JPS6212293B2 - - Google Patents

Info

Publication number
JPS6212293B2
JPS6212293B2 JP57106520A JP10652082A JPS6212293B2 JP S6212293 B2 JPS6212293 B2 JP S6212293B2 JP 57106520 A JP57106520 A JP 57106520A JP 10652082 A JP10652082 A JP 10652082A JP S6212293 B2 JPS6212293 B2 JP S6212293B2
Authority
JP
Japan
Prior art keywords
ore
sintered ore
less
particles
jis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57106520A
Other languages
Japanese (ja)
Other versions
JPS58224123A (en
Inventor
Yukihiro Hida
Jun Okazaki
Minoru Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10652082A priority Critical patent/JPS58224123A/en
Publication of JPS58224123A publication Critical patent/JPS58224123A/en
Publication of JPS6212293B2 publication Critical patent/JPS6212293B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高炉製銑法にとつて望ましい被還元
性の優れた焼結鉱を得るための原料に関するもの
である。 焼結鉱は最近の大型の高炉に不可欠の原料であ
り、鉄鉱石類中の70%以上を占めている。昭和48
年の石油危機を契機として鉄鋼業においても省エ
ネルギーは著しく進み、高炉での燃料比は大きく
低減したが、高炉内では固体量/ガス量の比が増
大した結果、高炉シヤフト部の温度は下がり、
COやH2ガスによる還元能力が徐々に低下してき
ている。今後、より一層の燃料比の低減を達成す
るには、原料の大部分を占める焼結鉱の還元性を
向上する以外ないと言つても過言ではない。その
被還元性の評価は一般的には900℃でCO30%―
N270%の混合ガスを使つて3時間還元するJIS法
によつて行われている。現在、JIS法還元率60〜
65%の焼結鉱が一般的であり、70%以上のものが
切望されている。 本発明は以上の点に鑑み、現在使用されている
焼結装置および焼結方法をほとんど変更すること
なしに高被還元性焼結鉱を製造することを目的と
するもので、焼結原料の構造によつてその目的を
達成せんとするものである。 焼結鉱はほぼ10mm以下の鉄鉱石類、石灰石、コ
ークスなどの諸原料を混合し、つぎに水を散布し
ながら大きな粒子の表面に微粉を付着して、いわ
ゆる擬似粒子を作り、それを焼結機に装入して内
装したコークスの燃焼熱によつて融液を生成し、
これらの原料を焼き固めている。そのため焼結鉱
は未溶融部と溶融部に大別することができるが、
最近では焼結鉱製造工程でも省エネルギーが精力
的に行なわれており、焼結鉱断面で未溶融部の占
める面積率は30〜50%にもなつてきている。これ
までの被還元性の改善は溶融部に着目し、供給熱
量を低減して難還元性のマグネタイトを少なくし
ようとするものであり、省エネルギーが進んだ今
日ではこの熱レベルの低下による改善はほぼ限界
にきている。 本発明者らは、従来無視されていた未溶融部
(以後残留元鉱と称す)に着目し、未溶融部と溶
融部の両面から被還元性について実験した結果、
擬似粒子で核となる粗い粒子の気孔率と溶融しや
すい微粉部の粒度を調整することによつてJIS還
元率70%以上の焼結鉱が安定して製造できること
に成功した。即ち、1000〜1400℃に加熱した後の
100μm以下の気孔割合が0.05cm3/g以上で1mm
以上の大きさを有する鉄鉱石を核として、その周
囲に0.5mm以下の鉄鉱石類、石灰石、含けい酸塩
鉱物、コークスなどの微粉の焼結原料を付着させ
たことを特徴とする高被還元性焼結鉱製造のため
の擬似粒子である。 以下に本発明について図面をもつて詳細に説明
する。 鉄鉱石類の被還元性は、気孔率と関係のあるこ
とが知られている。そこで、先づ残留元鉱となる
鉱石の気孔率の測定条件について検討した。 擬似粒子は1300〜1400℃まで急速に加熱されて
焼結されるが、この間結晶水の蒸発などによつて
気孔率は変化する。加熱処理温度と気孔率の関係
を調べると、気孔率ははじめ処理温度に伴つて上
昇し、1000℃以上では結晶水は完全に抜けてある
値でほぼ一定となるが、1350〜1400℃以上に加熱
すると鉄鉱石中へマタイトのマグネタイト化、融
着などによつて反対に減少してくるので、気孔率
測定時の試料加熱処理温度は1000〜1400℃に、好
ましくは1200〜1350℃にする必要があることが明
らかとなつた。 つぎに、このように加熱処理した鉱石について
空気比較法、パラフイン被覆法、水銀圧入法など
の各種の方法で気孔率を測定し、JIS法還元率と
比較検討した結果、第1図のごとく鉄鉱石のJIS
還元率は水銀圧入法で測定した100μm以下の気
孔割合(鉱石1g当りの気孔容積)と直線的な関
係にあることが判明した。擬似粒子形成時にはほ
ぼ1mm以上の粗粒が核となることが知られてい
る。第1図から残留元鉱となる可能性のある擬似
粒子中核粒子としては、気孔割合の大きなものほ
ど好ましいと考えられた。 次に、実機での焼結原料の粒度分布にあわせて
+1mm(1〜5mm)の鉄鉱石の割合を60%とし、
1mm以下の微粉部の粒度分布を変えて焼結実験を
行ない、焼結鉱のJIS法還元率を調べた。なお、
CaO/SiO2、およびコークス量は最近の実機で
の標準的な値に合わせそれぞれ1.4、3%とし
た。また、供給熱量に応じて鉱物組織が変わり還
元性が違つてくるので、現在の省エネルギーの進
んだ実機操業結果に合せてコークス(平均粒度
1.3mm)の配合量は3%一定として供給熱量の影
響はないようにした。その結果が第2図である。
第2図において1〜5mmの鉱石A,Bの気孔割合
は前掲第1図に併記したごとく、鉱石Aでは小さ
く、鉱石Bでは大きい。 そして、第2図より、焼結鉱の被還元性は1〜
5mmの鉱石の気孔割合と−1mm粉の粒度分布に大
きく左右されることは明瞭である。即ち−1mmの
微粉部についてみると細かい方が望ましいが、
0.5mm以下に整粒すると被還元性は大きく改善さ
れ、さらに細かく0.25mm以下としてもさほど向上
していない。このように微粉部の粒度を0.5mm以
下に揃えることは非常に効果的なことを見い出し
た。 第3図には微粉部を0.5mm以下として1〜5mm
鉱石の気孔割合を変化したときの焼結鉱の被還元
性を示す。なおCaO/SiO2は1.4、コークスは3
%、核/粉の比は6/4である。JIS法還元率は
核粒子の気孔割合が0.05cm3/gまではほぼ直線的
に上昇し、それ以降上昇度は小さくなり、ほぼ
0.07cm3/g以上ではほとんど変化しなくなつた。
また同図は高炉装入鉄鉱石類の全てを100%とし
た場合に相当する塩基度(CaO/SiO2)の場合の
結果で、塩基度は小さい。焼結鉱のJIS法還元率
は塩基度の高いほど一般に大きくなる。従つて第
3図から気孔割合を0.05cm3/g以上とすれば、
JIS法還元率で70%以上の高被還元性焼結鉱を安
定して製造することが可能といえる。 なお、焼結鉱の品質としては、被還元性のほか
に落下強度、耐還元粉化性が重要である。これら
は1〜5mm鉱石の気孔割合が大きくなるほどやや
低下する傾向がみられたが、いずれも落下強度
(S.I.)は85以上、還元粉化指数(R.D.I.)はほぼ
35以下となつており、通常の焼結鉱の場合と大差
なく高炉操業上問題ないことを確認している。 第1表に実施例を示した。表中の原料条件Aお
よびその時の還元率は通常の操業におけるごく標
準的なものである。これに比較して、本発明の条
件であるB〜Eでは還元性の優れた強度も問題な
い優良な焼結鉱が得られることは明白である。ま
た、実施例のほかに核粒子となる鉱石粒度を1〜
10mm、2〜5mm、2〜10mmと変化してみたがJIS
法還元率で70%を得る効果については何ら変るこ
とはなかつた。
The present invention relates to a raw material for obtaining sintered ore with excellent reducibility, which is desirable for blast furnace pig iron making. Sintered ore is an essential raw material for modern large-scale blast furnaces, and accounts for over 70% of iron ore. Showa 48
In the wake of the 2011 oil crisis, energy conservation has progressed significantly in the steel industry, and the fuel ratio in blast furnaces has been greatly reduced. However, as a result of the increase in the solids/gas ratio inside the blast furnace, the temperature of the blast furnace shaft has decreased.
The reduction ability of CO and H 2 gases is gradually decreasing. It is no exaggeration to say that the only way to further reduce the fuel ratio in the future is to improve the reducibility of sintered ore, which makes up the majority of raw materials. The evaluation of its reducibility is generally CO30% at 900℃.
The reduction is carried out using the JIS method, which uses a 70% N 2 mixed gas for 3 hours. Currently, the JIS method return rate is 60~
Sintered ore of 65% is common, and 70% or higher is coveted. In view of the above points, the present invention aims to produce highly reducible sintered ore without changing the sintering equipment and sintering method currently in use. The purpose is to be achieved through structure. Sintered ore is made by mixing various raw materials such as iron ore, limestone, and coke that are approximately 10 mm or less in size, then attaching fine powder to the surface of large particles while sprinkling water to create so-called pseudo particles, which are then sintered. A melt is generated by the combustion heat of the coke that is charged into the coalescing machine, and
These raw materials are baked and hardened. Therefore, sintered ore can be roughly divided into unmelted parts and molten parts.
Recently, energy conservation has been actively carried out in the sintered ore manufacturing process, and the area ratio occupied by unmelted parts in the cross section of sintered ore has reached 30 to 50%. Up until now, improvements in reducibility have focused on the molten zone and attempted to reduce the amount of magnetite, which is difficult to reduce, by reducing the amount of heat supplied.Nowadays, with advances in energy conservation, improvements due to this reduction in heat level are almost impossible. I'm at my limit. The present inventors focused on the unmelted part (hereinafter referred to as residual source ore), which had been ignored in the past, and conducted experiments on reducibility from both the unmelted part and the molten part.
By adjusting the porosity of the coarse grains that form the nucleus of the pseudoparticles and the particle size of the fine particles that are easily melted, we succeeded in stably producing sintered ore with a JIS reduction rate of over 70%. That is, after heating to 1000-1400℃
1mm when the pore ratio of 100μm or less is 0.05cm 3 /g or more
A high-coverage method characterized by having iron ore having a size of 0.5 mm or less as a core, and finely powdered sintering raw materials such as iron ore, limestone, silicate minerals, and coke attached to the periphery. These are pseudo particles for producing reducible sintered ore. The present invention will be explained in detail below with reference to the drawings. It is known that the reducibility of iron ores is related to porosity. Therefore, we first investigated the conditions for measuring the porosity of the ore that serves as the residual source ore. The pseudoparticles are rapidly heated to 1,300 to 1,400°C and sintered, but during this time, the porosity changes due to evaporation of crystal water and other factors. Examining the relationship between heat treatment temperature and porosity, we find that porosity initially increases with treatment temperature, and at temperatures above 1000°C, water of crystallization is completely removed and remains almost constant, but above 1350-1400°C, the porosity increases. When heated, the hematite in the iron ore becomes magnetite and decreases due to fusion, so the sample heat treatment temperature during porosity measurement must be 1000 to 1400℃, preferably 1200 to 1350℃. It became clear that there was. Next, we measured the porosity of the heat-treated ore using various methods such as the air comparison method, paraffin coating method, and mercury intrusion method, and compared it with the JIS method reduction rate, as shown in Figure 1. stone JIS
It was found that the reduction rate had a linear relationship with the proportion of pores of 100 μm or less (pore volume per 1 g of ore) measured by mercury porosimetry. It is known that when pseudo particles are formed, coarse particles of approximately 1 mm or more form the core. From FIG. 1, it was considered that pseudo-particle core particles with a larger pore ratio are more preferable as pseudo-particle core particles that may become residual source ore. Next, the proportion of +1 mm (1 to 5 mm) iron ore was set to 60% in accordance with the particle size distribution of the sintering raw material in the actual machine.
A sintering experiment was conducted by changing the particle size distribution of the fine powder part of 1 mm or less, and the JIS method reduction rate of the sintered ore was investigated. In addition,
CaO/SiO 2 and coke amount were set to 1.4% and 3%, respectively, in accordance with standard values in recent actual machines. In addition, since the mineral structure changes depending on the amount of heat supplied and the reducing properties differ, coke (average particle size
The blending amount of 1.3mm) was kept constant at 3% to avoid any influence from the amount of heat supplied. The result is shown in Figure 2.
In FIG. 2, the pore ratios of ores A and B with a diameter of 1 to 5 mm are small in ore A and large in ore B, as shown in FIG. 1 above. From Figure 2, the reducibility of sintered ore is 1~
It is clear that the porosity of the 5 mm ore and the particle size distribution of the -1 mm powder are greatly affected. In other words, when looking at the -1 mm fine powder part, the finer the better,
When the particles are sized to 0.5 mm or less, the reducibility is greatly improved, and even when the particles are made even finer to 0.25 mm or less, the improvement is not so great. It has been found that adjusting the particle size of the fine powder part to 0.5 mm or less is very effective. In Figure 3, the fine powder part is 1 to 5 mm with 0.5 mm or less.
The reducibility of sintered ore is shown when the pore ratio of ore is changed. Note that CaO/SiO 2 is 1.4 and coke is 3.
%, the kernel/flour ratio is 6/4. The JIS method reduction rate increases almost linearly until the pore ratio of the core particles reaches 0.05 cm 3 /g, and after that the degree of increase decreases and becomes almost
At 0.07 cm 3 /g or more, there was almost no change.
Furthermore, the same figure shows the results for the basicity (CaO/SiO 2 ) which corresponds to the case where all of the iron ore charged in the blast furnace is 100%, and the basicity is small. The JIS method reduction rate of sintered ore generally increases as the basicity increases. Therefore, from Figure 3, if the pore ratio is set to 0.05 cm 3 /g or more,
It can be said that it is possible to stably produce highly reducible sintered ore with a JIS reduction rate of 70% or more. As for the quality of sintered ore, in addition to reducibility, drop strength and resistance to reduction and pulverization are important. Although these tended to decrease slightly as the pore ratio of the 1-5 mm ore increased, the drop strength (SI) was more than 85 in all cases, and the reduced disintegration index (RDI) was almost the same.
It has been confirmed that the value is 35 or less, which is not much different from normal sintered ore, and there is no problem in blast furnace operation. Examples are shown in Table 1. The raw material condition A in the table and the reduction rate at that time are quite standard in normal operations. In comparison, it is clear that under the conditions B to E of the present invention, an excellent sintered ore with excellent reducibility and no problem in strength can be obtained. In addition to the examples, the particle size of the ore that becomes the core particle is 1 to 1.
I tried changing it to 10mm, 2~5mm, 2~10mm, but JIS
There was no change in the effect of obtaining a legal return rate of 70%.

【表】 以上説明したように本発明の構造の擬似粒子を
焼成して焼結鉱を製造する場合には、従来の焼結
原料で焼結した場合に比較し、落下強度、耐還元
粉化性をほぼ一定に維持してJIS法還元率を大き
く改善することができ、工業的効果は多大なもの
がある。
[Table] As explained above, when producing sintered ore by firing the pseudo-particles having the structure of the present invention, the drop strength, reduction resistance and It is possible to greatly improve the JIS method reduction rate while keeping the properties almost constant, and the industrial effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1350℃加熱後の100μm以下の気孔割
合と鉱石のJIS法還元率の関係を示す。図中の
A,B鉱石は第2図の鉱石A,Bに相当する。第
2図は付着粉の粒度分布と焼結鉱のJIS法還元率
の関係を示す。第3図は核粒子の加熱後の気孔割
合とJIS法還元率の関係を示す。
Figure 1 shows the relationship between the proportion of pores of 100 μm or less after heating to 1350°C and the JIS reduction rate of ore. Ores A and B in the figure correspond to ores A and B in Figure 2. Figure 2 shows the relationship between the particle size distribution of adhered powder and the JIS reduction rate of sintered ore. Figure 3 shows the relationship between the pore ratio of the core particles after heating and the JIS method reduction rate.

Claims (1)

【特許請求の範囲】[Claims] 1 1000〜1400℃に加熱した後の100μm以下の
気孔割合が0.05cm3/g以上で1mm以上の大きさを
有する鉄鉱石を核として、その周囲に0.5mm以下
の鉄鉱石類、石灰石、含けい酸塩鉱物、コークス
などの微粉の焼結原料を付着させたことを特徴と
する高被還元性焼結鉱製造のための擬似粒子。
1 After heating to 1000-1400℃, iron ore with a pore ratio of 100 μm or less of 0.05 cm 3 /g or more and a size of 1 mm or more is used as a core, and surrounding iron ore of 0.5 mm or less, limestone, etc. Pseudo-particles for producing highly reducible sintered ore, characterized by adhering fine sintering raw materials such as silicate minerals and coke.
JP10652082A 1982-06-21 1982-06-21 Pseudo-granule for manufacturing sintered ore with high reducibility Granted JPS58224123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10652082A JPS58224123A (en) 1982-06-21 1982-06-21 Pseudo-granule for manufacturing sintered ore with high reducibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10652082A JPS58224123A (en) 1982-06-21 1982-06-21 Pseudo-granule for manufacturing sintered ore with high reducibility

Publications (2)

Publication Number Publication Date
JPS58224123A JPS58224123A (en) 1983-12-26
JPS6212293B2 true JPS6212293B2 (en) 1987-03-18

Family

ID=14435676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10652082A Granted JPS58224123A (en) 1982-06-21 1982-06-21 Pseudo-granule for manufacturing sintered ore with high reducibility

Country Status (1)

Country Link
JP (1) JPS58224123A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171388A (en) * 2000-05-29 2005-06-30 Jfe Steel Kk Pseudo particle raw material for sintering, sintered ore for blast furnace, and method of producing pseudo particle raw material for sintering

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135361A (en) * 1974-09-19 1976-03-25 Tokutaro Yahashi NANBOKUSHI JIKEI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135361A (en) * 1974-09-19 1976-03-25 Tokutaro Yahashi NANBOKUSHI JIKEI

Also Published As

Publication number Publication date
JPS58224123A (en) 1983-12-26

Similar Documents

Publication Publication Date Title
AU2013236700B2 (en) Method for adjusting precursor powder for sintered ore, and precursor powder for sintered ore
JPH0575685B2 (en)
JP5168802B2 (en) Method for producing sintered ore
CN115323169B (en) Pellet ore and preparation method thereof
JPS6212293B2 (en)
Pal et al. Effect of pyroxenite and olivine minerals as source of MgO in hematite pellet on improvement of metallurgical properties
JP5498919B2 (en) Method for producing reduced iron
JP4228694B2 (en) Method for manufacturing raw materials for sintering
US4001007A (en) Material for sintering emitting a lesser amount of nitrogen oxide and a method for manufacturing the same
JPS63219534A (en) Manufacture of self-fluxing pellet
CA1053006A (en) Method of reducing iron ore
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP2002129246A (en) Method for producing sintered ore
JP3951825B2 (en) Granulation method of sintering raw material
US2861879A (en) Method for the production of iron from steel scrap
US2912319A (en) Method for desulphurizing iron
Tolymbekova et al. Technologies for the production of non-annealed pellets
US4082540A (en) Material for sintering emitting a lesser amount of nitrogen oxide and a method for manufacturing the same
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
US3235372A (en) Hard burned agglomerate and process for making same
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
KR100226935B1 (en) Method for manufacturing sinter using lime sludge
JP2017172020A (en) Carbonaceous inner package granulation particle for manufacturing sintered ore and manufacturing method of sintered ore using the same
JPH1121634A (en) Production of sintered ore
JPS5842733A (en) Manufacture of sintered ore