JPH08218102A - Production of metallic porous body - Google Patents

Production of metallic porous body

Info

Publication number
JPH08218102A
JPH08218102A JP24895395A JP24895395A JPH08218102A JP H08218102 A JPH08218102 A JP H08218102A JP 24895395 A JP24895395 A JP 24895395A JP 24895395 A JP24895395 A JP 24895395A JP H08218102 A JPH08218102 A JP H08218102A
Authority
JP
Japan
Prior art keywords
sintered body
porous
metal
capsule
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24895395A
Other languages
Japanese (ja)
Inventor
Takashi Nishi
隆 西
Akira Kosaka
晃 小阪
Atsushi Funakoshi
淳 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP24895395A priority Critical patent/JPH08218102A/en
Publication of JPH08218102A publication Critical patent/JPH08218102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method for producing a metallic porous body excellent in porous characteristics and mechanical properties. CONSTITUTION: Metal powder is sealed in a capsule and is subjected to temporary sintering of executing low pressure-low temp. heating in a hydrostatic medium to form a porous temporarily sintered body. After the removal of the capsule or without removing the capsule, this temporarily sintered body is subjected to heating treatment to strengthen the boning of the grains without damaging the distribution of the pares. Preferably, the temporary sintering treatment is executed at 0.35 to 0.85mpK [mpK denotes the m.p. (absolute temp.) of the metal powder] under 5 to 150MPa, and the heating treatment for the temporarily sintered body is executed at 0.6 to 0.95mpK.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金型,フィルタ,
断熱材,防音材,制振材,触媒担体,隔膜材等として有
用な金属多孔体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a mold, a filter,
The present invention relates to a method for producing a metal porous body which is useful as a heat insulating material, a soundproofing material, a vibration damping material, a catalyst carrier, a diaphragm material and the like.

【0002】[0002]

【従来の技術】金属多孔体は、例えば樹脂の熱成形(射
出成形,ブロー成形等)や金属鋳造(低圧鋳造,ダイキ
ャスト鋳造等)等に使用される金型の構成材料として有
用である。金型の全体ないしその一部に金属多孔体を適
用し、または付属部品として金型内に組み付けて金型の
ガス抜き性や断熱・保温性等を改善することにより、成
形・鋳造操業の効率化、複雑形状を有する製品の成形・
鋳造品質の向上等が可能となる。上記金型をはじめ、フ
ィルタ、断熱材、その他の各種部材に対する金属多孔体
の工学的応用に当たっては、用途・使用態様等に応じて
要求される気孔率・気孔径を備え、かつ機械的性質を満
たすものであることが必要である。このため、金属多孔
体の製造法の工夫として、例えば、所定のサイズに調整
したステンレス鋼等の金属繊維と金属粉末の混合物を原
料とし、これを加圧成形した後、その粉末成形体を真空
もしくは還元性雰囲気中で焼結する方法、粉末成形体の
焼結処理の後、得られた焼結体を窒化処理等に付して強
度や硬さを高める方法、あるいは原料粉末を、低圧力で
の加圧成形とそれより高い圧力での加圧成形との2段加
圧成形に付して粉末成形体を成形した後、所定の雰囲気
中で焼結する方法等、種々の提案がなされている(特開
平3-239509号公報,特開平4-72004 号公報,特開平4-30
8048号公報, 特開平6-33112 号公報等) 。
2. Description of the Related Art A metal porous body is useful as a constituent material of a mold used for, for example, thermoforming of resin (injection molding, blow molding, etc.) and metal casting (low pressure casting, die casting, etc.). The efficiency of molding and casting operations is improved by applying porous metal to the entire mold or a part of it, or by assembling it in the mold as an accessory to improve the degassing, heat insulation and heat retention of the mold. And molding of products with complex shapes
It is possible to improve casting quality. In the engineering application of the metal porous body to the mold, the filter, the heat insulating material, and other various members, the porosity and the pore diameter required according to the application, the mode of use, etc. are provided, and the mechanical properties are It is necessary to satisfy. Therefore, as a method of manufacturing a porous metal body, for example, a mixture of metal fibers such as stainless steel adjusted to a predetermined size and a metal powder is used as a raw material, which is pressure-molded, and then the powder molded body is vacuumed. Alternatively, a method of sintering in a reducing atmosphere, a method of increasing the strength or hardness by subjecting the obtained sintered body to a nitriding treatment after the sintering treatment of the powder compact, or the raw material powder at a low pressure Various proposals have been made, such as a method of subjecting a powder compact to a two-stage pressure compaction of a pressure compaction at a higher temperature and a pressure compaction at a higher pressure, and then sintering the powder compact in a predetermined atmosphere. (Japanese Patent Laid-Open Nos. 3-239509, 4-72004, 4-30
8048, JP-A-6-33112, etc.).

【0003】[0003]

【発明が解決しようとする課題】原料粉末を加圧成形し
た粉末成形体を、真空もしくは所定組成の雰囲気中で焼
結処理(常圧焼結)する従来の製造法では、金属多孔体
の気孔率や気孔径の制御が困難であり、気孔率・気孔径
の不均一を生じ易い。製品サイズの大型化,形状の複雑
化に伴ってその不具合は増大する。また難成形性・難焼
結性の金属材種では、機械強度の確保も困難である。焼
結体の機械強度は、焼結処理に高温度を適用し、焼結反
応を促進することにより高めることができるが、その反
面において、粒子同士の融着による焼結体の緻密化(気
孔率や気孔径の減少)のために、多孔質体としの機能の
低下を免れない。本発明は、金属多孔質体の製造に関す
る上記問題を解決することを目的としてなされたもので
ある。
In the conventional manufacturing method in which a powder compact obtained by pressure-molding a raw material powder is sintered (atmospheric pressure sintering) in a vacuum or in an atmosphere of a predetermined composition, the pores of a metal porous body are used. It is difficult to control the porosity and pore diameter, and the porosity and pore diameter are likely to be non-uniform. The defects will increase as the product size increases and the shape becomes more complex. In addition, it is difficult to secure mechanical strength with a metal material that is difficult to form and sinter. The mechanical strength of the sintered body can be increased by applying a high temperature to the sintering process to promote the sintering reaction. On the other hand, on the other hand, the sintered body is densified (porosity). Rate and pore diameter decrease), the function as a porous body is unavoidably deteriorated. The present invention has been made for the purpose of solving the above-mentioned problems relating to the production of a metal porous body.

【0004】[0004]

【課題を解決するための手段】本発明の金属多孔体の製
造方法は、金属粉末をカプセルに封入し、静水圧媒体
中、低圧力・低温加熱の仮焼結処理を行って多孔質の仮
焼結体を形成した後、カプセルを除去しもしくは除去す
ことなく、その仮焼結体を加熱処理することを特徴とし
ている。
The method for producing a porous metal body according to the present invention comprises encapsulating a metal powder in a capsule and performing a temporary sintering treatment of low pressure and low temperature heating in a hydrostatic medium to obtain a porous temporary body. It is characterized in that after forming the sintered body, the pre-sintered body is heat-treated without removing the capsule or without removing the capsule.

【0005】[0005]

【発明の実施の形態】金属粉末をカプセルに封入して行
う低圧力・低温加熱の熱間等方加圧処理により、多孔質
の仮焼結体が形成される。この仮焼結体は、静水圧媒体
の均一な圧力作用の効果として、形状,サイズの如何に
拘らず、均質な多孔性を有する。この仮焼結体は、その
ままでは粒子間の結合力に乏しいが、熱処理が施される
ことにより、仮焼結体の気孔分布を維持しながら、粒子
同士の結合が促進され、高多孔性と良好な機械性質を具
備する金属多孔体に仕上げられる。金属粉末の熱間等方
加圧処理(HIP処理)は、焼結合金製品を製造するた
めの工業的手法として知られているが、それは、真密度
に近い高緻密性を有する焼結製品を目的として行われ、
そのHIP処理には、高温加熱・高圧力が適用される。
本発明は、このHIP処理を多孔体の形成手段として利
用し、HIP処理の本来の適用形態と異なる低圧力・低
温加熱の処理条件のもとに、均質性の高い多孔性を有す
る仮焼結体を形成せしめ、そのHIP処理につづく熱処
理との組み合わせの効果として、広汎な用途における各
種の構造部材・機能部材として望まれる改良された多孔
特性と機械性質を兼備させることを可能にしている。
BEST MODE FOR CARRYING OUT THE INVENTION A porous pre-sintered body is formed by a hot isostatic pressing process of low pressure and low temperature heating performed by encapsulating metal powder in a capsule. As a result of the uniform pressure action of the hydrostatic medium, this pre-sintered body has a uniform porosity regardless of shape or size. This temporary sintered body is poor in bonding force between particles as it is, but by being subjected to heat treatment, bonding between particles is promoted while maintaining the pore distribution of the temporary sintered body, resulting in high porosity. It is finished into a porous metal body having good mechanical properties. Hot isotropic pressure treatment (HIP treatment) of metal powder is known as an industrial method for producing a sintered alloy product, which is used for producing a sintered product having a high density close to the true density. Done for the purpose,
High temperature heating and high pressure are applied to the HIP process.
The present invention utilizes this HIP treatment as a means for forming a porous body, and under the treatment conditions of low pressure and low temperature heating different from the original application form of the HIP treatment, temporary sintering having high porosity. As a result of the formation of the body and the combination of the HIP treatment and the subsequent heat treatment, it is possible to combine the improved porous characteristics and mechanical properties desired for various structural members and functional members in a wide range of applications.

【0006】金属粉末をHIP処理(仮焼結処理)に付
すためのカプセルへの封入操作は、通常のそれと同じよ
うに、適当な材種のカプセル(例えば、軟鋼製)に充填
し、脱気密封(例えば、1×10-1〜1×10-3Torr)する
ことにより行われる。仮焼結体を形成するための金属粉
末のHIP処理において、加熱温度は、0.35mp〜
0.85mpK(mpKは、金属粉末の絶対温度表示の融
点)の範囲〔例えば,融点1700Kの場合は、0.35×1700
K〜0.85×1700K(=595 〜1445K)の範囲〕、加圧力
は、5〜150MPaの範囲に制御するのが好ましい。
加熱温度が0.35mpKより低く,加圧力が5MPaに
満たない処理条件では、仮焼結体の形成に長時間を要
し、また金属粉末の材種により長時間の処理を施して
も、ハンドリングに耐え得る仮焼結体の形成が困難であ
るからである。他方、加熱温度が0.85mpKより高
く、加圧力が150MPaを超える処理条件では、金属
粉末の粒子同士の融着が不必要に進行し、多孔性に富む
仮焼結体を得ることが困難となるからである。このよう
に制御された低温・低圧力の条件下に、適当時間(約
0.5〜8Hr)保持することにより、金属粉末は適度
に軟化して粒度同士の結合を生じ、多孔性に富む仮焼結
体が形成される。
The encapsulation operation for encapsulating the metal powder in the HIP treatment (temporary sintering treatment) is carried out in the same manner as in the ordinary case by filling a capsule of an appropriate material type (for example, mild steel) and degassing. It is performed by sealing (for example, 1 × 10 -1 to 1 × 10 -3 Torr). In the HIP treatment of the metal powder for forming the temporary sintered body, the heating temperature is 0.35 mp
Range of 0.85mpK (mpK is melting point of metal powder in absolute temperature) [eg, 0.35 × 1700 for melting point 1700K]
K to 0.85 × 1700K (= 595 to 1445K)], and the applied pressure is preferably controlled to a range of 5 to 150 MPa.
Under the processing conditions where the heating temperature is lower than 0.35 mpK and the applied pressure is less than 5 MPa, it takes a long time to form the pre-sintered body, and even if the processing is carried out for a long time depending on the type of metal powder, handling is possible. This is because it is difficult to form a temporary sintered body that can withstand the above conditions. On the other hand, under the processing conditions where the heating temperature is higher than 0.85 mpK and the applied pressure exceeds 150 MPa, the fusion of the particles of the metal powder progresses unnecessarily, making it difficult to obtain a temporary sintered body with high porosity. Because it will be. By holding for a suitable time (about 0.5 to 8 hours) under the conditions of low temperature and low pressure controlled as described above, the metal powder is appropriately softened to form a bond between the particle sizes, and the metal powder has a high porosity. A sintered body is formed.

【0007】上記HIP処理の後、その仮焼結体の強度
向上を目的として行う仮焼結体の熱処理(強化熱処理)
は、好ましくは、0.6mp〜0.95mpK〔mpKは上記
と同義〕の温度範囲に制御される。処理温度が、0.6
mpKより低いと、粒子同士の接触界面の拡散結合反応を
効率よく行わせることが困難であり、他方0.95mpK
を超える高温度を適用すると、粒子同士の凝集反応が助
長され、仮焼結体の気孔分布が損なわれるからである。
処理時間は、約5〜15Hr程度である。この熱処理
は、仮焼結体をカプセルから取り出して行われ、または
カプセルに被包されたままの状態で行われる。仮焼結体
は粒子間結合力が低いので、原料粉末が難焼結性の材種
であるような場合の仮焼結体は脆弱であり、仮焼結体を
カプセルから取り出すためのカプセルの機械加工や、取
り出された仮焼結体のハンドリング過程で、仮焼結体に
欠損・崩壊等を生じ易い。このような場合には、カプセ
ルに被包したまま熱処理を行って粒子間結合を強化させ
た後、カプセルから取り出すようにすれば、上記のよう
なトラブルを防止することができる。また、原料粉末が
活性な材種である場合も、仮焼結体の熱処理を、カプセ
ルに被包された状態で行うこととすれば、真空炉や雰囲
気炉を必要とせず、大気雰囲気でその処理を達成するこ
とができる。
After the above HIP treatment, heat treatment (strengthening heat treatment) of the pre-sintered body is carried out for the purpose of improving the strength of the pre-sintered body.
Is preferably controlled to a temperature range of 0.6 mp to 0.95 mpK [mpK has the same meaning as above]. Processing temperature is 0.6
If it is lower than mpK, it is difficult to efficiently carry out the diffusion bonding reaction at the contact interface between particles, while 0.95 mpK
This is because if a high temperature exceeding 1.0 is applied, the agglomeration reaction between particles is promoted and the pore distribution of the pre-sintered body is impaired.
The processing time is about 5 to 15 hours. This heat treatment is performed after taking out the pre-sintered body from the capsule or in a state of being encapsulated in the capsule. Since the inter-particle bonding force of the temporary sintered body is low, the temporary sintered body is fragile when the raw material powder is a material that is difficult to sinter, and the capsule for removing the temporary sintered body from the capsule is weak. During the machining process or the handling process of the removed pre-sintered body, the pre-sintered body is likely to be damaged or collapsed. In such a case, the above-mentioned trouble can be prevented by carrying out heat treatment while encapsulating the capsule to strengthen the interparticle bond and then taking out the capsule. Further, even when the raw material powder is an active material, if the heat treatment of the pre-sintered body is performed in a state of being encapsulated, it is not necessary to use a vacuum furnace or an atmosphere furnace, Processing can be achieved.

【0008】金属粉末の材種の選択は任意であり、ステ
ンレス鋼(例えばSUS304,SUS630)、工具
鋼(例えばSKD61,SKD11)、マルエージング
鋼(例えば18Ni系,20Ni系)、高速度鋼(例え
ばSKH51,SKH55)、非鉄金属(例えば、アル
ミニウムまたはその合金,チタンまたはその合金,銅ま
たはその合金)等が、目的とする金属多孔体の用途や要
求される材料特性等に応じて選択使用される。
The selection of the type of metal powder is arbitrary, and stainless steel (for example, SUS304, SUS630), tool steel (for example, SKD61, SKD11), maraging steel (for example, 18Ni system, 20Ni system), high speed steel (for example, SKH51, SKH55), non-ferrous metal (for example, aluminum or its alloy, titanium or its alloy, copper or its alloy), etc. are selected and used according to the intended use of the porous metal body and the required material properties. .

【0009】金属粉末は、その粒度構成として、重量基
準の粒径積算分布曲線(図1参照)における累積頻度5
%の粒径R5 ,同50%の粒径R50,および同95%の
粒径R95が、次式: (R95−R5 )/R50 ≦ 2.5 … 〔1〕 を満たす粒径分布を有するものが好ましく使用される。
粒径R50(平均粒径)に対する、粒径R95と粒径R5
幅(R95−R5 )の比「(R95−R5 )/R50」の値が
大きな粒径分布を有する粉末では、粉末充填層内の粒子
間に粗大な空隙を生じ易く、また粒子間の空隙に微細粒
子が侵入することによる空隙の閉塞を生じ易い。前者
は、焼結体内における粗大な気孔の分布を増大させ、後
者は開気孔の分布を減少させ、製品多孔体の多孔質性能
を低下させることとなる。(R95−R5 )/R50の比
を、約2.5以下に調整することは、このような不具合
を抑制緩和するのに有効であり、より好ましくは、1.
5以下である。また、粉末の粒径R50は、約10〜10
00μmの範囲が適当である。製品多孔体として、気孔
径の比較的小さい開気孔が豊富に分布したもの(金型等
に適している)を望む場合は、粒径R50約10〜75μ
m程度の比較的小径の粉末の使用が有利であり、他方気
孔径の大きい開気孔が豊富に分布したもの(フィルタ等
に適している)を望む場合は、粒径R50約300〜10
00μmの粗粒粉末が有利に使用される。
The metal powder has, as its particle size constitution, a cumulative frequency of 5 on the weight-based particle size cumulative distribution curve (see FIG. 1).
% Particle size R 5 , 50% particle size R 50 , and 95% particle size R 95 satisfy the following formula: (R 95 −R 5 ) / R 50 ≦ 2.5 ... [1] Those having a particle size distribution are preferably used.
For particle size R 50 (average particle diameter), the ratio of the width of the particle size R 95 and particle size R 5 (R 95 -R 5) value large particle size distribution "(R 95 -R 5) / R 50 " In the powder having, the coarse voids are likely to be generated between the particles in the powder packed layer, and the voids are likely to be blocked due to the intrusion of the fine particles into the voids between the particles. The former increases the distribution of coarse pores in the sintered body, and the latter reduces the distribution of open pores, which lowers the porous performance of the product porous body. The ratio of (R 95 -R 5) / R 50, be adjusted to about 2.5 or less is effective in inhibiting alleviate such a problem, more preferably, 1.
It is 5 or less. The particle size R 50 of the powder is about 10 to 10
A range of 00 μm is suitable. When a product porous body having a large distribution of open pores with a relatively small pore size (suitable for a mold etc.) is desired, a particle size R 50 of about 10 to 75 μ
If it is advantageous to use a powder having a relatively small diameter of about m, on the other hand, if one wishes to have a large distribution of open pores having a large pore diameter (suitable for a filter etc.), then a particle diameter R 50 of about 300 to 10
A coarse powder of 00 μm is preferably used.

【0010】上記粒度構成を有する金属粉末を使用し、
本発明の仮焼結処理および熱処理工程を経て製造される
金属多孔体は、気孔率約7〜50%で,約500μm以
下の気孔径、および次式を満たす気孔径分布を有してい
る。 (D95−D5 )/D50 ≦ 2.5 … 〔2〕 〔式中、D95: 気孔径の積算分布曲線における累積頻度
95%の気孔径,D5 :同5%の気孔径,D50: 同50
%の気孔径(平均気孔径)〕。金属多孔体に付与される
このような気孔分布特性は、各種分野における様々な構
造部材・機能部材としての金属多孔体の有用性を高め、
例えば、ガス・微粒子の透過性,断熱性,機械強度等を
要求される金型やフィルタ類、透過性および大きな比表
面積を要求される触媒担体やセンサ類、あるいは高い振
動減衰特性を要求される制振材・防音材等への工学的応
用の可能性を高めるものである。
Using a metal powder having the above grain size constitution,
The porous metal body produced through the preliminary sintering treatment and the heat treatment process of the present invention has a porosity of about 7 to 50%, a pore diameter of about 500 μm or less, and a pore diameter distribution satisfying the following formula. (D 95 −D 5 ) / D 50 ≦ 2.5 ... [2] [wherein, D 95 : pore diameter of cumulative frequency 95% in cumulative distribution curve of pore diameter, D 5 : pore diameter of 5%, D 50 : Same as 50
% Pore size (average pore size)]. Such pore distribution characteristics imparted to the metal porous body enhances the usefulness of the metal porous body as various structural members / functional members in various fields,
For example, molds and filters that require gas / particle permeability, heat insulation, mechanical strength, etc., catalyst carriers and sensors that require permeability and a large specific surface area, or high vibration damping characteristics are required. It increases the possibility of engineering application to damping materials and soundproofing materials.

【0011】[0011]

〔原料粉末〕[Raw material powder]

A: ステンレス鋼(JIS G4303 SUS 310S相当)のアトマ
イズ粉末 (C:0.02, Si:1.0, Mn:0.1, Cr:18.3, Ni:10.8, %) B: 合金工具鋼(JIS G4404 SKD 61相当)のアトマイズ
粉末 (C:0.38, Si:0.9, Mn:0.01, Cr:5.25, Mo:1.20, V:1.0,
%)
A: Atomized powder of stainless steel (JIS G4303 SUS 310S equivalent) (C: 0.02, Si: 1.0, Mn: 0.1, Cr: 18.3, Ni: 10.8,%) B: Alloy tool steel (JIS G4404 SKD 61 equivalent) Atomized powder (C: 0.38, Si: 0.9, Mn: 0.01, Cr: 5.25, Mo: 1.20, V: 1.0,
%)

【0012】表1に製造条件、表2に得られた金属多孔
体の諸特性を示す。供試材No.1〜5は発明例、No.11
は、従来材に相当する比較例である。表中、「ガス抜き
性」欄の数値は、エアを透過させるのに必要なエア加圧
力(Kgf/cm2 ) を示し、「曲げ強度」欄は、JIS B1601
の曲げ試験法(スパン距離:30mm)による3点曲げ強度
(Kgf/mm2 ) を示している。発明例の金属多孔体は、N
o.1〜3 のように、比較例No.11 のものに比し、平均気
孔径は同等であっても、開気孔率が高く、ガス透過性に
すぐれ、かつ著しく高い機械強度備え、またNo.4, No.5
のように、比較例のものと同水準の強度レベルを維持し
ながら、開気孔の豊富な気孔分布を有している。
Table 1 shows the production conditions, and Table 2 shows various characteristics of the obtained porous metal body. Specimen Nos. 1 to 5 are invention examples, No. 11
Is a comparative example corresponding to the conventional material. In the table, the numerical value in the "Gas release" column indicates the air pressure (Kgf / cm 2 ) required to allow the air to permeate, and the "Bending strength" column indicates the JIS B1601
Shows the 3-point bending strength (Kgf / mm 2 ) by the bending test method (span distance: 30 mm). The metal porous body of the invention example is N
As shown in o.1 to 3, even though the average pore diameter is the same as that of Comparative Example No. 11, the open porosity is high, the gas permeability is excellent, and the mechanical strength is remarkably high. No.4, No.5
As described above, while maintaining the same strength level as that of the comparative example, it has a rich pore distribution of open pores.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【発明の効果】本発明による原料粉末の熱間等方加圧処
理と、仮焼結体の熱処理とを経て製造される金属多孔体
は、改良された多孔質特性と機械性質とにより、各種の
構造部材,機能部材としての有用性を備え、例えば、樹
脂成形用金型や金属鋳造用金型をはじめ、制振部材、断
熱部材、吸音部材、触媒担体、フィルタ、隔膜、その他
各種分野における金属多孔質体の工学的応用の拡大・多
様化を可能とするものである。
Industrial Applicability The metal porous body produced by the hot isostatic pressing of the raw material powder and the heat treatment of the pre-sintered body according to the present invention has various porosity and mechanical properties. It is useful as a structural member and a functional member of, for example, in resin molding dies and metal casting dies, damping members, heat insulating members, sound absorbing members, catalyst carriers, filters, diaphragms, and various other fields. It is possible to expand and diversify engineering applications of porous metal.

【図面の簡単な説明】[Brief description of drawings]

【図1】金属粉末の粒径積層分布曲線の説明図である。FIG. 1 is an explanatory diagram of a particle size distribution curve of metal powder.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末をカプセルに封入し、静水圧媒
体中、低圧力・低温加熱の仮焼結処理を行って多孔質の
仮焼結体を形成した後、カプセルを除去しもしくは除去
すことなく、その仮焼結体を加熱処理することを特徴と
する金属多孔体の製造方法。
1. Encapsulating a metal powder in a capsule, performing a low pressure / low temperature heating pre-sintering treatment in a hydrostatic medium to form a porous pre-sintered body, and then removing or removing the capsule. A method for producing a porous metal body, which comprises heat-treating the pre-sintered body without heat treatment.
【請求項2】 カプセルに封入した金属粉末の仮焼結処
理を、温度:0.35〜0.85mpK〔但し,mpKは、
金属粉末の融点(絶対温度)〕、加圧力: 5〜150M
Paで行い、仮焼結体の加熱処理を、温度: 0.6〜
0.95mpK〔mpKは上記と同義〕で行うことを特徴と
する請求項1に記載の金属多孔体の製造方法。
2. The pre-sintering treatment of the encapsulated metal powder is carried out at a temperature of 0.35 to 0.85 mpK [where mpK is
Melting point of metal powder (absolute temperature)], pressure: 5 to 150M
The heat treatment of the pre-sintered body is performed at a temperature of 0.6 to
The method for producing a metal porous body according to claim 1, wherein the method is performed at 0.95 mpK (mpK is as defined above).
【請求項3】 金属粉末は、粒子径の積算分布曲線(重
量基準)における累積頻度5%の粒径R5 ,同50%の
粒径R50,および同95%の粒径R95が、次式: (R95
−R5 )/R50 ≦ 2.5を満たし、粒径R50は、1
0〜1000μmである粒度分布を有することを特徴と
する請求項1または請求項2に記載の金属多孔体の製造
方法。
3. The metal powder has a particle size cumulative particle diameter R 5 of 5%, a particle diameter R 50 of 50%, and a particle diameter R 95 of 95% in a cumulative distribution curve (weight basis) of particle diameters, The following formula: (R 95
-R 5 ) / R 50 ≦ 2.5 is satisfied, and the particle size R 50 is 1
It has a particle size distribution which is 0-1000 micrometers, The manufacturing method of the metal porous body of Claim 1 or Claim 2 characterized by the above-mentioned.
JP24895395A 1994-12-12 1995-09-27 Production of metallic porous body Pending JPH08218102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24895395A JPH08218102A (en) 1994-12-12 1995-09-27 Production of metallic porous body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-307327 1994-12-12
JP30732794 1994-12-12
JP24895395A JPH08218102A (en) 1994-12-12 1995-09-27 Production of metallic porous body

Publications (1)

Publication Number Publication Date
JPH08218102A true JPH08218102A (en) 1996-08-27

Family

ID=26539028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24895395A Pending JPH08218102A (en) 1994-12-12 1995-09-27 Production of metallic porous body

Country Status (1)

Country Link
JP (1) JPH08218102A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060590A (en) * 2013-01-08 2013-04-24 西北工业大学 Preparation method of gradient porous titanium alloy
JP2015520660A (en) * 2012-04-18 2015-07-23 ディーエスエム アイピー アセッツ ビー.ブイ. Equipment useful for hydrogenation reaction (II)
WO2019225513A1 (en) * 2018-05-23 2019-11-28 住友電工焼結合金株式会社 Method for manufacturing sintered member, and sintered member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520660A (en) * 2012-04-18 2015-07-23 ディーエスエム アイピー アセッツ ビー.ブイ. Equipment useful for hydrogenation reaction (II)
CN103060590A (en) * 2013-01-08 2013-04-24 西北工业大学 Preparation method of gradient porous titanium alloy
WO2019225513A1 (en) * 2018-05-23 2019-11-28 住友電工焼結合金株式会社 Method for manufacturing sintered member, and sintered member
JPWO2019225513A1 (en) * 2018-05-23 2021-07-01 住友電工焼結合金株式会社 Manufacturing method of sintered member and sintered member
US11623275B2 (en) 2018-05-23 2023-04-11 Sumitomo Electric Sintered Alloy, Ltd. Method for producing sintered member, and sintered member

Similar Documents

Publication Publication Date Title
JP4546238B2 (en) Method for producing a highly porous metal compact close to the final contour
US5625861A (en) Porous metal body and process for producing same
JPS6164801A (en) Molding method of powder of metal, ceramics or the like
EP0741194B1 (en) Pneumatic isostatic compaction of sintered compacts
JP2001501254A (en) Die and mold with net shape, and manufacturing method therefor
JPH08218102A (en) Production of metallic porous body
JP2849710B2 (en) Powder forming method of titanium alloy
JP2003160802A (en) Powder compact, manufacturing method therefor, and method for manufacturing porous sintered compact
US20040146424A1 (en) Production of component parts by metal injection moulding (mim)
JPH08170107A (en) Metallic porous body
JPH093503A (en) Method for reactive sintering of intermetallic material molding
JPH0254733A (en) Manufacture of ti sintered material
JPH09287004A (en) Metal porous body and its production
JP2708245B2 (en) Hot isostatic pressing method
JPH08218103A (en) Production of metallic porous body
JPH09194906A (en) Production of porous sintered compact of metal
JP2005320581A (en) Method for manufacturing porous metal body
JPS63247321A (en) Formation of ti-al intermetallic compound member
JP4353489B2 (en) Manufacturing method of iron-nickel magnetic alloy products
JP4264587B2 (en) Ultrafine-grained steel and method for producing the same
JPH0499104A (en) Capsule structure of green compact for sintering and manufacture of sintered body with this capsule
JP2000355703A (en) Method and apparatus for manufacturing metallic sintered compact
JPH08311505A (en) High damping member
JPH01279699A (en) Manufacture for diaphragm for speaker
JPH09137201A (en) Production of metallic porous body