2%Ni合金母材と純
AN母材のFRMも作成した。これらをそれぞれ試料B
及びCとする。
Example 1 Inorganic fiber El] was cut into 150 m lengths, weighed to a volume fraction of 50%, and filled into a steel pipe. This is 72
After preheating for 15 minutes in a nitrogen gas atmosphere at 0'C, 2
Placed in a mold heated to 50°C, A1-5 at 720°C
%Ni alloy molten metal is poured and punched at 250℃ for 500k.
It was pressurized to g/cIiI and coagulated. This is designated as sample A. FRMs of an A2-2% Cu-2% Ni alloy base material and a pure AN base material were also created in the same manner. Sample B
and C.

インゴット中より採取したFRM試料Aの断面を走査型
電子顕微鏡で観察した結果、繊維の間隙に微細なAl3
Niウィスカが比較的均一に分布していた。また、これ
らのFRMを用いて2点曲げ試験とAE測測定行った。
As a result of observing the cross section of FRM sample A taken from the ingot with a scanning electron microscope, it was found that there were fine Al3 particles in the gaps between the fibers.
Ni whiskers were relatively uniformly distributed. Furthermore, two-point bending tests and AE measurements were conducted using these FRMs.

曲げ強度は純、l!FRM(試料C)の場合150 k
g / 璽12を示すが、破壊に至るまでのAEイベン
ト数は著しく多かった。また、Al−’1%Cu−2%
Ni合全CuM(試料B)ではAEイベント数は試料C
に比して減少するものの曲げ強度は著しく小さかった。
The bending strength is pure, l! 150k for FRM (sample C)
g / Seal 12, but the number of AE events leading up to destruction was significantly higher. Also, Al-'1%Cu-2%
For Ni combined CuM (sample B), the number of AE events is the same as that for sample C.
The bending strength was significantly smaller, although it decreased compared to the above.

これとは対照的に、AA−5%NiFRM(試料A)の
場合は、曲げ強度は140kg/mu2を示し、試料C
のそれと遜色なく、またAEイベント数は著しく減少し
、微視的な破壊が減少したことを示している。
In contrast, in the case of AA-5%NiFRM (sample A), the bending strength was 140 kg/mu2, and sample C
The number of AE events was also significantly reduced, indicating a reduction in microscopic destruction.

実施例2 無機繊維[I]に代えて無機繊維[II]を使用した以
外は実施例1と同様の方法を繰り返して、Al−5%N
iFRMを製造した。
Example 2 The same method as Example 1 was repeated except that inorganic fiber [II] was used instead of inorganic fiber [I], and Al-5%N
iFRM was manufactured.

このFRMは実施例1における試料Aと同様の内部組織
及び強度を有していた。
This FRM had the same internal structure and strength as Sample A in Example 1.

(発明の効果) 本発明の繊維強化金属は、純アルミニウムを使用した場
合と同程度の強度を有し、かつ応力が加わった際に微視
的な破壊が純アルミニウムを使用した場合に比較して著
しく減少し、し0合的に優れた特性を示す。
(Effects of the invention) The fiber-reinforced metal of the present invention has strength comparable to that when pure aluminum is used, and has less microscopic fracture when stress is applied than when pure aluminum is used. This shows a significant decrease in the amount of carbon dioxide, showing overall excellent properties.

また、本発明の製法によれば、高圧鋳造法で繊維強化金
属を製造するにあたり、連続繊維の長さ方向と直交する
方向から低温状態のパンチで加圧し、繊維の長さ方向に
対して直角方向に温度勾配を生ずるので、合金母材中に
該合金の針状相を繊維の長さ方向と直交する方向に晶出
させることができ、総合特性の優れた繊維強化金泥を得
ることができる。
In addition, according to the manufacturing method of the present invention, when manufacturing fiber-reinforced metal using a high-pressure casting method, pressure is applied with a cold punch from a direction perpendicular to the longitudinal direction of the continuous fibers, and the continuous fibers are pressed at right angles to the longitudinal direction of the fibers. Since a temperature gradient is generated in the direction, the acicular phase of the alloy can be crystallized in the alloy matrix in the direction perpendicular to the length direction of the fibers, making it possible to obtain fiber reinforced gold mud with excellent overall properties. .

Claims (5)

【特許請求の範囲】[Claims] (1)(i)Si、M、C及びOから実質的になる非晶
質物質、又は (ii)実質的にβ−SiC、MC、β−SiCとMC
の固溶体及び/又はMC_1_−_xの粒径が500Å
以下の各結晶質超微粒子、及び非晶質のSiO_2とM
O_2からなる集合体、又は、 (iii)上記(i)の非晶質物質と上記(ii)の結
晶質超微粒子集合体の混合系、 (但し、上式中のMはTi又はZrを示し、xは0より
大きく1未満の数である。)からなる珪素、チタン又は
ジルコニウム、炭素及び酸素からなる連続無機繊維と、
重量比でニッケル0.5〜6%を含むアルミニウム合金
母材とからなり、該合金母材中に該合金の針状相を含む
ことを特徴とする繊維強化金属。
(1) (i) an amorphous material consisting essentially of Si, M, C and O, or (ii) essentially β-SiC, MC, β-SiC and MC
Solid solution of and/or particle size of MC_1_-_x is 500 Å
Each of the following crystalline ultrafine particles and amorphous SiO_2 and M
an aggregate consisting of O_2, or (iii) a mixed system of the amorphous substance of (i) above and the crystalline ultrafine particle aggregate of (ii) above, (However, M in the above formula represents Ti or Zr. , x is a number greater than 0 and less than 1), a continuous inorganic fiber made of silicon, titanium or zirconium, carbon and oxygen;
A fiber-reinforced metal comprising an aluminum alloy base material containing 0.5 to 6% nickel by weight, and containing an acicular phase of the alloy in the alloy base material.
(2)アルミニウム合金母材が、重量比でニッケル0.
5〜6%及びマンガン0.1〜2%を含むことを特徴と
する特許請求の範囲第1項に記載の繊維強化金属。
(2) The aluminum alloy base material has a weight ratio of nickel of 0.
Fiber reinforced metal according to claim 1, characterized in that it contains 5-6% manganese and 0.1-2% manganese.
(3)連続繊維と合金母材とを複合化させるにあたり、
高圧凝固鋳造法を用いたことを特徴とする特許請求の範
囲第1項に記載の繊維強化金属。
(3) In compositing continuous fibers and alloy matrix,
The fiber-reinforced metal according to claim 1, characterized in that a high-pressure solidification casting method is used.
(4)(i)Si、M、C及びOから実質的になる非晶
質物質、又は (ii)実質的にβ−SiC、MC、β−SiCとMC
の固溶体及び/又はMC_1_−_xの粒径が500Å
以下の各結晶質超微粒子、及び非晶質のSiO_2とM
O_2からなる集合体、又は、 (iii)上記(i)の非晶質物質と上記(ii)の結
晶質超微粒子集合体の混合系、 (但し、上式中のMはTi又はZrを示し、xは0より
大きく1未満の数である。)からなる珪素、チタン又は
ジルコニウム、炭素及び酸素からなる連続無機繊維と、
重量比でニッケル0.5〜6%を含むアルミニウム合金
母材とを複合化させるにあたり、凝固させる際に該連続
繊維の長さ方向と直交する方向から冷却して、該合金母
材中に針状相を該連続繊維の長さ方向と直交する方向に
晶出させることを特徴とする繊維強化金属の製法。
(4) (i) an amorphous material consisting essentially of Si, M, C and O, or (ii) essentially β-SiC, MC, β-SiC and MC
Solid solution of and/or particle size of MC_1_-_x is 500 Å
Each of the following crystalline ultrafine particles and amorphous SiO_2 and M
an aggregate consisting of O_2, or (iii) a mixed system of the amorphous substance of (i) above and the crystalline ultrafine particle aggregate of (ii) above, (However, M in the above formula represents Ti or Zr. , x is a number greater than 0 and less than 1), a continuous inorganic fiber made of silicon, titanium or zirconium, carbon and oxygen;
When forming a composite with an aluminum alloy base material containing 0.5 to 6% nickel by weight, the continuous fibers are cooled in a direction perpendicular to the length direction of the continuous fibers during solidification, and needles are inserted into the alloy base material. A method for producing a fiber-reinforced metal, characterized by crystallizing a phase in a direction perpendicular to the longitudinal direction of the continuous fibers.
(5)アルミニウム合金母材が、重量比でニッケル0.
5〜6%及びマンガン0.1〜2%を含むことを特徴と
する特許請求の範囲第1項に記載の繊維強化金属。
(5) The aluminum alloy base material has a weight ratio of nickel of 0.
Fiber reinforced metal according to claim 1, characterized in that it contains 5-6% manganese and 0.1-2% manganese.
JP13929686A 1986-06-17 1986-06-17 Fiber reinforced metal and its manufacturing method Expired - Lifetime JPH06104871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13929686A JPH06104871B2 (en) 1986-06-17 1986-06-17 Fiber reinforced metal and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13929686A JPH06104871B2 (en) 1986-06-17 1986-06-17 Fiber reinforced metal and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS62297425A true JPS62297425A (en) 1987-12-24
JPH06104871B2 JPH06104871B2 (en) 1994-12-21

Family

ID=15241974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13929686A Expired - Lifetime JPH06104871B2 (en) 1986-06-17 1986-06-17 Fiber reinforced metal and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH06104871B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252741A (en) * 1988-04-01 1989-10-09 Ube Ind Ltd Fiber-reinforced composite material
US5449421A (en) * 1988-03-09 1995-09-12 Toyota Jidosha Kabushiki Kaisha Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449421A (en) * 1988-03-09 1995-09-12 Toyota Jidosha Kabushiki Kaisha Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements
JPH01252741A (en) * 1988-04-01 1989-10-09 Ube Ind Ltd Fiber-reinforced composite material

Also Published As

Publication number Publication date
JPH06104871B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US6918970B2 (en) High strength aluminum alloy for high temperature applications
US6592687B1 (en) Aluminum alloy and article cast therefrom
JPS60226462A (en) Inorganic fiber reinforced heat-resistant ceramic composite material
JPH0317884B2 (en)
JPS6010100B2 (en) Method for producing silicon carbide fiber-reinforced cobalt-based composite material
JPS63195235A (en) Fiber-reinforced metallic composite material
US4614690A (en) Inorganic fiber-reinforced metallic composite material
JPS62297425A (en) Fiber-reinforced metal and its production
CN1034347C (en) Fibre-reinforced metal
JP4352472B2 (en) Magnesium matrix composite
JPS61110742A (en) Inorganic fiber reinforced metallic composite material
JPS62124245A (en) Fiber-reinforced metal and its production
JPH05117822A (en) Fiber reinforced metallic composite material
JPS5957965A (en) Manufacture of fiber reinforced silicon nitride sintered bo-dy
JPH05117784A (en) Fiber-reinforced metal composite material
JPS62297426A (en) Inorganic fiber-reinforced metallic composite and its production
Cheng et al. Effect of silicon additions on characteristics of carbon fiber reinforced aluminum composites during thermal exposure
JPH0680179B2 (en) Alumina short fiber reinforced metal composite material containing mullite crystals
JP4313442B2 (en) Metal-ceramic composite material and manufacturing method thereof
JPS6151619B2 (en)
KR100421541B1 (en) Be containing Al-Cu-Fe based Quasicrystalline Alloy Compositions
JPS61284541A (en) Inorganic fiber reinforced metallic composite material
Lee et al. High strength aluminum alloy for high temperature applications
Bunsell High temperature fibres
JPS6140740B2 (en)