JPS62123269A - Air-conditioning hot-water supply device - Google Patents

Air-conditioning hot-water supply device

Info

Publication number
JPS62123269A
JPS62123269A JP26005885A JP26005885A JPS62123269A JP S62123269 A JPS62123269 A JP S62123269A JP 26005885 A JP26005885 A JP 26005885A JP 26005885 A JP26005885 A JP 26005885A JP S62123269 A JPS62123269 A JP S62123269A
Authority
JP
Japan
Prior art keywords
heat exchanger
water supply
hot water
compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26005885A
Other languages
Japanese (ja)
Other versions
JPH0438989B2 (en
Inventor
雄二 吉田
茂夫 鈴木
和生 中谷
裕二 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26005885A priority Critical patent/JPS62123269A/en
Publication of JPS62123269A publication Critical patent/JPS62123269A/en
Publication of JPH0438989B2 publication Critical patent/JPH0438989B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Nozzles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧縮機を用い非共沸混合冷媒を利用した冷暖
房給湯装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an air-conditioning/heating/water supply system using a compressor and a non-azeotropic refrigerant mixture.

従来の技術 従来圧縮機を用いた冷暖房給湯装置として、実公昭59
−22437号公報に示す装置が提案されている。
Conventional technology As an air conditioning and hot water supply system using a conventional compressor,
A device shown in Japanese Patent No. 22437 has been proposed.

この装置は、1台の圧縮機であシながら、熱源側熱交換
器、負荷側熱交換器、給湯用熱交換器という3つの熱交
換器をもつものである。しかして弁、ファン、ポンプ等
の制御によシ、冷房給湯、冷房のみ、給湯のみ、暖房の
み等の運転毛−ドを実現でき、省エネルギで低コストな
装置を実現できるものである。
Although this device uses one compressor, it has three heat exchangers: a heat source side heat exchanger, a load side heat exchanger, and a hot water supply heat exchanger. Therefore, by controlling the valves, fans, pumps, etc., it is possible to realize operations such as cooling, hot water supply, cooling only, hot water supply only, heating only, etc., and it is possible to realize an energy-saving and low-cost device.

発明が解決しようとする問題点 しかしながら、かかる装置に使用される冷媒は、従来、
R22やR12と呼ばれる単一冷媒が用いられているた
め、冷媒の蒸気圧に関する性質から次の様な問題点があ
った。
Problems to be Solved by the Invention However, the refrigerants used in such devices have conventionally been
Since a single refrigerant called R22 or R12 is used, the following problems arise due to the vapor pressure properties of the refrigerant.

たとえば、R22を用いる場合には、蒸気圧が高い(低
沸点)ため給湯を利用するには低い湯温しか得られなか
ったシ、R12を用いる場合には、蒸気圧が低い(高沸
点)ため高い湯温は得られるものの、逆に冷暖房時は能
力が大きく低下するものでおった。これらに対する対策
の一つとして、2種類の冷媒を混合して使用する試みも
行われているが、給湯温度と能力が中間的なものに設定
できるものの、根本的な解決にはなってはいなかった。
For example, when R22 is used, the water temperature is too low to be used for hot water supply due to its high vapor pressure (low boiling point), and when R12 is used, the vapor pressure is low (high boiling point) Although high hot water temperatures could be obtained, on the other hand, the capacity during cooling and heating was greatly reduced. As one of the countermeasures against these problems, attempts have been made to use a mixture of two types of refrigerants, but although it is possible to set the hot water supply temperature and capacity to an intermediate value, it is not a fundamental solution. Ta.

また蒸気圧の低い冷媒を使用して高い給湯温度を確保し
、冷暖房時の能力不足に関しては回転数可変形の圧縮機
を高回転数で使用して補うことも考えられるが、この場
合にも次の様な問題点がある。
It is also possible to use a refrigerant with a low vapor pressure to ensure a high hot water supply temperature, and to compensate for the lack of cooling/heating capacity by using a variable speed compressor at a high rotation speed, but in this case as well. There are the following problems.

すなわち回転数可変形の圧縮機は、高回転数になる程、
内部の吐出損失等のメカ損失が過大となシ、能力はある
程度確保できても効率的に低い運転を許容しなければな
らないものであった。
In other words, the higher the rotation speed of a variable rotation speed compressor, the higher the rotation speed.
Mechanical losses such as internal discharge losses were excessive, and even if a certain level of capacity could be secured, low efficiency operation had to be tolerated.

本発明はかかる従来例の欠点を解消して、高い給湯温度
を実現し、冷暖房の能力も充分確保しながら高率的な装
置を提供することを目的とする。
It is an object of the present invention to eliminate the drawbacks of the conventional example, and to provide a highly efficient device that achieves high hot water supply temperature and secures sufficient cooling and heating capabilities.

問題点を解決するための手段 上記問題点を解決するために本発明は、非共沸混合冷媒
を用い、圧縮機と四方弁と熱源側熱交換器と負荷側熱交
換器を連結して冷凍ティクルを構成し、前記圧縮機の吐
出配管に一端を有し、他端を前記負荷側熱交換器と熱源
側熱交換器の間に有する第1のバイパス回路に給湯利用
時に開放する第1の電磁弁と給湯用熱交換器と分離器と
冷却器と貯留器を設け、前記圧縮機の吸入配管に一端を
有し、他端を前記第1のバイパス回路に有する第2のバ
イパス回路に給湯利用時に閉鎖する第2の電磁弁を設け
たものである。
Means for Solving the Problems In order to solve the above problems, the present invention uses a non-azeotropic mixed refrigerant and connects a compressor, a four-way valve, a heat exchanger on the heat source side, and a heat exchanger on the load side. A first bypass circuit that is opened when hot water is supplied to a first bypass circuit that forms a tickle and has one end in the discharge pipe of the compressor and the other end between the load side heat exchanger and the heat source side heat exchanger. A second bypass circuit is provided with a solenoid valve, a heat exchanger for hot water supply, a separator, a cooler, and a storage device, and has one end in the suction pipe of the compressor and the other end in the first bypass circuit. A second solenoid valve is provided that closes when in use.

作  用 本発明は、上記手段を採用することによって、給湯用熱
交換器に冷媒を流すことによって給湯を利用する運転モ
ードにおいては、分離器内部の精留作用によシ、貯留器
中に非共沸混合冷媒のうち低沸点冷媒を貯留し、主回路
中を高沸点冷媒が多く流れる様にして高い給湯温度を実
現することができる。また冷暖房のみを利用する運転モ
ードにおいては、貯留器中に溜った低沸点冷媒を電磁弁
を開放して吸入ラインに戻すことによシ、主回路中に充
填した非共沸混合冷媒の組成(給湯利用モードに比べ低
沸点冷媒の多い組成)を流すことが可能となシ、充分な
冷暖房の能力を確保するととができる。
By employing the above-mentioned means, the present invention provides that, in an operation mode in which hot water is supplied by flowing a refrigerant through a heat exchanger for hot water supply, the rectifying action inside the separator causes non-condensation to occur in the reservoir. A high boiling point refrigerant is stored in the azeotropic mixture refrigerant, and a large amount of the high boiling point refrigerant flows through the main circuit, thereby achieving a high hot water supply temperature. In addition, in an operation mode that utilizes only heating and cooling, the composition of the non-azeotropic mixed refrigerant filled in the main circuit ( This makes it possible to flow a refrigerant (composition containing more low-boiling point refrigerant than in the hot water supply mode), thereby ensuring sufficient cooling and heating capacity.

実施例 本発明による冷暖房給湯装置の一実施例を、第1図をも
って説明する。第1図において、圧縮機1、四方弁2.
熱源側熱交換器3.負荷側熱交換器4.アキュームレー
タ5′t一連結して冷凍回路を構成する。圧縮機1から
四方弁2に到る吐出配管からの第1のバイパス回路には
、電磁弁7.給湯用熱交換器6を有する。8は給湯用熱
交換器6からアキュームレータ6の吸入ラインに到る第
2のバイパス回路に設けた電磁弁、9は給湯用熱交換器
6を熱源側熱交換器3又は負荷側熱交換器4と接続する
配管中に設けた逆止弁、10,11,12はそれぞれ熱
源側熱交換器3.負荷側熱交換器4゜給湯用熱交換器6
からの合流点に到る配管中に設けた絞シ装置である。
Embodiment An embodiment of the air-conditioning, heating, and hot-water supply apparatus according to the present invention will be described with reference to FIG. In FIG. 1, a compressor 1, a four-way valve 2.
Heat source side heat exchanger 3. Load side heat exchanger4. The accumulators 5't are connected in series to form a refrigeration circuit. A first bypass circuit from the discharge pipe leading from the compressor 1 to the four-way valve 2 includes a solenoid valve 7. It has a heat exchanger 6 for hot water supply. 8 is a solenoid valve provided in the second bypass circuit from the hot water supply heat exchanger 6 to the suction line of the accumulator 6; 9 is a solenoid valve that connects the hot water supply heat exchanger 6 to the heat source side heat exchanger 3 or the load side heat exchanger 4; The check valves 10, 11, and 12 provided in the piping connected to the heat source side heat exchanger 3. Load side heat exchanger 4゜Hot water supply heat exchanger 6
This is a throttling device installed in the pipe leading to the confluence point.

また13.14は給湯用熱交換器を有する第1のバイパ
ス回路の下流側に付設した絞シ装置12と並列に設けた
絞シ装置、16は内部に充填材を詰+Jj/’L^u、
o*+^l−シ%/’−J−nQglJ−rl、トA’
+広η、Q’+’P$也に冷却器16の冷却熱源(図示
せず)は四方弁2からアキュームレータ5に到る吸入ラ
インを用いて構成してもよいし、他の冷却熱源を用いて
もよい。
In addition, 13.14 is a throttling device installed in parallel with the throttling device 12 attached to the downstream side of the first bypass circuit having a hot water supply heat exchanger, and 16 is a throttling device filled with a filler inside. ,
o*+^l-shi%/'-J-nQglJ-rl, tA'
+ wide η, Q'+'P$ya, the cooling heat source (not shown) of the cooler 16 may be configured using the suction line from the four-way valve 2 to the accumulator 5, or other cooling heat source may be used. May be used.

さらに18は熱源側ファン、19は負荷側ファン、20
は給湯用ポンプで17、このような冷凍サイクル中には
、R22/R12やR22/R114等の非共沸混合冷
媒が封入されておシ、この場合122が低沸点冷媒、R
12やR114が高沸点冷媒となる。
Furthermore, 18 is a heat source side fan, 19 is a load side fan, and 20
17 is a hot water supply pump, and in such a refrigeration cycle, a non-azeotropic mixed refrigerant such as R22/R12 or R22/R114 is sealed. In this case, 122 is a low boiling point refrigerant, R.
12 and R114 are high boiling point refrigerants.

かかる構成をもった冷暖房給湯装置について、以下に主
な作用を説明する。まず外気熱源を用いて給湯のみを利
用する運転モードを第2図をもって説明すると、四方弁
2を図示の如く暖房モード、電磁弁7を開、電磁弁8を
閉、負荷側ファン19を停止、熱源側ファン18及び給
湯用ポンプ20を運転する。このとき圧縮機1から吐出
される非共沸混合冷媒は、負荷側ファン19を停止して
いるため負荷側熱交換器4にはほとんど流れず、実線矢
印の如く流れる。すなわち圧縮機1→電磁弁7→袷湛用
熱交換器6と流れ、給湯用ポンプ2゜の運転によシ凝検
器として作用する給湯用熱交換器6が給湯の用に供せら
れる。その後生たる冷媒は絞シ装置12→逆止弁9→絞
り装置1o→熱源側熱交換器3→四方弁2→アキユ一ム
レータ5→圧縮機1に戻シ、熱源側熱交換器3は外気か
ら吸熱して蒸発器として作用する。ここで給湯用熱交換
器6出口から分岐される一部冷媒は、絞シ装置13を経
て分離器15に流入するが、このとき減圧されるため気
化したガス成分が分離器15内部を上昇し、冷却器16
によシ液化され、貯留器17に貯留されて、再び分離器
16内部を流下し、絞シ装置14を経て、絞シ装置12
からの冷媒と合流する。
The main functions of the air-conditioning, heating, and hot-water supply apparatus having such a configuration will be explained below. First, the operation mode in which only hot water is supplied using an outside air heat source will be explained with reference to FIG. The heat source side fan 18 and the hot water supply pump 20 are operated. At this time, the non-azeotropic mixed refrigerant discharged from the compressor 1 hardly flows into the load-side heat exchanger 4 because the load-side fan 19 is stopped, and flows as shown by the solid line arrow. That is, the flow is from the compressor 1 to the electromagnetic valve 7 to the boiling heat exchanger 6, and when the hot water supply pump 2° is operated, the hot water heat exchanger 6, which functions as a condenser, is provided for hot water supply. After that, the generated refrigerant is returned to the throttling device 12 → check valve 9 → throttling device 1o → heat source side heat exchanger 3 → four-way valve 2 → storage unit 5 → compressor 1, and the heat source side heat exchanger 3 is returned to outside air. It absorbs heat from the air and acts as an evaporator. Here, a part of the refrigerant branched from the outlet of the hot water supply heat exchanger 6 flows into the separator 15 through the throttling device 13, but at this time, the pressure is reduced, so that the vaporized gas component rises inside the separator 15. , cooler 16
The liquefied liquid is stored in the reservoir 17, flows down inside the separator 16 again, passes through the squeezing device 14, and is liquefied into the squeezing device 12.
It merges with the refrigerant from.

ここで分離器15内部においては、上昇するガス成分と
流下する液成分が熱と物質の同時移動を行い、いわゆる
精留作用によシ、上昇するガス成分は低沸点冷媒が、流
下する液成分は高沸点冷媒が濃縮される。従って一定時
間経過後においては、貯留器1了中には低沸点冷媒が濃
縮1,7て貯留されることになシ、冷凍サイクル中には
高沸点冷媒が濃縮して循環する。すなわち高沸点冷媒は
蒸気圧が低いため、絞シ装置12や13を絞9目に設定
したシ、膨張弁を用いて制御したシすることによシ、凝
縮器として作用する給湯用熱交換器6からは高い給湯温
度を実現することが可能となる。
Here, inside the separator 15, the rising gas component and the flowing liquid component transfer heat and substances simultaneously. The high boiling point refrigerant is concentrated. Therefore, after a certain period of time has elapsed, the low boiling point refrigerant will not be concentrated and stored in the reservoir 1, but the high boiling point refrigerant will be concentrated and circulated in the refrigeration cycle. In other words, since the vapor pressure of high boiling point refrigerants is low, by setting the throttling devices 12 and 13 to the 9th throttle and controlling them using expansion valves, the heat exchanger for hot water supply that acts as a condenser can be used. From 6 onwards, it is possible to achieve a high hot water temperature.

次に冷暖房のみを利用する運転モードを第3図を用いて
説明する。このときは四方弁2を冷房モード、電磁弁7
を閉、電磁弁8を開、熱源側ファン18及び負荷側ファ
ン19を運転、給湯用ポンプ20を停止する。この際貯
留器17にたとえ低沸点冷媒が貯留されていても、給湯
用熱交換器6゜分離器15.冷却器16.貯留器17等
は電磁弁8を開放しているため、吸入ラインに接続され
、貯留された冷媒は冷凍サイクル中に戻シ、圧縮機1か
ら吐出される冷媒は、封入した非共沸混合冷媒の組成(
給湯を利用する場合に比べ低沸点冷媒の多い組成)が循
環する。従って冷媒は実線矢印の如く、圧縮機1→四方
弁2→熱源側熱交換器3→絞シ装置1o→絞シ装置11
→負荷側熱交換器4→四方弁2→アキy−ムレータ5→
圧縮機1と循環し、通常の冷房運転が行われる。このと
き低沸点冷媒の組成が多い程、圧縮機1から吐出される
循環量は多くなシ、充分な能力を確保する。また暖房の
みを利用するモードにおいては、第4図に示す如く四方
弁2を切換えるだけで、冷房と同様の動作によシ、充分
な能力を確保しながら暖房運転を行うことができる。
Next, an operation mode using only heating and cooling will be explained using FIG. 3. At this time, set four-way valve 2 to cooling mode and solenoid valve 7.
is closed, the solenoid valve 8 is opened, the heat source side fan 18 and the load side fan 19 are operated, and the hot water supply pump 20 is stopped. At this time, even if a low boiling point refrigerant is stored in the reservoir 17, the hot water supply heat exchanger 6° separator 15. Cooler 16. Since the electromagnetic valve 8 of the reservoir 17 etc. is opened, it is connected to the suction line, and the stored refrigerant is returned to the refrigeration cycle, and the refrigerant discharged from the compressor 1 is the enclosed non-azeotropic mixed refrigerant. The composition of (
(composition containing more low-boiling point refrigerant than when using hot water) is circulated. Therefore, the refrigerant flows as shown by the solid arrow: compressor 1 → four-way valve 2 → heat source side heat exchanger 3 → throttling device 1o → throttling device 11
→Load side heat exchanger 4→Four-way valve 2→Akiy-mulator 5→
The air circulates with the compressor 1, and normal cooling operation is performed. At this time, the greater the composition of the low boiling point refrigerant, the greater the amount of circulation discharged from the compressor 1, ensuring sufficient capacity. In addition, in a mode in which only heating is used, by simply switching the four-way valve 2 as shown in FIG. 4, heating operation can be performed while maintaining sufficient capacity through the same operation as cooling.

さらに給湯と冷房を同時に利用する運転モードを、第6
図をもって説明する。このときは四方弁2を冷房モード
、電磁弁7を開、電磁弁8を閉、熱源側77ン18を停
止、負荷側ファン19及び給湯用ポンプ20を運転する
。この際には冷媒は実線矢印の如く流れ、基本的には給
湯のみを利用する際の動作と同様に働き、給湯用熱交換
器6が凝縮器、負荷側熱交換器4が蒸発器として作用し
て、冷凍サイクル中を高沸点冷媒が濃縮されて循環し、
高い給湯温度を確保しながら、冷房運転も同時に行うこ
とが可能となる。なおこの際冷房能力の不足に関しては
、圧縮機1を回転数可変形を採用することが奨められる
ものであシ、夏場に必ずしも高い給湯温度を必要としな
い場合には、冷却器16の冷却熱源を停止すると分離器
15内部での精留作用も停止して、循環する組成は封入
した非共沸混合冷媒の組成のままとなり、能力を確保す
ることも可能となる。
Furthermore, a sixth operation mode that uses hot water supply and cooling at the same time has been added.
This will be explained using diagrams. At this time, the four-way valve 2 is set to cooling mode, the solenoid valve 7 is opened, the solenoid valve 8 is closed, the heat source side 77 and 18 are stopped, and the load side fan 19 and hot water supply pump 20 are operated. At this time, the refrigerant flows as shown by the solid arrow, and basically works in the same way as when only hot water is used, with the hot water heat exchanger 6 acting as a condenser and the load-side heat exchanger 4 acting as an evaporator. The high boiling point refrigerant is concentrated and circulated through the refrigeration cycle.
It is possible to perform cooling operation at the same time while ensuring a high hot water supply temperature. In this case, regarding the lack of cooling capacity, it is recommended to use a variable speed compressor for the compressor 1, and if high hot water temperature is not necessarily required in the summer, the cooling heat source of the cooler When the refrigerant is stopped, the rectifying action inside the separator 15 is also stopped, and the circulating composition remains the same as that of the enclosed non-azeotropic mixed refrigerant, making it possible to secure the capacity.

さらに圧縮機1として回転数可変形圧縮機も採用すると
、第6図に示す如く給湯と暖房を同時に実験する運転モ
ードを実現することも可能となる。
Furthermore, if a variable rotational speed compressor is also adopted as the compressor 1, it becomes possible to realize an operation mode in which hot water supply and space heating are experimented at the same time, as shown in FIG.

このときには第2図に示した給湯のみを利用する場合に
さらに負荷側77ン19を同時に運転する。
At this time, when only the hot water supply shown in FIG. 2 is used, the load side 77 and 19 are also operated at the same time.

この際には圧縮機1から吐出される冷媒は、電磁弁7を
経由して給湯用熱交換器6を経由する回路と、四方弁2
を経由して負荷側熱交換器4を経由する回路に分岐され
、これらは再び合流して絞9装置1oを経由して熱源側
熱交換器に流入する。
In this case, the refrigerant discharged from the compressor 1 passes through a circuit that passes through a solenoid valve 7, a hot water supply heat exchanger 6, and a four-way valve 2.
It is branched into a circuit that passes through the load-side heat exchanger 4, and these join together again and flow into the heat source-side heat exchanger via the throttle 9 device 1o.

ここで給湯用熱交換器6及び負荷側熱又換器4は共に凝
縮器として作用し、両方の加熱能力が必要となるばかシ
でなく、分離器15の精留作用により循環する冷媒は高
沸点冷媒の多い組成となる力;、回転数可変形の圧縮機
1によシ冷媒循環量を増大させることによシ両方の加熱
に対応させることが可能となる。
Here, both the hot water supply heat exchanger 6 and the load side heat exchanger 4 act as a condenser, and instead of requiring the heating capacity of both, the circulating refrigerant is heated to a high temperature due to the rectifying action of the separator 15. By increasing the amount of refrigerant circulated through the variable rotation speed compressor 1, it is possible to cope with both types of heating.

発明の詳細 な説明したように本発明による冷暖房給湯装置は給湯を
利用する運転モードの場合は、冷凍サイクル中に、高沸
点冷媒を多く循環せしめて高い給湯温度を実現すること
が可能となると共に、貯留器や給湯用熱交換器と吸入ラ
インを結ぶバイパス回路を電磁弁を介して設けたから、
冷暖房を利用する運転モードの場合には、冷凍サイクル
中に低沸点冷媒を多く循環せしめて充分な能力を確保す
ることも可能となる。
As described in detail of the invention, in the case of the operation mode that utilizes hot water supply, the air conditioning/heating and hot water supply device according to the present invention can circulate a large amount of high boiling point refrigerant during the refrigeration cycle to achieve a high hot water supply temperature. , a bypass circuit was installed via a solenoid valve to connect the storage device and hot water heat exchanger to the suction line.
In the case of an operation mode that utilizes air conditioning, it is also possible to circulate a large amount of low boiling point refrigerant during the refrigeration cycle to ensure sufficient capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による冷暖房給湯装置の一実施例を示す
冷凍サイクル図であシ、第2図〜第6図は、第1図に示
した冷暖房給湯装置のそれぞれ、給湯のみ、冷房のみ、
暖房のみ、冷房給湯、暖房給湯の各運転モードにおける
冷媒の流れを説明する冷凍サイクル図である。 1・・・・・・圧縮機、2・・・・・・四方弁、3・・
・・・・熱源側熱交換器、4・・・・・・負荷側熱交換
器、6・・・・・・給湯用熱交換器、7,8・・・・・
・電磁弁、9・・・・・・逆止弁、15・・・−・・分
離器、16・・・・・・冷却器、17・・・・・・貯留
器。
FIG. 1 is a refrigeration cycle diagram showing one embodiment of the air-conditioning/heating/hot-water supply apparatus according to the present invention, and FIGS. 2 to 6 are diagrams of the air-conditioning/heating/hot-water supply apparatus shown in FIG. 1, respectively.
FIG. 3 is a refrigeration cycle diagram illustrating the flow of refrigerant in each operation mode of heating only, cooling hot water supply, and heating hot water supply. 1... Compressor, 2... Four-way valve, 3...
... Heat source side heat exchanger, 4 ... Load side heat exchanger, 6 ... Hot water supply heat exchanger, 7, 8 ...
- Solenoid valve, 9...Check valve, 15...Separator, 16...Cooler, 17...Reservoir.

Claims (1)

【特許請求の範囲】[Claims] 非共沸混合冷媒を用い、圧縮機と四方弁と熱源側熱交換
器と負荷側熱交換器を連結して冷凍サイクルを構成し、
前記圧縮機の吐出配管に一端を有し、他端を前記負荷側
熱交換器と熱源側熱交換器の間に有する第1のバイパス
回路に給湯利用時に開放する第1の電磁弁と給湯用熱交
換器と分離器と冷却器と貯留器を設け、前記圧縮機の吸
入配管に一端を有し、他端を前記第1のバイパス回路に
有する第2のバイパス回路に給湯利用時に閉鎖する第2
の電磁弁を設けた冷暖房給湯装置。
Using a non-azeotropic mixed refrigerant, a refrigeration cycle is constructed by connecting a compressor, a four-way valve, a heat source side heat exchanger, and a load side heat exchanger,
A first solenoid valve for hot water supply that opens when hot water is used in a first bypass circuit that has one end in the discharge pipe of the compressor and the other end between the load side heat exchanger and the heat source side heat exchanger; A second bypass circuit is provided with a heat exchanger, a separator, a cooler, and a storage device, and has one end in the suction pipe of the compressor and the other end in the first bypass circuit. 2
Air-conditioning, heating and water heating equipment equipped with a solenoid valve.
JP26005885A 1985-11-20 1985-11-20 Air-conditioning hot-water supply device Granted JPS62123269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26005885A JPS62123269A (en) 1985-11-20 1985-11-20 Air-conditioning hot-water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26005885A JPS62123269A (en) 1985-11-20 1985-11-20 Air-conditioning hot-water supply device

Publications (2)

Publication Number Publication Date
JPS62123269A true JPS62123269A (en) 1987-06-04
JPH0438989B2 JPH0438989B2 (en) 1992-06-26

Family

ID=17342717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26005885A Granted JPS62123269A (en) 1985-11-20 1985-11-20 Air-conditioning hot-water supply device

Country Status (1)

Country Link
JP (1) JPS62123269A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104475A (en) * 1981-12-15 1983-06-21 松下電器産業株式会社 Heat pump device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104475A (en) * 1981-12-15 1983-06-21 松下電器産業株式会社 Heat pump device

Also Published As

Publication number Publication date
JPH0438989B2 (en) 1992-06-26

Similar Documents

Publication Publication Date Title
KR0157693B1 (en) Airconditioner
KR900003160B1 (en) Air-conditioning hot-water supply device
US10208987B2 (en) Heat pump with an auxiliary heat exchanger for compressor discharge temperature control
US20140230477A1 (en) Hot water supply air conditioning system
WO2012070083A1 (en) Air conditioner
JPWO2009011197A1 (en) Operation control method of refrigeration cycle apparatus
WO2016103684A1 (en) Regenerative air conditioner
US4516408A (en) Refrigeration system for refrigerant heating type air conditioning apparatus
JP2002310519A (en) Heat pump water heater
JP2956584B2 (en) Heat recovery type air conditioner
JP3953976B2 (en) Air conditioner
JP2011106718A (en) Heat pump chiller
JPS62123269A (en) Air-conditioning hot-water supply device
US20220252317A1 (en) A heat pump
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
JP2514936B2 (en) Refrigeration cycle
JP2013124820A (en) Two-step heater and two-step cooler
JP3783153B2 (en) Air conditioner
JPH02136656A (en) Cooling heating hot water feeding device and its operation method
JPS63286676A (en) Air conditioner
JPS6358062A (en) Cooling device by circulation of refrigerant
JPS58127068A (en) Air-conditioning hot-water supply device
JP2002310498A (en) Heat pump hot-water supplier
JP2019174086A (en) Heat pump unit
JP2019138606A (en) Absorption type freezer