JP2019138606A - Absorption type freezer - Google Patents

Absorption type freezer Download PDF

Info

Publication number
JP2019138606A
JP2019138606A JP2018025029A JP2018025029A JP2019138606A JP 2019138606 A JP2019138606 A JP 2019138606A JP 2018025029 A JP2018025029 A JP 2018025029A JP 2018025029 A JP2018025029 A JP 2018025029A JP 2019138606 A JP2019138606 A JP 2019138606A
Authority
JP
Japan
Prior art keywords
absorption
absorption liquid
refrigerant
regenerator
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018025029A
Other languages
Japanese (ja)
Other versions
JP6887119B2 (en
Inventor
晃司 佐藤
Koji Sato
晃司 佐藤
桑原 修
Osamu Kuwabara
修 桑原
坂本 直樹
Naoki Sakamoto
直樹 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018025029A priority Critical patent/JP6887119B2/en
Publication of JP2019138606A publication Critical patent/JP2019138606A/en
Application granted granted Critical
Publication of JP6887119B2 publication Critical patent/JP6887119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

To provide an absorption type freezer capable of improving COP.SOLUTION: An absorption type freezer includes: a booster 12a boosting absorption liquid absorbing refrigerant by an absorber 11 toward a regenerator 13; a positive displacement type power recovery machine 12c recovering power from the absorption liquid going toward the absorber 11 from the regenerator 13 and driving the booster 12a using the recovered power; a supply passage 42 for supplying part of the gaseous refrigerant separated from the absorption liquid and going toward the condenser 22 to the power recovery machine 12c; and an absorption liquid heat exchanger 17 performing heat exchange between the absorption liquid going toward the regenerator 13 from the booster 12a and the absorption liquid going toward the absorber 11 from the power recovery machine 12c.SELECTED DRAWING: Figure 1

Description

本発明は、吸収液への冷媒の吸収と吸収液からの冷媒の放出を利用した吸収式冷凍装置に関するものである。   The present invention relates to an absorption refrigeration apparatus that utilizes absorption of a refrigerant into an absorption liquid and release of the refrigerant from the absorption liquid.

従来、吸収液への冷媒の吸収と吸収液からの冷媒の放出とを利用した吸収式冷凍サイクルが知られている。例えば特許文献1には、原動機の軸出力を、冷媒を圧縮する圧縮機の動力源として利用する圧縮式ヒートポンプサイクル(圧縮式冷凍サイクル)と、原動機の排熱を、吸収液を加熱する再生器の熱源として利用する吸収式ヒートポンプサイクル(吸収式冷凍サイクル)とを備えた排熱利用ヒートポンプシステムが開示されている。   Conventionally, an absorption refrigeration cycle using absorption of a refrigerant into an absorption liquid and discharge of the refrigerant from the absorption liquid is known. For example, Patent Document 1 discloses a compression heat pump cycle (compression refrigeration cycle) that uses a shaft output of a prime mover as a power source for a compressor that compresses a refrigerant, and a regenerator that heats an absorption liquid from exhaust heat of the prime mover. An exhaust heat utilization heat pump system including an absorption heat pump cycle (absorption refrigeration cycle) that is used as a heat source is disclosed.

特開2010−96429号公報JP 2010-96429 A

しかしながら、吸収式冷凍サイクルにおいて、二酸化炭素(CO)のような高圧下で使用される冷媒を採用する場合、吸収器と再生器との差圧が大きくなる。このため、吸収器と再生器との間で吸収液を循環させるポンプの動力が大きくなり、この分だけ吸収式冷凍サイクルのCOP(成績係数:Coefficient of Performance)が低くなる。 However, when a refrigerant used under high pressure such as carbon dioxide (CO 2 ) is employed in the absorption refrigeration cycle, the differential pressure between the absorber and the regenerator increases. For this reason, the power of the pump that circulates the absorbing liquid between the absorber and the regenerator increases, and the COP (Coefficient of Performance) of the absorption refrigeration cycle decreases accordingly.

本発明は、このような課題を解決するためになされたものであり、COPを向上させることができる吸収式冷凍装置を提供することを目的とする。   This invention is made | formed in order to solve such a subject, and it aims at providing the absorption refrigeration apparatus which can improve COP.

上記目的を達成するために、本発明の吸収式冷凍装置は、吸収器で冷媒を吸収した吸収液を、再生器へ向けて昇圧する昇圧装置と、前記再生器から前記吸収器へ向かう前記吸収液より動力を回収し、回収した前記動力を使用して前記昇圧装置を駆動する容積式の動力回収機と、前記吸収液から分離され凝縮器に向かうガス状の前記冷媒の一部を、前記動力回収機に供給する供給路と、前記昇圧装置から前記再生器へ向かう前記吸収液と、前記動力回収機から前記吸収器へ向かう前記吸収液とを熱交換させる熱交換器と、を備える。   In order to achieve the above object, the absorption refrigeration apparatus of the present invention includes a booster that boosts the absorption liquid that has absorbed the refrigerant in the absorber toward the regenerator, and the absorption that is directed from the regenerator to the absorber. Recovering power from the liquid, using the recovered power to drive the booster, and a part of the gaseous refrigerant separated from the absorbing liquid and directed to the condenser, A supply path that supplies power to the power recovery machine, a heat exchanger that exchanges heat between the absorption liquid that travels from the booster to the regenerator and the absorption liquid that travels from the power recovery machine to the absorber.

本発明によれば、吸収式冷凍装置のCOPを向上させることができる。   According to the present invention, the COP of the absorption refrigeration apparatus can be improved.

本発明の実施の形態に係る吸収式冷凍装置の概要を示す図The figure which shows the outline | summary of the absorption refrigeration apparatus which concerns on embodiment of this invention.

以下、本発明の実施の形態に係る吸収式冷凍装置ついて、図面を参照しながら説明する。以下に示す実施の形態はあくまでも例示に過ぎず、以下の実施の形態で明示しない種々の変形や技術の適用を排除するものではない。また、本実施の形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。さらに、本実施の形態の各構成は、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。   Hereinafter, an absorption refrigeration apparatus according to an embodiment of the present invention will be described with reference to the drawings. The following embodiments are merely examples, and do not exclude various modifications and technical applications that are not explicitly described in the following embodiments. In addition, each configuration of the present embodiment can be implemented with various modifications without departing from the spirit thereof. Furthermore, each structure of this Embodiment can be selected as needed, or can be combined suitably.

[1.吸収式冷凍装置の概要]
以下、本発明の実施の形態の吸収式冷凍装置の概要について図1を参照して説明する。図1は、本発明の実施の形態に係る吸収式冷凍装置1の概要を示す図である。本実施の形態の吸収式冷凍装置1は、圧縮吸収ハイブリッドサイクルを使用した冷凍装置である。すなわち、この吸収式冷凍装置1は、ガス状の冷媒(以下「冷媒ガス」ともいう)を低温低圧の吸収液に吸収させて熱交換した後、吸収液と冷媒ガスとを分離する吸収式冷凍回路10と、圧縮して高温高圧となった冷媒を凝縮する時の放熱を利用する圧縮式冷凍回路20と、を有する。また、本実施の形態に係る吸収式冷凍装置1では、冷媒として二酸化炭素COを使用する。
[1. Outline of absorption refrigeration system]
The outline of the absorption refrigeration apparatus according to the embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a diagram showing an outline of an absorption refrigeration apparatus 1 according to an embodiment of the present invention. The absorption refrigeration apparatus 1 of the present embodiment is a refrigeration apparatus that uses a compression absorption hybrid cycle. That is, the absorption refrigeration apparatus 1 absorbs a gaseous refrigerant (hereinafter also referred to as “refrigerant gas”) in a low-temperature and low-pressure absorption liquid and performs heat exchange, and then separates the absorption liquid from the refrigerant gas. The circuit 10 and a compression refrigeration circuit 20 that uses heat radiation when condensing the refrigerant that has been compressed to high temperature and pressure are included. Moreover, in the absorption refrigeration apparatus 1 according to the present embodiment, carbon dioxide CO 2 is used as a refrigerant.

吸収式冷凍回路10は、吸収器11と、再生器13と、気液分離タンク14と、流量調整弁15と、吸収液熱交換器17と、を有する。吸収器11と再生器13とは、太破線で示す濃吸収液管31および細破線で示す稀吸収液管32によって接続されている。濃吸収液管31の途中には、吸収器11から再生器13に向かって、循環ポンプ12、吸収液熱交換器17がこの順に配置されている。稀吸収液管32の途中には、再生器13から吸収器11に向かって、気液分離タンク14、循環ポンプ12、吸収液熱交換器17がこの順に配置されている。   The absorption refrigeration circuit 10 includes an absorber 11, a regenerator 13, a gas-liquid separation tank 14, a flow rate adjustment valve 15, and an absorption liquid heat exchanger 17. The absorber 11 and the regenerator 13 are connected by a concentrated absorption liquid pipe 31 indicated by a thick broken line and a rare absorption liquid pipe 32 indicated by a thin broken line. In the middle of the concentrated absorbent liquid pipe 31, the circulation pump 12 and the absorbent liquid heat exchanger 17 are arranged in this order from the absorber 11 toward the regenerator 13. In the middle of the rare absorption liquid pipe 32, the gas-liquid separation tank 14, the circulation pump 12, and the absorption liquid heat exchanger 17 are arranged in this order from the regenerator 13 toward the absorber 11.

また、稀吸収液管32には、循環ポンプ12を迂回するバイパス管32aが設けられており、このバイパス管32aの途中には流量調整弁15が配置されている。バイパス管32aおよび流量調整弁15についてさらに後述する。   Further, the rare absorption liquid pipe 32 is provided with a bypass pipe 32a that bypasses the circulation pump 12, and the flow rate adjusting valve 15 is disposed in the middle of the bypass pipe 32a. The bypass pipe 32a and the flow rate adjustment valve 15 will be further described later.

循環ポンプ12は、吸収液を循環させるためのものである。循環ポンプ12を作動させることで、濃吸収液管31内の濃吸収液(冷媒を吸収した吸収液)が吸収器11から再生器13へ供給されると共に稀吸収液管32内の稀吸収液(冷媒が分離された吸収液)が再生器13から吸収器11へ供給される。循環ポンプ12は、容積式の回転ポンプであり、動力回収機12cを一体に備える。具体的には、循環ポンプ12は、回転体により吸収液を昇圧して圧送する吸収液ポンプ(昇圧装置)12aと、吸収液ポンプ12aの前記回転体を駆動する電動モータ(以下「モータ」と称する)12bと、吸収液ポンプ12aの前記回転体と一体に回転する容積式の動力回収機12c(例えばベーンモータ)とを備える。   The circulation pump 12 is for circulating the absorption liquid. By operating the circulation pump 12, the concentrated absorbent (absorbed liquid that has absorbed the refrigerant) in the concentrated absorbent pipe 31 is supplied from the absorber 11 to the regenerator 13 and the rare absorbent in the rare absorbent pipe 32. (Absorption liquid from which the refrigerant has been separated) is supplied from the regenerator 13 to the absorber 11. The circulation pump 12 is a positive displacement rotary pump and integrally includes a power recovery machine 12c. Specifically, the circulation pump 12 includes an absorption liquid pump (a pressure increasing device) 12a that pressurizes and pumps the absorption liquid by a rotating body, and an electric motor (hereinafter referred to as “motor”) that drives the rotating body of the absorption liquid pump 12a. 12b, and a positive displacement type power recovery machine 12c (for example, a vane motor) that rotates integrally with the rotating body of the absorption liquid pump 12a.

吸収液ポンプ12aは、濃吸収液管31に接続され、この濃吸収液管31内の濃吸収液を再生器13へ向けて圧送する。   The absorption liquid pump 12 a is connected to the concentrated absorption liquid pipe 31 and pumps the concentrated absorption liquid in the concentrated absorption liquid pipe 31 toward the regenerator 13.

動力回収機12cは、吸収器11と再生器13との差圧を回収し、再生器13側から流れてきた稀吸収液を減圧して吸収器11側に供給する。そして、動力回収機12cは、吸収液ポンプ12aの軸12dと一体化しており、差圧を軸12dの回転エネルギーの形で回収して吸収液ポンプ12aと一体に回転する。つまり、動力回収機12cは、稀吸収液管32を流れる稀吸収液から動力を回収し、この回収した動力により吸収液ポンプ12aのモータ12bによる駆動をアシストする。   The power recovery machine 12c recovers the differential pressure between the absorber 11 and the regenerator 13, depressurizes the rare absorbent flowing from the regenerator 13 side, and supplies it to the absorber 11 side. The power recovery machine 12c is integrated with the shaft 12d of the absorption liquid pump 12a, recovers the differential pressure in the form of rotational energy of the shaft 12d, and rotates integrally with the absorption liquid pump 12a. That is, the power recovery machine 12c recovers power from the diluted absorbent flowing through the diluted absorbent pipe 32, and assists the drive of the absorbent pump 12a by the motor 12b with the recovered power.

吸収器11は、後述する圧縮式冷凍回路20から供給される冷媒ガスを吸収液に吸収させる。吸収器11には、再生器13に接続される濃吸収液管31が接続されており、吸収器11は、冷媒を吸収した吸収液(濃吸収液)を濃吸収液管31に送出する。   The absorber 11 causes the absorption liquid to absorb refrigerant gas supplied from the compression refrigeration circuit 20 described later. The absorber 11 is connected to a concentrated absorption liquid pipe 31 connected to the regenerator 13, and the absorber 11 sends the absorption liquid (concentrated absorption liquid) that has absorbed the refrigerant to the concentrated absorption liquid pipe 31.

再生器13は、例えば各種排熱を使用して、濃吸収液管31から供給される濃吸収液を加熱し、気液分離タンク14に供給する。気液分離タンク14は、供給された濃吸収液を冷媒ガスと稀吸収液とに分離する。気液分離タンク14は稀吸収液を貯留する貯留部(図示せず)を備えている。貯留部上部の空間には、実線で示す圧縮式冷凍回路20の冷媒管41が接続され、貯留部下部には循環ポンプ12に繋がる稀吸収液管32が接続され、貯留部の中間部には再生器13から延びる稀吸収液管32が接続されている。また、稀吸収液管32は、稀吸収液が循環ポンプ12を迂回するバイパス管32aを備えている。このバイパス管32aは、気液分離タンク14と循環ポンプ12との間と、循環ポンプ12と吸収液熱交換器17との間とを繋ぐように設けられる。気液分離タンク14により、濃吸収液から冷媒ガスが分離され、冷媒ガスのみが圧縮式冷凍回路20に供給され、冷媒ガスが分離された稀吸収液が循環ポンプ12の動力回収機12cまたは流量調整弁15に供給される。   The regenerator 13 heats the concentrated absorbent supplied from the concentrated absorbent pipe 31 using, for example, various exhaust heats, and supplies it to the gas-liquid separation tank 14. The gas-liquid separation tank 14 separates the supplied concentrated absorbent into refrigerant gas and rare absorbent. The gas-liquid separation tank 14 includes a storage unit (not shown) that stores a rare absorbent. A refrigerant pipe 41 of the compression refrigeration circuit 20 indicated by a solid line is connected to the space above the storage part, a rare absorption liquid pipe 32 connected to the circulation pump 12 is connected to the lower part of the storage part, and an intermediate part of the storage part A rare absorbing liquid pipe 32 extending from the regenerator 13 is connected. The rare absorption liquid pipe 32 includes a bypass pipe 32 a through which the rare absorption liquid bypasses the circulation pump 12. The bypass pipe 32 a is provided so as to connect between the gas-liquid separation tank 14 and the circulation pump 12 and between the circulation pump 12 and the absorption liquid heat exchanger 17. The gas-liquid separation tank 14 separates the refrigerant gas from the concentrated absorption liquid, only the refrigerant gas is supplied to the compression refrigeration circuit 20, and the rare absorption liquid from which the refrigerant gas has been separated is the power recovery machine 12c or the flow rate of the circulation pump 12. It is supplied to the regulating valve 15.

吸収器11は、圧縮式冷凍回路20の後述する蒸発器24における飽和温度によって決定される飽和圧力で作動する。一方、圧縮機21の吸込み圧力を蒸発器24の圧力より高くすることで圧縮機21の入力を低減させるために、再生器13の作動圧力を吸収器11の作動圧力よりも高くする。そのため、循環ポンプ12の吸収液ポンプ12aは、吸収器11から供給された濃吸収液を差圧分だけ昇圧して再生器13に供給する。   The absorber 11 operates at a saturation pressure determined by a saturation temperature in an evaporator 24 described later of the compression refrigeration circuit 20. On the other hand, the operating pressure of the regenerator 13 is made higher than the operating pressure of the absorber 11 in order to reduce the input of the compressor 21 by making the suction pressure of the compressor 21 higher than the pressure of the evaporator 24. Therefore, the absorption liquid pump 12 a of the circulation pump 12 boosts the concentrated absorption liquid supplied from the absorber 11 by the differential pressure and supplies the pressure to the regenerator 13.

吸収液熱交換器17には、濃吸収液管31が循環ポンプ12と再生器13との間で接続されると共に、稀吸収液管32が循環ポンプ12と吸収器11との間で接続されており、吸収液熱交換器17において稀吸収液により濃吸収液が加熱される。これにより、再生器13における加熱により吸収液に与えられた熱量が回収され、この分、吸収式冷凍回路10の効率が向上する。   A concentrated absorption liquid pipe 31 is connected to the absorption liquid heat exchanger 17 between the circulation pump 12 and the regenerator 13, and a rare absorption liquid pipe 32 is connected between the circulation pump 12 and the absorber 11. In the absorption liquid heat exchanger 17, the concentrated absorption liquid is heated by the rare absorption liquid. As a result, the amount of heat given to the absorption liquid by heating in the regenerator 13 is recovered, and the efficiency of the absorption refrigeration circuit 10 is improved accordingly.

次に、圧縮式冷凍回路20について説明する。図1に示すように、圧縮式冷凍回路20は、圧縮機21と、凝縮器22と、膨張弁23と、蒸発器24とを、上流側からこの順に備えている。圧縮式冷凍回路20のこれらの構成は、吸収式冷凍回路10の気液分離タンク14から延び吸収器11へと至る実線で示す冷媒管41によって互いに接続されている。また、本実施形態では、圧縮機21の上流側(つまり気液分離タンク14側)には放熱器25が設けられている。   Next, the compression refrigeration circuit 20 will be described. As shown in FIG. 1, the compression refrigeration circuit 20 includes a compressor 21, a condenser 22, an expansion valve 23, and an evaporator 24 in this order from the upstream side. These components of the compression refrigeration circuit 20 are connected to each other by a refrigerant pipe 41 indicated by a solid line extending from the gas-liquid separation tank 14 of the absorption refrigeration circuit 10 to the absorber 11. In the present embodiment, a radiator 25 is provided on the upstream side of the compressor 21 (that is, the gas-liquid separation tank 14 side).

圧縮機21は、放熱器25を介して気液分離タンク14と接続されている。圧縮機21は、気液分離タンク14において分離された冷媒ガスを適切な圧力レベル、例えば臨界圧力以上の任意の圧力値まで昇圧しながら、凝縮器22に搬送する。また、放熱器25により、圧縮機21に流入する前に冷媒ガスを放熱させ降温させることで圧縮機21の動力の低減が図られる。   The compressor 21 is connected to the gas-liquid separation tank 14 via a radiator 25. The compressor 21 conveys the refrigerant gas separated in the gas-liquid separation tank 14 to the condenser 22 while increasing the pressure to an appropriate pressure level, for example, an arbitrary pressure value equal to or higher than the critical pressure. Further, the heat of the compressor 21 can be reduced by dissipating the refrigerant gas and lowering the temperature by the radiator 25 before flowing into the compressor 21.

凝縮器22は、いわゆるガスクーラであり、例えば外気と冷媒との間で熱交換を行い、冷媒を冷却してエンタルピーを下げ、凝縮液化させる。   The condenser 22 is a so-called gas cooler, for example, performs heat exchange between the outside air and the refrigerant, cools the refrigerant, lowers the enthalpy, and condenses it.

膨張弁23は、流量調整弁として機能し、冷媒の流量を調整し、減圧して膨張させる。これにより、冷媒は等エンタルピー膨張し、低温低圧かつ気液混合状態の冷媒となる。   The expansion valve 23 functions as a flow rate adjustment valve, adjusts the flow rate of the refrigerant, and expands it by reducing the pressure. As a result, the refrigerant undergoes isoenthalpy expansion and becomes a refrigerant in a low-temperature and low-pressure and gas-liquid mixed state.

蒸発器24は、この潜熱を保有した冷媒を蒸発させ、冷却効果を生じさせる。蒸発器24において蒸発し、冷却効果を失った冷媒は、冷媒管41を介して吸収器11に供給される。   The evaporator 24 evaporates the refrigerant having the latent heat to produce a cooling effect. The refrigerant that has evaporated in the evaporator 24 and has lost its cooling effect is supplied to the absorber 11 via the refrigerant pipe 41.

ここで、吸収式冷凍装置1には、冷媒管41における圧縮機21と気液分離タンク14との間と、稀吸収液管32における気液分離タンク14と循環ポンプ12との間(本実施形態ではバイパス管32aよりも上流側)とを繋ぐ冷媒ガス供給管(供給路)42が設けられている。この冷媒ガス供給管42により、凝縮器22へ向かって流れる冷媒ガスの一部が、圧縮機21の上流側で冷媒管41から取り出され、循環ポンプ12やバイパス管32aの上流側で稀吸収液管32内へと供給される。   Here, the absorption refrigeration apparatus 1 includes a space between the compressor 21 and the gas-liquid separation tank 14 in the refrigerant pipe 41 and a space between the gas-liquid separation tank 14 and the circulation pump 12 in the rare absorption liquid pipe 32 (this embodiment). In the embodiment, there is provided a refrigerant gas supply pipe (supply path) 42 connecting the upstream side of the bypass pipe 32a. A part of the refrigerant gas flowing toward the condenser 22 is taken out from the refrigerant pipe 41 on the upstream side of the compressor 21 by the refrigerant gas supply pipe 42 and is diluted on the upstream side of the circulation pump 12 and the bypass pipe 32a. Supplied into the tube 32.

上述したように、稀吸収液管32には、循環ポンプ12をバイパスするバイパス管32aが備えられると共にバイパス管32aの途中に流量調整弁15が配置されている。この流量調整弁15の開度を調整することで、循環ポンプ12の動力回収機12cとバイパス管32aとに流れる稀吸収液と冷媒ガスとの混合体の配分が調整され、動力回収機12cへの混合体の流量が調整される。   As described above, the rare absorption liquid pipe 32 is provided with the bypass pipe 32a that bypasses the circulation pump 12, and the flow rate adjusting valve 15 is disposed in the middle of the bypass pipe 32a. By adjusting the opening degree of the flow rate adjusting valve 15, the distribution of the mixture of the rare absorbent and the refrigerant gas flowing in the power recovery machine 12c and the bypass pipe 32a of the circulation pump 12 is adjusted, and the power recovery machine 12c is adjusted. The flow rate of the mixture is adjusted.

[2.作用効果]
以下、引き続き図1を参照して本発明の実施の形態の吸収式冷凍装置1の作用効果を説明する。
(1)吸収式冷凍装置1では、吸収液から分離され凝縮器22へと流れる冷媒ガスの一部を、動力回収機12cへ供給する。ここで、動力回収機12cは容積式なので、冷媒ガスの一部を動力回収機12cへ供給することで、動力回収機12cへ供給する流体の容積が大きくなり、動力の回収効率を向上させることができる。
[2. Effect]
Hereinafter, with reference to FIG. 1, the effect of the absorption refrigeration apparatus 1 of embodiment of this invention is demonstrated.
(1) In the absorption refrigeration apparatus 1, a part of the refrigerant gas that is separated from the absorbing liquid and flows to the condenser 22 is supplied to the power recovery machine 12c. Here, since the power recovery machine 12c is a positive displacement type, supplying a part of the refrigerant gas to the power recovery machine 12c increases the volume of the fluid supplied to the power recovery machine 12c, thereby improving the power recovery efficiency. Can do.

また、冷媒ガスは、稀吸収液の温度が低いほど稀吸収液に溶け込み易くなる。吸収式冷凍装置1では、冷媒ガスの稀吸収液への供給を、吸収液熱交換器17で稀吸収液が濃吸収液と熱交換して稀吸収液の温度が低下する前に行うようにして、冷媒ガスの稀吸収液への溶け込みを抑制している。したがって、本発明の吸収式冷凍装置1によれば、動力回収機12cへ供給される流体の容積を効果的に増大でき、動力回収機12cによる動力の回収により循環ポンプ12の動力を低減して、吸収式冷凍装置1のCOPを向上させることができる。   Further, the refrigerant gas is more easily dissolved in the rare absorbent as the temperature of the rare absorbent is lower. In the absorption refrigeration apparatus 1, the refrigerant gas is supplied to the rare absorbent before the temperature of the rare absorbent decreases as a result of the heat exchange of the rare absorbent with the concentrated absorbent in the absorbent heat exchanger 17. This prevents the refrigerant gas from dissolving into the rare absorbent. Therefore, according to the absorption refrigeration apparatus 1 of the present invention, the volume of the fluid supplied to the power recovery machine 12c can be effectively increased, and the power of the circulation pump 12 can be reduced by recovering the power by the power recovery machine 12c. The COP of the absorption refrigeration apparatus 1 can be improved.

(2)本実施形態では、吸収液ポンプ12aと動力回収機12cとが共に容積型であると共に回転軸12dで直結され、且つ、吸収液ポンプ12aと動力回収機12cとの容積が同一に設定されている。このため、吸収液ポンプ12aを流れる濃吸収液と、動力回収機12cを流れる稀吸収液とが同じ体積流量となる。吸収液の密度は冷媒の含有量や温度によって変化するため、濃吸収液と稀吸収液との密度が相違すると、吸収器11から再生器13へ流れる濃吸収液と、再生器13から吸収器11へと流れる稀吸収液との質量流量のバランスが崩れ、吸収器11と再生器13との差圧を適切な目標に安定して制御できないようになる。特に、稀吸収液に加えて冷媒ガスを動力回収機12cに流す場合には、質量流量のバランスが大きく崩れやすい。本発明の吸収式冷凍装置1によれば、バイパス管32aの途中に設けた流量調整弁15の開度を調整することで、動力回収機12cとバイパス管32aとの稀吸収液の流量の配分を制御して、係る質量のバランスを適正にすることが可能となる。したがって、吸収器11と再生器13との差圧を適切な目標値に安定して維持することができる。   (2) In the present embodiment, the absorption liquid pump 12a and the power recovery machine 12c are both of the positive displacement type and directly connected by the rotating shaft 12d, and the volume of the absorption liquid pump 12a and the power recovery machine 12c is set to be the same. Has been. For this reason, the concentrated absorption liquid flowing through the absorption liquid pump 12a and the rare absorption liquid flowing through the power recovery machine 12c have the same volume flow rate. Since the density of the absorbing liquid changes depending on the refrigerant content and temperature, if the density of the concentrated absorbing liquid and that of the rare absorbing liquid differ, the concentrated absorbing liquid flowing from the absorber 11 to the regenerator 13 and the regenerator 13 from the absorber are absorbed. The mass flow rate balance with the rare absorbent flowing to 11 is lost, and the differential pressure between the absorber 11 and the regenerator 13 cannot be stably controlled to an appropriate target. In particular, when the refrigerant gas is allowed to flow through the power recovery machine 12c in addition to the rare absorbent, the mass flow rate balance is likely to be greatly lost. According to the absorption refrigeration apparatus 1 of the present invention, the flow rate of the rare absorbent between the power recovery machine 12c and the bypass pipe 32a is adjusted by adjusting the opening of the flow rate adjustment valve 15 provided in the middle of the bypass pipe 32a. It is possible to control the mass so that the balance of the mass is appropriate. Therefore, the differential pressure between the absorber 11 and the regenerator 13 can be stably maintained at an appropriate target value.

[3.その他]
(1)本発明は、圧縮式冷凍回路20で本来使用される冷媒ガスを、動力回収機12cに供給して循環ポンプ12の駆動に使用するため、圧縮式冷凍回路20の出力が僅かながら減少する。このため、吸収式冷凍装置1全体としてのCOPが向上するか否かは、冷媒ガスを動力回収機12cに供給することで得られる仕事量による。この仕事量は、吸収液の冷媒輸送能力(単位量当たりの吸収液が吸収し輸送できる冷媒量)や、動力回収機12cの回収効率や、再生器13に使用できる排熱量に応じたものとなる。そこで、冷媒ガス供給管42の途中にバルブを設け、冷媒輸送能力や回収効率や排熱量を勘案して冷媒ガスの供給により動力回収機12cで得られる仕事量では、吸収式冷凍装置1のCOPの向上を期待できないときは、このバルブを閉弁するようにしてもよい。
[3. Others]
(1) In the present invention, since the refrigerant gas originally used in the compression refrigeration circuit 20 is supplied to the power recovery machine 12c and used to drive the circulation pump 12, the output of the compression refrigeration circuit 20 is slightly reduced. To do. For this reason, whether the COP of the absorption refrigeration apparatus 1 as a whole is improved depends on the work amount obtained by supplying the refrigerant gas to the power recovery machine 12c. This work amount depends on the refrigerant transport capacity of the absorbing liquid (the amount of refrigerant that can be absorbed and transported by the absorbing liquid per unit amount), the recovery efficiency of the power recovery machine 12c, and the amount of exhaust heat that can be used in the regenerator 13. Become. Therefore, a valve is provided in the middle of the refrigerant gas supply pipe 42, and the work amount obtained by the power recovery machine 12c by supplying the refrigerant gas in consideration of the refrigerant transport capability, the recovery efficiency, and the amount of exhaust heat, the COP of the absorption refrigeration apparatus 1 is used. This valve may be closed when improvement of the above cannot be expected.

(2)上記の実施の形態では、本発明の吸収式冷凍装置を、冷媒の圧縮に圧縮機21を使用した圧縮吸収ハイブリッドサイクルに適用した例を説明したが、これに限定されない。例えば、図1に示す構成から圧縮機21を省略して循環ポンプ12単独で冷媒を圧送するようにし、且つ、圧縮機21を使用した場合と同程度の冷媒圧力が得られるように循環ポンプ12の出力を高くするようにしてもよい。   (2) In the above embodiment, the example in which the absorption refrigeration apparatus of the present invention is applied to the compression absorption hybrid cycle using the compressor 21 for refrigerant compression has been described, but the present invention is not limited to this. For example, the compressor 21 is omitted from the configuration shown in FIG. 1, the refrigerant is pumped by the circulation pump 12 alone, and the refrigerant pump 12 is obtained so that the refrigerant pressure is the same as that when the compressor 21 is used. The output may be increased.

(3)上述した目的に限らず、発明を実施するための形態に示した各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的である。   (3) The present invention is not limited to the above-described object, and other functions and effects of the present invention may be achieved by the respective functions shown in the embodiments for carrying out the invention, which cannot be obtained by the conventional technology. It is.

本発明は、吸収液への冷媒の吸収と吸収液からの冷媒の放出を利用した吸収式冷凍装置に利用可能である。   The present invention can be used for an absorption refrigeration apparatus that utilizes absorption of a refrigerant into an absorption liquid and release of the refrigerant from the absorption liquid.

1 吸収式冷凍装置
10 吸収式冷凍回路
11 吸収器
12 循環ポンプ
12a 吸収液ポンプ(昇圧装置)
12b モータ
12c 動力回収機
13 再生器
14 気液分離タンク
15 流量調整弁
17 吸収液熱交換器
20 圧縮式冷凍回路
21 圧縮機
22 凝縮器
23 膨張弁
24 蒸発器
25 放熱器
31 濃吸収液管
32 稀吸収液管
41 冷媒管
42 冷媒ガス供給管(供給路)
DESCRIPTION OF SYMBOLS 1 Absorption-type refrigeration apparatus 10 Absorption-type refrigeration circuit 11 Absorber 12 Circulation pump 12a Absorption liquid pump (pressure | voltage riser)
12b Motor 12c Power recovery machine 13 Regenerator 14 Gas-liquid separation tank 15 Flow rate adjustment valve 17 Absorption liquid heat exchanger 20 Compression type refrigeration circuit 21 Compressor 22 Condenser 23 Expansion valve 24 Evaporator 25 Radiator 31 Concentrated absorption liquid pipe 32 Rare absorption liquid pipe 41 Refrigerant pipe 42 Refrigerant gas supply pipe (supply path)

Claims (2)

吸収器で冷媒を吸収した吸収液を、再生器へ向けて昇圧する昇圧装置と、
前記再生器から前記吸収器へ向かう前記吸収液より動力を回収し、回収した前記動力を使用して前記昇圧装置を駆動する容積式の動力回収機と、
前記吸収液から分離され凝縮器に向かうガス状の前記冷媒の一部を、前記動力回収機に供給する供給路と、
前記昇圧装置から前記再生器へ向かう前記吸収液と、前記動力回収機から前記吸収器へ向かう前記吸収液とを熱交換させる熱交換器と、
を備えた、吸収式冷凍装置。
A pressure increasing device that pressurizes the absorbing liquid that has absorbed the refrigerant in the absorber toward the regenerator;
A positive displacement power recovery machine that recovers power from the absorbing liquid that travels from the regenerator to the absorber, and that drives the booster using the recovered power;
A supply path for supplying a part of the gaseous refrigerant separated from the absorbing liquid and directed to the condenser to the power recovery machine;
A heat exchanger for exchanging heat between the absorption liquid from the booster to the regenerator and the absorption liquid from the power recovery machine to the absorber;
An absorption refrigeration apparatus comprising:
前記吸収液と前記ガス状の冷媒との混合体に、前記動力回収機をバイパスさせるバイパス路と、
前記バイパス路の前記混合体の流量を調整する流量調整器と、
をさらに備えた、請求項1に記載の吸収式冷凍装置。
A bypass path for bypassing the power recovery machine to the mixture of the absorbing liquid and the gaseous refrigerant;
A flow regulator for adjusting the flow rate of the mixture in the bypass path;
The absorption refrigeration apparatus according to claim 1, further comprising:
JP2018025029A 2018-02-15 2018-02-15 Absorption chiller Active JP6887119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018025029A JP6887119B2 (en) 2018-02-15 2018-02-15 Absorption chiller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018025029A JP6887119B2 (en) 2018-02-15 2018-02-15 Absorption chiller

Publications (2)

Publication Number Publication Date
JP2019138606A true JP2019138606A (en) 2019-08-22
JP6887119B2 JP6887119B2 (en) 2021-06-16

Family

ID=67693653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018025029A Active JP6887119B2 (en) 2018-02-15 2018-02-15 Absorption chiller

Country Status (1)

Country Link
JP (1) JP6887119B2 (en)

Also Published As

Publication number Publication date
JP6887119B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
US10612821B1 (en) Heat-pump system with combined vapor expansion-compression stages and single-effect vapor absorption unit
CA2755034C (en) Rankine cycle integrated with absorption chiller
US6584793B2 (en) Cogeneration system
WO2014057656A1 (en) Heat exchanging device and heat pump
JP2004150750A (en) Method for determining pressure of high pressure cooling medium in refrigerating cycle device
JP2011133123A (en) Refrigerating cycle device
CN104567052A (en) Refrigeration-cycle equipment
US9909791B2 (en) Combined vapor absorption and mechanical compression cycle design
JP2011099640A (en) Hybrid heat pump
US11221161B1 (en) Heat-pump system with combined vapor expansion-compression stages and single-effect vapor absorption unit
JP2006017350A (en) Refrigeration device
JP2007263482A (en) Composite heat pump system
JP5261111B2 (en) Absorption refrigerator
JP2004190928A (en) Boiling cooling medium forcible circulation type semiconductor cooling device
JP6887119B2 (en) Absorption chiller
JP2007183078A (en) Refrigerating machine and refrigerating device
JP5808105B2 (en) Heat source system and control method thereof
JP2010255862A (en) Refrigerating device
JP6327544B2 (en) Waste heat heat pump system
JPWO2017051532A1 (en) Cooling system and cooling method
JP6621014B2 (en) Pump and heat pump system
JP2006125790A (en) Air conditioner
JP2014159926A (en) Heat-engine-drive-type steam-compression-type heat pump system
JP6074798B2 (en) Waste heat heat pump system
KR102070875B1 (en) Absorption refrigeration system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190625

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210423

R151 Written notification of patent or utility model registration

Ref document number: 6887119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151