JPS62124203A - Method for cold caking powder having regular shape under isotropic pressure - Google Patents

Method for cold caking powder having regular shape under isotropic pressure

Info

Publication number
JPS62124203A
JPS62124203A JP26287785A JP26287785A JPS62124203A JP S62124203 A JPS62124203 A JP S62124203A JP 26287785 A JP26287785 A JP 26287785A JP 26287785 A JP26287785 A JP 26287785A JP S62124203 A JPS62124203 A JP S62124203A
Authority
JP
Japan
Prior art keywords
pressure
powder
rubber mold
cold
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26287785A
Other languages
Japanese (ja)
Inventor
Hidetoshi Inoue
秀敏 井上
Tsukasa Shiomi
塩見 司
Katsuyuki Yoshikawa
吉川 克之
Nobuyasu Kawai
河合 伸泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26287785A priority Critical patent/JPS62124203A/en
Publication of JPS62124203A publication Critical patent/JPS62124203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prevent the production of ununiform stress in a formed body and to inhibit the cracking of the formed body by adopting a two-step pressure reducing method consisting of rapid reduction from the maximum pressure to a prescribed set pressure and slow reduction from the set pressure to atmospheric pressure. CONSTITUTION:Powder having a regular shape such as spherical or flaky powder as starting material is filled into rubber dies and cold caked under isotropic pressure. The pressure is then reduced in two steps. The pressure is rapidly reduced from the maximum pressure to >=100kg/cm<2> set pressure at >=1,000kg/ cm<2>/min reduction rate and the pressure is slowly reduced from the set pressure to atmospheric pressure at <=100kg/cm<2>/min reduction rate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は粉末冶金やファインセラミックス等の分野にお
ける原料粉末の冷間等方圧(Cold l5ostat
ic Press、以下CIPと略記する。)固化方法
、特に規則形状粉末をCIP処理により効率的に固化す
るための方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applied to cold isostatic pressure of raw material powder in fields such as powder metallurgy and fine ceramics.
ic Press, hereinafter abbreviated as CIP. ) The present invention relates to a solidification method, particularly a method for efficiently solidifying regularly shaped powder by CIP treatment.

(従来の技術) 近年、粉末冶金やファインセラミックス等の分野におい
て原料粉末をCIP処理により緻密化することが屡々採
用されている。
(Prior Art) In recent years, in fields such as powder metallurgy and fine ceramics, it has often been adopted to densify raw material powder by CIP treatment.

このCIP処理は熱間等方圧(Hot l5ostat
icPress 、通常HIPと略記する。)等に比べ
成形体の密度は低いものの焼結処理やHIP処理の前処
理技術として有効な処理である。
This CIP treatment is performed using hot isostatic pressure (Hot l5ostat).
icPress, usually abbreviated as HIP. Although the density of the molded body is lower than that of methods such as ), it is an effective treatment as a pretreatment technique for sintering treatment and HIP treatment.

第2図は上記の如きCIP処理に一般的に採用される装
置の概要を示しており、圧力容器(1)と、その上下開
口を封止する上M(2)と下蓋(3)によって処理室が
区画形成されていて、内部に被処理粉末(6)を充填し
たゴム製容器、即ち、ゴム型(5)を収容し、圧媒流通
管(4)を通じて水などの圧力媒体を圧送することによ
って固化処理が行われる。そして処理にあたっては第5
図に示すように1〜5分界圧、O〜5分保持、1〜5分
減圧のような圧カバターンが通常実施され、特に減圧時
は1段階パターンとなっている。
Figure 2 shows an outline of the equipment generally adopted for CIP processing as described above, which consists of a pressure vessel (1), an upper M (2) and a lower lid (3) that seal the upper and lower openings of the vessel. The processing chamber is divided into sections, and houses a rubber container filled with the powder to be processed (6), that is, a rubber mold (5), and pressure medium such as water is pumped through the pressure medium distribution pipe (4). The solidification process is performed by doing this. And in processing, the fifth
As shown in the figure, pressure cover turns such as 1 to 5 demarcation pressure, 0 to 5 minutes of holding, and 1 to 5 minutes of pressure reduction are normally carried out, and especially when the pressure is reduced, the pattern is one step.

(発明が解決しようとする問題点) ところで、従来、粉末冶金等の分野で最も多く用いられ
ている金属粉末形状は第4図(イ)の如き不規則形状を
なしている。例えば、水アトマイズ法やエアーアトマイ
ズ法で製造した金属粉末は表面酸化物の形成時に表面に
凹凸を生じ不規則な形状となる。従って、このような不
規則形状の粉末は製法が容易であり、又、低コストであ
るため、粉末冶金等の分野で大量に用いられている。
(Problems to be Solved by the Invention) By the way, the shape of metal powder most commonly used in the field of powder metallurgy and the like has been an irregular shape as shown in FIG. 4(a). For example, metal powder produced by a water atomization method or an air atomization method has irregularities on its surface when surface oxide is formed, resulting in an irregular shape. Therefore, such irregularly shaped powders are easy to manufacture and are inexpensive, so they are used in large quantities in fields such as powder metallurgy.

そして、このような不規則形状の粉末はこれをCIP処
理した場合にはその表面の凹凸により粉末同志が相互に
絡み合うため強度の高い圧粉体を得ることができる。
When such irregularly shaped powder is subjected to CIP treatment, the powder particles become intertwined with each other due to the unevenness of the surface, so that a green compact with high strength can be obtained.

ところが、近時、時代の趨勢と共に、一方において製品
の品質の向上が強く求められ、その目的で規則形状粉末
が屡々利用されるようになって来た。
However, in recent years, along with the trends of the times, there has been a strong demand for improving the quality of products, and regularly shaped powders have often been used for this purpose.

例えば、表面酸化を防止するため不活性アトマイズ法で
製造された金属粉末は第4図(ロ)で示される球状であ
り、また、特性向上の目的で急冷凝固した薄帯を粉砕し
た粉末は概ね第4図(ハ)で示される片状を呈している
For example, metal powder manufactured by an inert atomization method to prevent surface oxidation has a spherical shape as shown in Figure 4 (b), and powder obtained by pulverizing a thin ribbon rapidly solidified for the purpose of improving properties is generally It has a flaky shape as shown in FIG. 4(c).

そして、これらの規則形状粉末は、これをCIP処理に
より固化した場合、粉末相互間の絡まり合い(結合性)
が前記不規則形状粉末に比べて少ないため成形体に割れ
を生じ易い難があり、良好な形状を保持することは困難
である。
When these regular-shaped powders are solidified by CIP processing, the entanglement (bonding property) between the powders is reduced.
Since the number of particles is smaller than that of the irregularly shaped powder, the molded product tends to crack, and it is difficult to maintain a good shape.

即ち、第3図に示すように上記規則形状粉末をゴム型(
5)に充填してCIP処理する場合、先ず、ゴム型(5
)に充填された規則形状粉末(6)(第3図(イ)参照
)は同(El)図の如く等方圧を受けて圧縮され体積が
収縮する。この際の圧力は勿論、一般に高い程、粉末の
変形が促進され、圧粉体の緻密度は高まる。
That is, as shown in FIG. 3, the regularly shaped powder is molded into a rubber mold (
5) and perform CIP treatment, first fill the rubber mold (5) with CIP treatment.
The regularly shaped powder (6) (see FIG. 3(A)) filled in the container (El) is compressed under isostatic pressure and its volume contracts as shown in FIG. 3(A). Of course, the higher the pressure at this time, the more the deformation of the powder is promoted and the density of the green compact increases.

そして、かくして得られた成形体(6)は次に所要時間
を経て減圧に入ると、ゴム型(5)の変形抵抗は粉末の
変形抵抗より小さいため比較的低圧に至るまで成形体に
貼りついた状態となっているが、所要圧以下の圧力状態
においてゴム型(5)はゴム自身の弾性的復元力と内部
気体の膨張により元の状態に戻り始める。
When the molded body (6) thus obtained is then subjected to reduced pressure after the required time, the deformation resistance of the rubber mold (5) is smaller than that of the powder, so it sticks to the molded body until the pressure is relatively low. However, when the pressure is lower than the required pressure, the rubber mold (5) begins to return to its original state due to the elastic restoring force of the rubber itself and the expansion of the internal gas.

このとき、成形体(6表面へのゴム型(5)の付着力は
一般に局部的に異なるためゴム型(5)は不均一に成形
体(dから剥離する。このため成形体(61内部に不均
一な引張応力を生じ、その結果、第3図(ハ)に示す如
く成形体(6)に割れ(7)を発生せしめるのである。
At this time, since the adhesion force of the rubber mold (5) to the surface of the molded body (6) generally varies locally, the rubber mold (5) peels off unevenly from the molded body (d). Non-uniform tensile stress is generated, and as a result, cracks (7) occur in the molded body (6) as shown in FIG. 3(c).

かかるゴム型(5)の不均一剥離による割れ発生は成形
体の強度が高い不規則形状の粉末では余り問題にならな
いが、規則形状粉末をCIP処理する場合にはその結合
性の弱さから頻繁に起こり、重要な問題である。
The occurrence of cracks due to uneven peeling of the rubber mold (5) is not much of a problem with irregularly shaped powders where the strength of the molded product is high, but when regular shaped powders are subjected to CIP treatment, cracking occurs frequently due to the weak bonding properties. This is an important problem.

本発明は、かかる規則形状粉末の割れの発生に着目し、
特にCIP処理の圧カバターンに工夫を加えることによ
り改善を施し、規則形状粉末のCIP処理にあっても良
好な成形体固化を得ることを目的とするものである。
The present invention focuses on the occurrence of cracks in such regularly shaped powder, and
In particular, the objective is to improve the pressure cover pattern of CIP treatment and obtain good solidification of compacts even in CIP treatment of regularly shaped powder.

(問題点を解決するための手段) しかして、上記目的に適合する本発明の特徴は、前記規
則形状の粉末を原料粉末としてCIP処理により固化せ
しめる方法において、第1図に示す如く特にその減圧パ
ターンを2段階(n−11)、(ハーニ)となし、先ず
最高圧から所定の設定圧に至るまで(o −A)は急速
に減圧し、次いで前記設定圧より大気圧に至るまで(八
−二)は徐々に減圧せしめることにある。
(Means for Solving the Problems) Therefore, the feature of the present invention that satisfies the above object is that in the method of solidifying the regular-shaped powder as a raw material powder by CIP treatment, as shown in FIG. The pattern has two stages (n-11) and (Harney), first, the pressure is rapidly reduced from the highest pressure to a predetermined set pressure (o-A), and then the pressure is reduced rapidly from the set pressure to atmospheric pressure (8). -2) is to gradually reduce the pressure.

しかして、上記設定圧は通常100 kglct1以上
、好ましくは100〜300kg/ciにおいて適当な
圧力に設定され、最高圧力からこの設定圧までは毎分1
000 kg/i以上の減圧速度で急速に減速し、該設
定圧より大気圧までは毎分100kg/cat以下の減
圧速度で徐々に減圧する。
Therefore, the above-mentioned set pressure is usually set to an appropriate pressure of 100 kglct1 or more, preferably 100 to 300 kg/ci, and from the maximum pressure to this set pressure, the rate is 1/min.
The pressure is rapidly decelerated at a pressure reduction rate of 000 kg/i or more, and the pressure is gradually reduced from the set pressure to atmospheric pressure at a pressure reduction rate of 100 kg/cat or less per minute.

ここで、特に2段階減圧を行う目的は以下の理由による
Here, the purpose of carrying out the two-step depressurization is for the following reasons.

即ち、減圧速度は速い程、CIP処理のサイクル数は増
大し、生産性が高まる。そのため、当初の減圧は急速に
減圧することが望ましい。しがし、ゴム型が成形体から
剥離を介しする比較的低い圧力範囲においては減圧速度
が遅い程、ゴム型の復元速度を遅らせることが出来るた
め、剥離が均一に起こり、成形体内部ち不均一な応力が
発生することを防止できる。
That is, the faster the depressurization speed is, the higher the number of CIP treatment cycles and the higher the productivity. Therefore, it is desirable that the initial pressure be reduced rapidly. However, in the relatively low pressure range where the rubber mold peels off from the molded object, the slower the decompression rate, the slower the recovery speed of the rubber mold. It is possible to prevent uniform stress from being generated.

従って、低い圧力範囲は当初の高い圧力範囲とは別に減
圧は遅い程、望ましく、このため減圧パターンは2段と
することが好適であるからである。
Therefore, it is preferable that the pressure reduction be slower in the lower pressure range than in the initial high pressure range, and for this reason, it is preferable that the pressure reduction pattern be two-stage.

なお、本発明は一応、上記説明において2段階減圧を述
べているが、これは3段階以上に分けることはその制御
を煩雑ならしめるからであり、別設、これを否定するも
のではない。
Although the present invention describes two-stage depressurization in the above description, this is because dividing the pressure into three or more stages would complicate the control, and this does not negate separate provision.

又、上記2段減圧パターンにおいて1段目及び2段目の
切替設定圧を100kg/cd以上としたのは以下のよ
うな理由に基づく。
Furthermore, in the above two-stage pressure reduction pattern, the switching setting pressures of the first stage and second stage are set to 100 kg/cd or more based on the following reasons.

即ち、前記説明の主旨より本発明における設定圧はゴム
型が成形体から剥離し始める圧力の直上が望ましい。
That is, from the gist of the above description, it is desirable that the set pressure in the present invention be just above the pressure at which the rubber mold starts to peel off from the molded article.

この剥離開始の圧力は一般に前記ゴム型と成形体の付着
力、ゴム型の弾性的復元力、更に同ゴム型内に存在する
ガス(大気)の膨張力によって決まる。特にゴム型と成
形体の付着力がゴム型の復元力に比べ大きい場合、比較
的低圧状態になるまで第3図(0)に示す状態が保持さ
れる。
The pressure at which this peeling begins is generally determined by the adhesion force between the rubber mold and the molded body, the elastic restoring force of the rubber mold, and the expansion force of the gas (atmosphere) existing within the rubber mold. In particular, when the adhesive force between the rubber mold and the molded body is greater than the restoring force of the rubber mold, the state shown in FIG. 3(0) is maintained until the pressure reaches a relatively low state.

しかし、一般に用いられるCIP処理用ゴム型の場合、
100 kg / cal以下の圧力では内圧の膨張及
び弾性力によりゴム型の復元力が成形体とゴム型の付着
力に勝るため、これ以下の圧力で急速な減速を行うと第
3図(ハ)の状態になり、割れ(7)を発生する。
However, in the case of commonly used rubber molds for CIP processing,
At pressures below 100 kg/cal, the restoring force of the rubber mold overcomes the adhesion force between the molded body and the rubber mold due to the expansion of internal pressure and elastic force, so if rapid deceleration is performed at pressures below this, Figure 3 (c) This results in cracking (7).

従って、設定値の下限は100k[/cdに抑えるのが
効果的である。
Therefore, it is effective to suppress the lower limit of the set value to 100 k[/cd.

又、設定値の上限は一般に用いられるCIP処理用ゴム
型の中で最も復元力の大きいものでも、これ以上の圧力
では復元を開始しないこと、又、これ以上の圧力で2段
目の低速減圧に切り換えた場合、生産性が著しく低下す
るなどの理由から、300 kg/cd程度に止めるの
が望ましい。
Furthermore, even if the upper limit of the set value is the one with the highest restoring force among the commonly used rubber molds for CIP processing, restoring will not start at a pressure higher than this, and if the pressure is higher than this, the second stage low-speed decompression will start. It is desirable to keep the rate at about 300 kg/cd because productivity will drop significantly if the rate is changed to 300 kg/cd.

次に減圧速度であるが、1段目の減圧速度は割れ発生に
無関係であり、前述の如く生産性向上の目的から速い程
、望ましいが、現存する装置の能力に応じ、毎分100
0kg/ad以上で減圧するのが好適である。又、2段
目の減圧速度は遅い程、割れ防止に有効であるが、生産
性を考慮した場合余り低速では望ましくない。そのため
、割れ発生を防止し得る最大減圧速度を求め、100k
g/cd以下とした。
Next, regarding the decompression speed, the decompression speed in the first stage is unrelated to the occurrence of cracks, and as mentioned above, the faster the better for the purpose of improving productivity, but depending on the capacity of the existing equipment,
It is preferable to reduce the pressure to 0 kg/ad or more. Further, the slower the second stage depressurization speed, the more effective it is in preventing cracking, but when productivity is taken into consideration, a lower speed is not desirable. Therefore, we determined the maximum decompression speed that can prevent cracking, and
g/cd or less.

従って、1段目72段目の減圧速度共に臨界的とは言え
ないが、実用的な範囲である。
Therefore, although both the pressure reduction speeds of the first stage and the 72nd stage cannot be said to be critical, they are within a practical range.

以下、本発明の具体的な実施例を掲げる。Specific examples of the present invention are listed below.

(実施例) アルミ合金粉末(試料1〜15)及び純鉄粉(試料16
〜18)を夫々被処理粉末として内寸が径50w1Φ、
長さ150flのゴム型を用い、最高圧5000kg/
cdでCIP処理を行い、切替設定圧、1段ロ減圧速度
、2段目減圧速度を変化させて夫々、状態を観察した。
(Example) Aluminum alloy powder (Samples 1 to 15) and pure iron powder (Sample 16)
~18) respectively as powders to be treated, with inner dimensions of diameter 50w1Φ,
Using a rubber mold with a length of 150fl, the maximum pressure is 5000kg/
CIP treatment was performed using CD, and the state was observed while changing the switching setting pressure, first stage B pressure reduction speed, and second stage pressure reduction speed.

なお、1段目の減圧速度は作業時間短縮のため速い程好
ましいが、装置の都合上、毎分1500kl/cI+!
で一定とした。
It should be noted that the decompression speed of the first stage is preferably as fast as possible in order to shorten the working time, but due to the equipment, it is only 1500kl/cI+ per minute!
It was held constant.

又、ゴム型には復元力の大きなウレタンゴム型(肉圧8
fl)と、復元力の小さい天然ゴム型(肉圧11曹)を
用いた。
In addition, the rubber mold is a urethane rubber mold with a large restoring force (male pressure 8
fl) and a natural rubber mold with low restoring force (muscle pressure 11 degrees) were used.

上記観察結果を次表に示す。The above observation results are shown in the table below.

試料1〜3及び16に認められるように規則形状粉を1
段減圧により処理した場合、成形体に割れの発生が認め
られた。又、復元力の大きなゴム型の場合、試料4〜6
.13〜15及び17の各側に示されるように100 
kg/d以上の圧力で2段目への切り替えを行えば割れ
を生じない良好な成形体が得られることが理解される。
As seen in samples 1 to 3 and 16, 1 of the regular shaped powder was
When the molded body was treated by stage vacuum, cracking was observed in the molded body. In addition, in the case of rubber molds with large restoring force, samples 4 to 6
.. 100 as shown on each side of 13-15 and 17
It is understood that if the switch to the second stage is performed at a pressure of kg/d or more, a good molded product without cracking can be obtained.

この傾向は復元力の弱いゴム型の場合も同様であるが、
試料7〜9の例に示されるようにゴム型からの成形体の
剥離開始が低圧側になり、より低圧側で切り換えること
が可能となる。
This tendency is the same for rubber molds with weak restoring force, but
As shown in the examples of Samples 7 to 9, the peeling of the molded body from the rubber mold starts on the low pressure side, making it possible to switch to a lower pressure side.

何れの場合も2段目への切り替えは100kg/ctA
以上の圧力で行えば成形体の割れが防止できることが分
かる。
In either case, switching to the second stage is 100kg/ctA.
It can be seen that cracking of the molded product can be prevented by applying the above pressure.

一方、2段目の減圧速度は試料4,5,7,10.11
.12及び16〜18の各例比較により毎分100に+
r/an!以下で減圧すれば何れの場合も割れの発生を
誘起することなく成形できることが分かる。
On the other hand, the decompression speed of the second stage was for samples 4, 5, 7, 10.11
.. 100+ per minute by comparing each example of 12 and 16-18
r/an! It can be seen that if the pressure is reduced below, molding can be performed without inducing cracking in any case.

以上の結果より、本発明の方法及び条件を適用すれば、
規則形状を持つ粉末でもCIP処理し、割れのない良好
な成形体が得られることが判明した。
From the above results, if the method and conditions of the present invention are applied,
It has been found that even powders with regular shapes can be subjected to CIP treatment and good molded bodies without cracks can be obtained.

(発明の効果) 以上の如く本発明方法によれば2段階減圧を採用し、最
高圧より所定の設定圧までは急速に、そして設定圧より
大気圧までは徐々に減圧せしめるようにしたため、ゴム
型が成形体しら剥離を開始する比較的低い圧力範囲にお
いてゴム型の復元速度を遅らせることができ、従って、
剥離が均一となり、成形体内部に不均一な応力が発生す
るのを防止してこれに起因する成形体の割れを阻止し、
成形体の強度が低い規則形状の粉末のCIP処理におい
ても良好な品質の成形体を得ることができ、。
(Effects of the Invention) As described above, according to the method of the present invention, a two-stage pressure reduction is adopted, and the pressure is rapidly reduced from the maximum pressure to a predetermined set pressure, and gradually from the set pressure to atmospheric pressure, so that the rubber The recovery speed of the rubber mold can be slowed down in the relatively low pressure range where the mold starts to peel off the molded body, and therefore,
Peeling becomes uniform, preventing uneven stress from occurring inside the molded body, and preventing cracking of the molded body caused by this,
Good quality molded bodies can be obtained even in CIP treatment of regularly shaped powders with low strength.

品質向上を求める現下の要望に応じCIP処理による粉
末の固化効率化に顕著な効果を奏する。
In response to the current demand for quality improvement, CIP treatment has a remarkable effect on increasing the solidification efficiency of powder.

しかも、本発明方法は第1段目の減圧において速い減圧
速度で減圧するためCIP処理のサイクル数を阻害する
ことなく、充分、生産性を確保し、実用的方法として粉
末冶金、ファインセラミックス等の分野における今後の
実用化が期待される。
Moreover, since the method of the present invention reduces the pressure at a high pressure reduction rate in the first step, it does not hinder the number of cycles of CIP treatment and ensures sufficient productivity, making it a practical method for powder metallurgy, fine ceramics, etc. Future practical application in this field is expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法における圧カバターンを示す図表、
第2図はCIP処理に用いる装置の概要を示す断面図、
第3図(() (U) (A)はcrp処理時における
被処理粉末の処理状態説明図、第4図(イ)(o) (
+t)は粉末の形状を示す説明図で、(イ)は不規則形
状粉末、 (U)(11)は球状2片状の何れも規則形
状粉末を示す。第5図は従来のctp処理時の圧カバタ
ーンを示す図表である。 萼1図 Vz図 芋3回 (イ)          (ロ) 竿4旧 (イ)           (ロ) 1、を旧 (ハ) (ハ) よ
FIG. 1 is a diagram showing pressure cover turns in the method of the present invention;
FIG. 2 is a sectional view showing an outline of the equipment used for CIP processing,
Figure 3 (() (U) (A) is an explanatory diagram of the processing state of the powder to be treated during CRP treatment, Figure 4 (A) (O) (
+t) is an explanatory diagram showing the shape of the powder, where (a) shows an irregularly shaped powder, and (U) and (11) both show a regularly shaped powder with two spherical pieces. FIG. 5 is a chart showing pressure cover turns during conventional CTP processing. Calyx 1 diagram Vz diagram 3 times (a) (b) Rod 4 old (a) (b) 1, old (c) (c)

Claims (1)

【特許請求の範囲】[Claims] 1、球状、片状など規則形状を有する原料粉末をゴム型
内に充填し、冷間等方圧処理により固化する方法におい
て、減圧工程を2段階となし、最高圧力から100kg
/cm^2以上で設定された設定圧までは毎分1000
kg/cm^2以上の減圧速度で急速に減圧し、設定圧
から大気圧までは毎分100kg/cm^2以下の減圧
速度で徐々に減圧することを特徴とする規則形状粉末の
冷間等方圧固化方法。
1. In a method in which raw material powder with regular shapes such as spherical or flaky shapes is filled into a rubber mold and solidified by cold isostatic pressure treatment, the pressure reduction process is performed in two stages, and 100 kg from the highest pressure is used.
1000 per minute up to the set pressure set at /cm^2 or higher
Cold processing of regularly shaped powder, etc. characterized by rapid depressurization at a decompression rate of kg/cm^2 or more, and gradual depressurization from the set pressure to atmospheric pressure at a decompression rate of 100 kg/cm^2 or less per minute. Direct pressure solidification method.
JP26287785A 1985-11-22 1985-11-22 Method for cold caking powder having regular shape under isotropic pressure Pending JPS62124203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26287785A JPS62124203A (en) 1985-11-22 1985-11-22 Method for cold caking powder having regular shape under isotropic pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26287785A JPS62124203A (en) 1985-11-22 1985-11-22 Method for cold caking powder having regular shape under isotropic pressure

Publications (1)

Publication Number Publication Date
JPS62124203A true JPS62124203A (en) 1987-06-05

Family

ID=17381871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26287785A Pending JPS62124203A (en) 1985-11-22 1985-11-22 Method for cold caking powder having regular shape under isotropic pressure

Country Status (1)

Country Link
JP (1) JPS62124203A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248870A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Engine valve gear
JP2008248871A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Engine valve gear
JP2008248872A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Engine valve gear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248870A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Engine valve gear
JP2008248871A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Engine valve gear
JP2008248872A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Engine valve gear

Similar Documents

Publication Publication Date Title
US4612162A (en) Method for producing a high density metal article
JPH0127121B2 (en)
JPS6347304A (en) Powder metallurgical method for producing compact having high strength and low relative density from heat resistant aluminum alloy
JP2010189769A (en) Method of preparing iron-based component by compaction with elevated pressure
US3383208A (en) Compacting method and means
US3729971A (en) Method of hot compacting titanium powder
JPS62124203A (en) Method for cold caking powder having regular shape under isotropic pressure
JPH02185904A (en) Hot pressing of powder and granule
US4575450A (en) Process for obtaining extruded semifinished products from high resistance aluminum alloy powder
CN113652657B (en) Aluminum scandium alloy target material and manufacturing method adopting atmospheric high-temperature diffusion sintering molding
US3724050A (en) Method of making beryllium shapes from powder metal
JPH04506336A (en) Method for manufacturing oxide ceramic molded body by thermal injection
JPH0257121B2 (en)
JPS59205404A (en) Powder solidifying method
SU1639889A1 (en) Method of making plane porous powder articles
JPH03290906A (en) Warm-worked magnet and its manufacture
JPH05105908A (en) Method for shot-blasting powder sintered article
JP3318915B2 (en) Manufacturing method of molded body
JPH046202A (en) Manufacture of al series powder compacted body
JPH0826364B2 (en) Extrusion molding method of rapidly solidified metal powder
SU1532201A1 (en) Method of producing articles from aluminium powders
JPH08218103A (en) Production of metallic porous body
JPS6386803A (en) Production of tungsten green compact and sintered body
JPH08218102A (en) Production of metallic porous body
Bass Method of making beryllium shapes from powder metal