JPH0218374B2 - - Google Patents

Info

Publication number
JPH0218374B2
JPH0218374B2 JP26206185A JP26206185A JPH0218374B2 JP H0218374 B2 JPH0218374 B2 JP H0218374B2 JP 26206185 A JP26206185 A JP 26206185A JP 26206185 A JP26206185 A JP 26206185A JP H0218374 B2 JPH0218374 B2 JP H0218374B2
Authority
JP
Japan
Prior art keywords
continuous fibers
weight
fiber
base material
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26206185A
Other languages
Japanese (ja)
Other versions
JPS62124245A (en
Inventor
Shinichi Towata
Senichi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP26206185A priority Critical patent/JPS62124245A/en
Publication of JPS62124245A publication Critical patent/JPS62124245A/en
Publication of JPH0218374B2 publication Critical patent/JPH0218374B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は繊維強化金属とその製造方法、更に詳
しくは連続繊維で強化したアルミニウム合金とそ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fiber-reinforced metal and a method for producing the same, and more particularly to an aluminum alloy reinforced with continuous fibers and a method for producing the same.

〔従来の技術〕[Conventional technology]

繊維強化金属(FRM)は強度や剛性が優れて
いるため、近年、各種機械部品や構造材として使
用されている。そのうちでもアルミニウム合金母
材をセラミツク又は炭素等の連続繊維で強化した
FRMは軽く、剛性も高く且つ強度特に高温(例
えば200〜400℃)での強度が高いため、これを用
いると軽量で高温での機械特性の優れたものが得
られる。
Fiber-reinforced metal (FRM) has excellent strength and rigidity, so it has recently been used as a variety of mechanical parts and structural materials. Among them, aluminum alloy base material is reinforced with ceramic or continuous fibers such as carbon.
FRM is light, has high rigidity, and has high strength, especially at high temperatures (for example, 200 to 400°C), so if it is used, a product that is lightweight and has excellent mechanical properties at high temperatures can be obtained.

又、FRMの製造方法としては例えば高圧凝固
鋳造法などの鋳造法を用いると自動車用部品、精
密機械部品等の複雑な形状の部品が容易に製造で
きる。
Further, as a manufacturing method for FRM, for example, if a casting method such as a high-pressure solidification casting method is used, parts with complex shapes such as automobile parts and precision machine parts can be easily manufactured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら連続繊維で強化したFRMを高圧
凝固鋳造法で製造する場合連続繊維が母材中に均
一に分散しにくい。このため重量比で40〜60%の
連続繊維を混入する必要があるが、多量に混入す
ると繊維同志の接触が生じ複合則(ROM)を満
足する強度が出にくい。
However, when FRM reinforced with continuous fibers is produced by high-pressure solidification casting, it is difficult for the continuous fibers to be uniformly dispersed in the matrix. For this reason, it is necessary to mix 40 to 60% continuous fibers by weight, but if a large amount is mixed, the fibers will come into contact with each other, making it difficult to achieve strength that satisfies the law of compositeness (ROM).

又、繊維と母材との適合性においては、合金母
材の組成が重要となり、連続繊維の性状に応じて
選択する必要がある。すなわち、鋳物に用いるア
ルミニウム合金母材はマグネシウム(Mg)、ケ
イ素(Si)、銅(Cu)等を含むが、例えば連続繊
維として炭化ケイ素繊維を用いた場合にはMgと
Siは繊維を劣化させ又脆いシリコン結晶が出やす
く、CuはFRM中の晶出物を大きくし多量の繊維
を含むFRMでは一層機械特性を悪くする。又、
アルミナ繊維を用いた場合にはSiは繊維を劣化さ
せ、MgとCuはFRM中の晶出物を大きくする。
更に炭素繊維を用いた場合にはMgは横方向の強
度を向上させる点では良いが、高温時には繊維を
劣化させ、CuとSiはFRM中の晶出物を粗大に
し、該FRMの横方向強度は低い。それ故、母材
としては晶出物を出さず、繊維を劣化させない純
アルミニウムが適しているといわれていたがしか
し、純アルミニウムを母材金属としたFRMは母
材自体の強度が小さいために連続繊維の長さ方向
と直交する方向すなわち横方向の強度が小さいと
いう問題点があつた。
Furthermore, the composition of the alloy base material is important for the compatibility between the fibers and the base material, and must be selected depending on the properties of the continuous fibers. In other words, the aluminum alloy base material used for casting contains magnesium (Mg), silicon (Si), copper (Cu), etc., but when silicon carbide fibers are used as continuous fibers, for example, Mg and
Si deteriorates the fibers and tends to produce brittle silicon crystals, while Cu increases the size of crystallized substances in the FRM, further worsening the mechanical properties of FRMs containing a large amount of fibers. or,
When using alumina fibers, Si deteriorates the fibers, and Mg and Cu increase the size of crystallized substances in the FRM.
Furthermore, when carbon fibers are used, Mg is good in improving the lateral strength, but it deteriorates the fibers at high temperatures, and Cu and Si coarsen the crystallized substances in the FRM, reducing the lateral strength of the FRM. is low. Therefore, pure aluminum was said to be suitable as a base material because it does not produce crystallized substances and does not deteriorate the fibers. There was a problem that the strength in the direction perpendicular to the length direction of the continuous fibers, that is, in the transverse direction, was low.

本発明は上記従来技術における問題点を解決す
るためのものであり、その目的とするところは
FRM製造時に繊維の劣化を生じず、また母材中
に針状微細結晶を晶出させることによつて総合的
に優れた機械特性を有する繊維強化金属とその製
造方法を提供することにある。
The present invention is intended to solve the problems in the above-mentioned prior art, and its purpose is to
The object of the present invention is to provide a fiber-reinforced metal that does not cause fiber deterioration during FRM production and has overall excellent mechanical properties by crystallizing acicular microcrystals in the base material, and a method for producing the same.

すなわち本発明の繊維強化金属は炭化ケイ素、
アルミナ又は炭素の各連続繊維の一種又は二種以
上と重量比でニツケル0.5〜6%を含むアルミニ
ウム合金母材とよりなり、該アルミニウム合金母
材は、Al3Niウイスカー状晶出物1.2〜14.3重量%
と、残部アルミニウム固溶体とからなることを特
徴とする。
That is, the fiber-reinforced metal of the present invention is silicon carbide,
It consists of an aluminum alloy base material containing one or more types of continuous fibers of alumina or carbon and 0.5 to 6% of nickel in weight ratio, and the aluminum alloy base material contains 1.2 to 14.3% of Al 3 Ni whisker-like crystallization. weight%
and the remainder is an aluminum solid solution.

従来技術における問題点を解決するためには晶
出物すなわち第2相の形状を制御することが重要
となる。この場合の方法としては例えばFRMの
製造工程において凝固時に制御する方法とFRM
の熱処理によつて制御する方法とがあるが、後者
の方法は高温で熱処理を行わなければならないた
め強化繊維の劣化が生ずる可能性がある。そこで
本発明においては凝固時に合金母材中の第2相の
制御を行うものである。
In order to solve the problems in the prior art, it is important to control the shape of the crystallized product, that is, the second phase. In this case, for example, there is a method that controls the solidification process in the FRM manufacturing process, and a method that controls the solidification of the FRM.
However, since the latter method requires heat treatment at high temperatures, there is a possibility that the reinforcing fibers may deteriorate. Therefore, in the present invention, the second phase in the alloy base material is controlled during solidification.

凝固速度や合金母材組成は適切に選択する必要
がある。本発明者らは種々検討の結果、AlにNi
を重量比で0.5〜6%含む2元合金か又は更にマ
ンガン(Mn)を重量比で0.1〜2%含む3元合金
であれば凝固の際に合金母材中に直径が0.5μ又は
それ以下の微細なウイスカー状の第2相が晶出
し、高圧凝固鋳造法によれば更に効果的であるこ
とが判つた。Al−Ni合金の状態図[例えばマツ
クスハンセン(Max Hansen)他著、二元合金
の状態(CONSTITUTION OF BINARY
ALLOYS)、 第2版、第119頁第68図、マツクグロウ―ヒ
ル出版(株)(McGRAW−HILL BOOK
COMPANY INC.)、ニユーヨーク、トロント、
ロンドン、、1958年参照]に見られるように、室
温ではNi量が0〜42重量%の範囲におおいて、
NiはすべてAl3Niとなつている。従つて、天びん
の法則[例えば須藤一他著“金属組織字”第38頁
図3・11、丸善(株)参照]によりNi0.5〜6重量
%におけるAl3Niの量は1.2〜14.3重量%である。
この場合、Al3Niはウイスカー状の晶出物であ
り、残部はAl中に若干の元素が含まれたAl固溶
体となる。又、更に第3成分としてMnが0.1〜2
重量%含まれた合金では、上記と同様な量の
Al3Niウイスカー状晶出物ができると共に、0.1〜
2重量%の少量のMnはAl中に固溶されている。
It is necessary to appropriately select the solidification rate and alloy base material composition. As a result of various studies, the present inventors found that Ni in Al
If it is a binary alloy containing 0.5 to 6% by weight of manganese (Mn) or a ternary alloy containing 0.1 to 2% by weight of manganese (Mn), the diameter will be 0.5μ or less in the alloy base material during solidification. A fine whisker-like second phase was crystallized, and it was found that the high-pressure solidification casting method was more effective. Phase diagram of Al-Ni alloy [for example, Max Hansen et al., CONSTITUTION OF BINARY]
ALLOYS), 2nd edition, page 119, figure 68, McGRAW-HILL Publishing Co., Ltd.
COMPANY INC.), New York, Toronto,
London, 1958], in the Ni content range of 0 to 42% by weight at room temperature,
All Ni is Al 3 Ni. Therefore, according to the balance law [for example, see "Metal Structure Characters" by Hajime Sudo et al., p. 38, Figures 3 and 11, Maruzen Co., Ltd.], the amount of Al 3 Ni in 0.5 to 6% Ni by weight is 1.2 to 14.3% by weight. %.
In this case, Al 3 Ni is a whisker-like crystallized product, and the remainder is an Al solid solution containing some elements in Al. Furthermore, Mn is 0.1 to 2 as a third component.
For alloys containing wt%, similar amounts as above
Along with the formation of Al 3 Ni whisker-like crystallized substances, the
A small amount of 2% by weight of Mn is dissolved in Al.

Niの添加量としては重量比で0.5〜6%程度が
有効であるが、望ましくは2〜5%が良い。又、
更に強度を向上させるために第3成分を添加する
が、この場合第3成分の選択には注意を要する。
例えば、Cuの添加は晶出物が粗大粒状になり易
く望ましくない。その点Mnの添加であれば重量
比で0.1〜2%添加することにより、微細なウイ
スカー状の晶出物が得られてよい。
It is effective to add Ni in an amount of about 0.5 to 6% by weight, preferably 2 to 5%. or,
A third component is added to further improve the strength, but in this case care must be taken in selecting the third component.
For example, addition of Cu tends to cause crystallized substances to become coarse particles, which is undesirable. On the other hand, if Mn is added, fine whisker-shaped crystallized substances may be obtained by adding 0.1 to 2% by weight.

本発明に使用し得る連続繊維としては、通常
FRM用として供給されるものであれば何でも用
いることができるが、例えば炭化ケイ素(SiC)、
アルミナ(Al2O3)又は炭素(C)よりなる連続繊維
が好ましい。これらの連続繊維は一種のみでも、
又は二種以上を組み合わせてもよい。連続繊維の
種類、長さ、太さ、断面形状等の性状は製造する
FRMに対する要求特性や製造の難易度等を考慮
して選択する。特に極細の繊維を用いた場合に好
ましい結果が得られる。
Continuous fibers that can be used in the present invention are usually
Anything that is supplied for FRM can be used, such as silicon carbide (SiC),
Continuous fibers made of alumina (Al 2 O 3 ) or carbon (C) are preferred. Even if only one type of these continuous fibers is used,
Or you may combine two or more types. Properties such as type, length, thickness, cross-sectional shape, etc. of continuous fibers are manufactured.
Select by considering the required characteristics of FRM and the difficulty of manufacturing. Particularly favorable results are obtained when ultrafine fibers are used.

前記合金母材と連続繊維を組み合わせることに
より晶出物が微細針状(又はウイスカー状)に連
続繊維の間の合金母材中に晶出し、従つて連続繊
維同志の接触を少なくし、又、SiC、Al2O3及び
Cの各連続繊維を劣化させないため高強度の
FRMが得られる。
By combining the alloy matrix and continuous fibers, crystallized substances crystallize in the alloy matrix between the continuous fibers in the form of fine needles (or whiskers), thus reducing contact between the continuous fibers, and It has high strength because it does not deteriorate the continuous fibers of SiC, Al 2 O 3 and C.
FRM is obtained.

連続繊維と合金母材とを複合化させる方法とし
ては、鋳造方法が望ましく、特に高圧凝固鋳造法
を用いれば、短時間で凝固し、微細な針状晶出物
が生成するので効果的である。凝固時の圧力とし
ては数百Kg/cm2程度が使用し易い。又、凝固の際
連続繊維の配向方向と直交する方向から冷却する
ことにより微細針状(ウイスカー状)の晶出物が
連続繊維間に該連続繊維に対して垂直な方向に絡
まつて晶出し、これが連続繊維同志をつなぐ架橋
の役割を果すことによつて優れた層間剪断強度を
示す。
Casting is preferable as a method for compositing continuous fibers and alloy matrix, and high-pressure solidification casting is particularly effective because it solidifies in a short time and produces fine needle-like crystallized substances. . It is easy to use a pressure of several hundred kg/cm 2 during solidification. In addition, by cooling from a direction perpendicular to the orientation direction of the continuous fibers during solidification, fine needle-like (whisker-like) crystallized substances become entangled between the continuous fibers in a direction perpendicular to the continuous fibers and crystallize. This serves as a crosslink between continuous fibers, thereby exhibiting excellent interlaminar shear strength.

〔実施例〕〔Example〕

以下の実施例において本発明を更に詳細に説明
する。なお、本発明は下記実施例に限定されるも
のではない。
The invention will be explained in further detail in the following examples. Note that the present invention is not limited to the following examples.

実施例 1 炭化ケイ素繊維(日本カーボン製“ニカロン”)
1を150mmに切断し、体積率で50%になるように
秤量して鋼製パイプに詰めた。この試料を720℃
のN2雰囲気中で15分間予熱した後、250℃に加熱
した型内に設置し、720℃のAl―5%Ni合金溶湯
を注いで250℃のパンチにて500Kg/cm2に加圧し凝
固させた。これを試料Aとする。同様の方法にて
Al―2%Cu−2%Ni合金マトリツクスと純Alの
FRMも作製した。これを試料B及びCとする。
Example 1 Silicon carbide fiber (Nicalon manufactured by Nippon Carbon)
1 was cut into 150 mm pieces, weighed so that the volume ratio was 50%, and packed into a steel pipe. This sample was heated to 720℃
After preheating for 15 minutes in an N 2 atmosphere, the mold was placed in a mold heated to 250°C, and 720°C molten Al-5% Ni alloy was poured into it and solidified by pressing to 500 kg/cm 2 with a punch at 250°C. I let it happen. This is designated as sample A. in a similar way
Al-2%Cu-2%Ni alloy matrix and pure Al
FRM was also fabricated. These will be referred to as samples B and C.

インゴツト中より採取したFRM試料Aの顕微
鏡観察結果を第1図に示すが、炭化ケイ素繊維1
の間隙に微細なAl3Niウイスカー状晶出物2が比
較的に均一に分布していた。又、それらの周囲に
はAl固溶体が存在していた。Al3Niウイスカー状
晶出物とAl固溶体との割合は、上記晶出物が11.9
重量%、残部Al固溶体であつた、又、これらの
FRMを用いて3点曲げ試験とAE(アコーステイ
ツク エミツシヨン)測定を同時に行なつた。そ
の結果を第2図に示す。第2図中のアコーステイ
ツク エミツシヨンイベント数は、、曲げ試験に
おけるFRM試料の破壊に至るまでのAE信号を検
出するにあたつて、外部雑音を除去するために設
けたしきい値を越えたAE信号を包絡線検波して
求めたものであり、FRM試料内部の微視的破壊
の事象数に対応する。曲げ強度は純AlFRMの場
合120Kg/mm2を示すが、破壊に至るまでのAEイベ
ント数は著しく多かつた。又、Al−2%Cu−2
%Ni合金FRM試料BではAEイベント数は純
AlFRM試料Cに比べて減少するものの、曲げ強
度は著しく小さかつた。しかし、Al−5%
NiFRM試料Aを用いた場合には曲げ強度は110
Kg/mm2を示し、純Alの場合に比べてそん色なく、
又、AEイベント数は著しく減少し、微視的な破
壊が減少したことを示している。
Figure 1 shows the results of microscopic observation of FRM sample A taken from the ingot.
Fine Al 3 Ni whisker-like crystallized substances 2 were relatively uniformly distributed in the gaps. Moreover, an Al solid solution was present around them. The ratio of the Al 3 Ni whisker-like crystallized product to the Al solid solution is 11.9 for the above crystallized product.
% by weight, the remainder was Al solid solution, and these
Three-point bending tests and AE (acoustic emission) measurements were conducted simultaneously using FRM. The results are shown in FIG. The number of acoustic emission events in Figure 2 exceeds the threshold set to remove external noise when detecting the AE signal leading to the destruction of the FRM sample in the bending test. This is obtained by envelope detection of the AE signal, and corresponds to the number of microscopic fracture events inside the FRM sample. The bending strength of pure AlFRM was 120Kg/ mm2 , but the number of AE events leading to failure was significantly large. Also, Al-2%Cu-2
%Ni alloy FRM sample B has a pure number of AE events.
Although it decreased compared to AlFRM sample C, the bending strength was significantly lower. However, Al-5%
When using NiFRM sample A, the bending strength is 110
Kg/mm 2 , comparable to that of pure Al,
Also, the number of AE events was significantly reduced, indicating a reduction in microscopic destruction.

本繊維を用いたFRMについてはより多くのマ
トリツクス組成で実験を行ない第3図及び第4図
の結果を得た。第3図及び第4図から明らかなよ
うにAl−Ni合金及びAl−Ni−Mn合金であれば、
FRMの強度を減ずることなく、AEの発生を抑制
することが出来た。
Regarding FRM using this fiber, experiments were conducted with more matrix compositions and the results shown in Figures 3 and 4 were obtained. As is clear from FIGS. 3 and 4, if it is an Al-Ni alloy or an Al-Ni-Mn alloy,
It was possible to suppress the occurrence of AE without reducing the strength of FRM.

実施例 2 炭素繊維(東レ製M40)3を150mmの長さに切
断して体積率で60%となるように秤量し鋼製パイ
プに詰めた。この試料を760℃のN2雰囲気中で15
分間予熱を行ない、250゜に加熱した型内に設置
し、760℃のAl−5%Ni合金溶湯を注いで200℃
のパンチにて500Kg/cm2に加圧し、凝固させた。
これを試料Dとする。又、同様の方法でAl−3
%SiとAl−11%Si合金のFRMを作製した。これ
を各々試料E及びFとする。
Example 2 Carbon fiber (M40 manufactured by Toray Industries, Ltd.) 3 was cut into a length of 150 mm, weighed to a volume ratio of 60%, and packed into a steel pipe. This sample was heated in a N2 atmosphere at 760 °C for 15
Preheat for 1 minute, place in a mold heated to 250°, pour molten Al-5% Ni alloy at 760°C, and heat to 200°C.
Pressure was applied to 500 kg/cm 2 using a punch to solidify.
This is designated as sample D. Also, in the same way, Al-3
%Si and Al-11%Si alloys were fabricated. These are designated as samples E and F, respectively.

インゴツト中より採取したFRM試料Dの組織
を第5図に示す。繊維間隙には微細なAl3Niウイ
スカー状晶出物2が多数観察された。又、それら
の周囲にはAl固溶体が存在していた。Al3Niウイ
スカー状晶出物とAl固溶体との割合は、上記晶
出物が11.9重量%、残部Al固溶体であつた。又、
3点曲げ試験と同時にAEを測定したが、第6図
から明らかなようにAl−5%NiFRM試料Dの場
合にはAl−3%SiFRM試料EやAl−11%
SiFRM試料Fに比べて曲げ強度は大きく、しか
もAEリングダウン数は少なかつた。これは、
FRM内部での微視的な破壊の数、又は1つの微
視的な破壊の面積が小さくなつたためと考えられ
る。第6図中のアコーステイツク エミツシヨン
リングダウン数は、AE信号を検出するにあたつ
て、外部雑音を除去するために設けたしきい値を
越えた波の数であり、FRM試料内部の微視的破
壊1事象あたりのエネルギーの大きさに対応す
る。リングダウン数の多いものほど破壊の大きさ
が大きい。
Figure 5 shows the structure of FRM sample D taken from the ingot. Many fine Al 3 Ni whisker-like crystallized substances 2 were observed in the fiber gaps. Moreover, an Al solid solution was present around them. The ratio of the Al 3 Ni whisker-like crystallized product to the Al solid solution was 11.9% by weight of the crystallized product and the remainder was the Al solid solution. or,
AE was measured at the same time as the three-point bending test, and as is clear from Figure 6, in the case of Al-5%NiFRM sample D, Al-3%SiFRM sample
Compared to SiFRM sample F, the bending strength was greater, and the number of AE ringdowns was smaller. this is,
This is thought to be because the number of microscopic fractures inside the FRM or the area of one microscopic fracture became smaller. The acoustic emission ring-down number in Figure 6 is the number of waves that exceed the threshold set to remove external noise when detecting the AE signal, and is the number of waves that exceed the threshold set to remove external noise when detecting the AE signal. It corresponds to the amount of energy per microscopic fracture event. The larger the number of rings down, the greater the destruction.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明の繊維強化金属は炭化ケイ
素、アルミナ又は炭素の各連続繊維の一種又は二
種以上と所定量のニツケル、又はニツケルとマン
ガンとを添加したアルミニウム合金母材とよりな
るものであるため凝固時に連続繊維の間の合金母
材中に針状晶析物が生成し、母材として純アルミ
ニウムを使用した場合と同程度の強度を得ること
ができ、且つ応力が加わつた場合の微視的な破壊
が純アルミニウム母材を使用した場合に比べて著
しく減少し、総合的な特性の優れたものとなつ
た。
As mentioned above, the fiber-reinforced metal of the present invention is made of an aluminum alloy base material to which one or more continuous fibers of silicon carbide, alumina, or carbon and a predetermined amount of nickel or nickel and manganese are added. Therefore, during solidification, needle-shaped crystallized substances are formed in the alloy matrix between the continuous fibers, and it is possible to obtain the same strength as when pure aluminum is used as the matrix, and also to reduce the resistance when stress is applied. Microscopic fractures were significantly reduced compared to when pure aluminum base material was used, resulting in superior overall properties.

又、本発明の繊維強化金属の製造方法は連続繊
維と母材金属を高圧凝固鋳造法を用いて製造する
にあたり、該連続繊維の長さ方向と直交する方向
から低温状態のパンチにて加圧し、繊維の長さ方
向に対して直角方向に温度勾配を生ずる鋳造方案
を使用する。したがつて、該合金母材中に該合金
の針状相を該連続繊維の長さ方向と直交する方向
に晶出させるものであるため、簡便迅速に総合特
性の優れた繊維強化金属を得ることができる。
In addition, in the method for manufacturing fiber reinforced metal of the present invention, when manufacturing continuous fibers and base metal using a high-pressure solidification casting method, the continuous fibers are pressurized with a punch in a cold state from a direction perpendicular to the length direction of the continuous fibers. , using a casting strategy that creates a temperature gradient perpendicular to the length of the fiber. Therefore, since the acicular phase of the alloy is crystallized in the alloy matrix in a direction perpendicular to the length direction of the continuous fibers, a fiber-reinforced metal with excellent overall properties can be easily and quickly obtained. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の繊維強化金属の一実施例の金
属組織の顕微鏡写真、第2図は各種繊維強化金属
のたわみとアコーステイツクエミツシヨンイベン
ト数との関係を表わすグラフ、第3図は本発明の
繊維強化金属のニツケル添加量と曲げ強度との関
係を表わすグラフ、第4図は本発明の繊維強化金
属のニツケル及びマンガン添加量と曲げ強度との
関係を表わすグラフ、第5図は本発明の繊維強化
金属の別の実施例の金属組織の顕微鏡写真、第6
図は各種繊維強化金属のたわみとアコーステイツ
クエミツシヨンリングダウン数との関係を表わす
グラフである。 図中、1……炭化ケイ素繊維、2……Al3Niウ
イスカー状晶出物、3……炭素繊維。
Figure 1 is a microscopic photograph of the metal structure of one embodiment of the fiber-reinforced metal of the present invention, Figure 2 is a graph showing the relationship between the deflection of various fiber-reinforced metals and the number of acoustic emission events, and Figure 3 is FIG. 4 is a graph showing the relationship between the amount of nickel added and the bending strength of the fiber-reinforced metal of the present invention. FIG. 4 is a graph showing the relationship between the amount of nickel and manganese added and the bending strength of the fiber-reinforced metal of the present invention. Micrograph of the metal structure of another example of the fiber-reinforced metal of the present invention, No. 6
The figure is a graph showing the relationship between the deflection of various fiber-reinforced metals and the number of acoustic emission ring-downs. In the figure, 1... silicon carbide fiber, 2... Al 3 Ni whisker-like crystallized material, 3... carbon fiber.

Claims (1)

【特許請求の範囲】 1 炭化ケイ素、アルミナ又は炭素の各連続繊維
の一種又は二種以上と、アルミニウム合金母材と
よりなり、 該アルミニウム合金母材は、Al3Niウイスカー
ト状晶出物1.2〜14.3重量%と、残部アルミニウ
ム固溶体とからなることを特徴とする繊維強化金
属。 2 アルミニウム合金母材が、ニツケル0.5〜6
重量%と、マンガン0.1〜2重量%と、残部アル
ミニウムとからなるものであることを特徴とする
特許請求の範囲第1項記載の繊維強化金属。 3 連続繊維と合金母材とを複合化させるにあた
り、高圧凝固鋳造法を用いたことを特徴とする特
許請求の範囲第1項又は第2項記載の繊維強化金
属。 4 炭化ケイ素、アルミナ又は炭素の各連続繊維
の一種又は二種以上とアルミニウム合金母材とを
高圧凝固鋳造法を用いて複合化させるにあたり、
凝固させる際に該連続繊維の長さ方向と直交する
方向から冷却して該合金母材中に1.2〜14.3重量
%のAl3Niウイスカー状晶出物を該連続繊維の長
さ方向と直交する方向に晶出させることを特徴と
する繊維強化金属の製造方法。 5 アルミニウム合金母材が、ニツケル0.5〜6
重量%と、残部アルミニウムとからなるもの、あ
るいはニツケル0.5〜6重量%と、マンガン0.1〜
2重量%と、、残部アルミニウムとからなるもの
であることを特徴とする特許請求の範囲第4項記
載の繊維強化金属の製造方法。
[Claims] 1. Consisting of one or more types of continuous fibers of silicon carbide, alumina, or carbon and an aluminum alloy base material, the aluminum alloy base material contains Al 3 Ni whiskert-like crystallized substances 1.2 A fiber-reinforced metal comprising ~14.3% by weight and the balance being an aluminum solid solution. 2 The aluminum alloy base material is Nickel 0.5~6
% by weight, 0.1 to 2% by weight of manganese, and the balance aluminum. 3. The fiber-reinforced metal according to claim 1 or 2, characterized in that a high-pressure solidification casting method is used to composite the continuous fibers and the alloy base material. 4. When compounding one or more continuous fibers of silicon carbide, alumina, or carbon with an aluminum alloy base material using a high-pressure solidification casting method,
During solidification, the continuous fibers are cooled in a direction perpendicular to the longitudinal direction of the continuous fibers to form 1.2 to 14.3% by weight of Al 3 Ni whisker-like crystallized substances in the alloy matrix in a direction perpendicular to the longitudinal direction of the continuous fibers. A method for producing a fiber-reinforced metal characterized by crystallization in the direction. 5 Aluminum alloy base material is Nickel 0.5~6
% by weight and the balance is aluminum, or 0.5-6% by weight of nickel and 0.1-6% of manganese.
5. The method for producing a fiber reinforced metal according to claim 4, wherein the fiber reinforced metal contains 2% by weight and the balance is aluminum.
JP26206185A 1985-11-21 1985-11-21 Fiber-reinforced metal and its production Granted JPS62124245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26206185A JPS62124245A (en) 1985-11-21 1985-11-21 Fiber-reinforced metal and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26206185A JPS62124245A (en) 1985-11-21 1985-11-21 Fiber-reinforced metal and its production

Publications (2)

Publication Number Publication Date
JPS62124245A JPS62124245A (en) 1987-06-05
JPH0218374B2 true JPH0218374B2 (en) 1990-04-25

Family

ID=17370482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26206185A Granted JPS62124245A (en) 1985-11-21 1985-11-21 Fiber-reinforced metal and its production

Country Status (1)

Country Link
JP (1) JPS62124245A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487732A (en) * 1987-04-17 1989-03-31 Nippon Carbon Co Ltd Manufacture of fiber reinforced composite material
JPS6415335A (en) * 1987-07-07 1989-01-19 Isuzu Motors Ltd Fiber reinforced metallic material and its production
JPH01195248A (en) * 1987-10-06 1989-08-07 Nippon Carbon Co Ltd Manufacture of metal-based conjugated material
AU615265B2 (en) * 1988-03-09 1991-09-26 Toyota Jidosha Kabushiki Kaisha Aluminum alloy composite material with intermetallic compound finely dispersed in matrix among reinforcing elements
JPH01252741A (en) * 1988-04-01 1989-10-09 Ube Ind Ltd Fiber-reinforced composite material
US4963439A (en) * 1988-04-19 1990-10-16 Ube Industries, Ltd. Continuous fiber-reinforced Al-Co alloy matrix composite
JP2648968B2 (en) * 1989-07-15 1997-09-03 株式会社豊田中央研究所 Fiber reinforced metal
US6086688A (en) * 1997-07-28 2000-07-11 Alcan International Ltd. Cast metal-matrix composite material and its use

Also Published As

Publication number Publication date
JPS62124245A (en) 1987-06-05

Similar Documents

Publication Publication Date Title
US4818308A (en) Aluminum alloy and method for producing the same
JP7049312B2 (en) Ribbons and powders from high-strength corrosion-resistant aluminum alloys
JP2730847B2 (en) Magnesium alloy for castings with excellent high temperature creep strength
US5578144A (en) High-strength, high-ductility cast aluminum alloy and process for producing the same
JPH03104833A (en) Gamma-titanium-aluminum alloy modified with chrome and tantalum and its manufacture
JPS59107041A (en) Method of rendering strength and ductility to intermetallic compound phase
JP2635804B2 (en) Gamma-titanium-aluminum alloy modified with carbon, chromium and niobium
CA2793148A1 (en) Aluminum die casting alloy
JPS63317653A (en) Aluminum alloy composite material
JPH0225534A (en) Titanium-aluminum alloy
WO2021133227A1 (en) Heat-resistant powdered aluminium material
JPH0561333B2 (en)
US5256202A (en) Ti-A1 intermetallic compound sheet and method of producing same
JP3110512B2 (en) High strength and high toughness magnesium alloy material
JPH0218374B2 (en)
US5236032A (en) Method of manufacture of metal composite material including intermetallic compounds with no micropores
JP3110117B2 (en) High strength magnesium based alloy
JPH06235040A (en) High strength and heat resistant aluminum alloy, its integrated and solidified material and production thereof
Nie Patents of methods to prepare intermetallic matrix composites: A Review
JPH05125474A (en) Aluminum-base alloy combining high strength with high toughness
US5346562A (en) Method of production of iron aluminide materials
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
JP2005139552A (en) Aluminum alloy for casting, aluminum-alloy casting and method for manufacturing aluminum-alloy casting
JPH0474401B2 (en)
JPS6237335A (en) Aluminum alloy having high corrosion resistance and strength