JPS5842733A - Manufacture of sintered ore - Google Patents

Manufacture of sintered ore

Info

Publication number
JPS5842733A
JPS5842733A JP13926581A JP13926581A JPS5842733A JP S5842733 A JPS5842733 A JP S5842733A JP 13926581 A JP13926581 A JP 13926581A JP 13926581 A JP13926581 A JP 13926581A JP S5842733 A JPS5842733 A JP S5842733A
Authority
JP
Japan
Prior art keywords
raw material
layer
sintered ore
layer thickness
sintering machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13926581A
Other languages
Japanese (ja)
Inventor
Kazufumi Otake
大竹 一史
Takahiro Nasuno
奈須野 孝洋
Eiichi Maeshibu
前渋 栄一
Yukio Okikawa
沖川 幸生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13926581A priority Critical patent/JPS5842733A/en
Publication of JPS5842733A publication Critical patent/JPS5842733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To obtain sintered ore with superior cold strength and a high FeO content at a low coke unit in a high yield without increasing the negative pressure of the blower of a sintering machine by using a starting material with a specified high gas permeability or above and regulating the thickness of a layer of the material on the sintering pallet to a specified value or above. CONSTITUTION:Coke breeze 10 as a heat source is added to a starting material 9 composed of iron ore 1, limestone 2, miscellaneous starting materials 6 such as mill scale 3, converter slag 4 and electric furnace slag 5, and return ore 7, and the blended starting material 11 is mixed by means of a drum mixer 12. The mixture is fed to a disk pelletizer 27 to prepare a starting material 14 with >=70 JPU gas permeability, and a layer 21 of the material 14 on the pallet 16 of a sintering machine 15 is sintered while regulating the thickness of the layer 21 to >=700mm. fixed value.

Description

【発明の詳細な説明】 本発明は、焼結鉱の製造方法に関し、特に爾い焼結鉱強
度、成品焼結鉱中のFe○低下等2品質にすぐれた焼結
鉱を低コークス原単位で、高歩留で得ることのできる焼
結鉱の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing sintered ore, and in particular to a method for producing sintered ore, which has two excellent qualities such as sintered ore strength and reduced Fe○ in the finished sintered ore, and has a low coke consumption rate. The present invention relates to a method for producing sintered ore that can be obtained at a high yield.

衆知のように焼結鉱は、鉄鉱石9石灰石などの原料と熱
源である粉コークスとをドラムミキサーで混合し、水分
を加えて造粒した原料をDL弐焼結機パレット上に装入
して原料層を形成し、点火炉で点火し下向きに空気を吸
引した状態で粉コークスの燃焼を徐々に上層から下層に
導ひきながら焼成して製造される。上記焼結鉱製造プロ
セスにおける原料の混合造粒工程は、第1図に示すよう
に、鉄鉱石12石灰石2.ミルスケール3.転炉滓4.
電気炉滓5等の雑副原料6.返鉱7(なおバインダーと
しての生石灰℃を配合する場合もある。)よシなる原料
9に、熱源としての粉コークス10を加えてなる配合原
料11を・1次及び8次ドラムミキサー12及び13で
混合造粒して焼結機装入原料14を得るものである。
As is well known, sintered ore is produced by mixing raw materials such as iron ore, 9 limestone, and coke powder as a heat source in a drum mixer, adding moisture and granulating the raw material, and charging the raw material onto the DL2 sintering machine pallet. It is produced by forming a raw material layer, igniting it in an ignition furnace, and firing it while drawing air downward while gradually guiding the combustion of coke breeze from the upper layer to the lower layer. The raw material mixing and granulation step in the sinter production process is as shown in FIG. 1: iron ore 12 limestone 2. Mill scale 3. Converter slag4.
Miscellaneous auxiliary raw materials such as electric furnace slag5 etc.6. Mixed raw material 11 made by adding coke powder 10 as a heat source to return ore 7 (quicklime °C as a binder may also be blended) and other raw materials 9 - 1st and 8th drum mixers 12 and 13 The raw materials 14 charged to the sintering machine are obtained by mixing and granulating the raw materials 14.

この原料14のDL焼結機15のパレツ)16への供給
は、原料供給装置17のホッパー18からドラムフ、イ
ーダー19或はベルトフィーダー(図示禁ず)を介して
落下供給される原料14をスローピングプ″し“−ト2
0を介して焼結機パレット16上に連続的に供給し、バ
レツ゛ト16上に所定層厚の原U層21を連続的に形成
するものである。
The raw material 14 is supplied to the pallets 16 of the DL sintering machine 15 by dropping the raw material 14 from the hopper 18 of the raw material supply device 17 via a drum feeder, an feeder 19, or a belt feeder (not shown) into a sloping pump. ``shi''-to 2
The raw U layer 21 of a predetermined thickness is continuously formed on the pallet 16 of the sintering machine through the sintering machine pallet 16.

原料層21は、パレット16下に設けられたウインドボ
ツク−ス22群、排風支管23群、排ガス排出ダクト2
4.ブロワ−!25ア〒向き−に゛空気が吸引されつつ
、原料供給装−1−1の下流の点火炉26で点火し、原
料層21中の粉コークスの燃焼を徐々に上層から下層に
導びかれ焼成される。
The raw material layer 21 includes 22 groups of wind boxes provided under the pallet 16, 23 groups of exhaust branch pipes, and an exhaust gas exhaust duct 2.
4. Blower! While air is sucked in the direction of 25A, ignition is performed in the ignition furnace 26 downstream of the raw material supply device 1-1, and the coke breeze in the raw material layer 21 is gradually guided from the upper layer to the lower layer and sintered. be done.

上記焼i操業の目標は、0品質(強度、成分り基準を満
すこと、■生産性を上げること、■コークス原単位を下
げることの3点である。現状の上記焼結鉱製造プロセス
における上記目標値、の現状レベルは次の通りである。
The goals of the sinter operation described above are three points: 0 quality (satisfying strength and composition standards, ■ increasing productivity, and ■ lowering the coke consumption rate. The current levels of the above target values are as follows.

即ち、焼結機15のブロワ−725の負圧は1000〜
1600闘Aq程度で原料6廣2]の層厚は300−5
00frIjn程度で、生産率は1.4〜1.5T/h
r/m2(33,6−3e、oTB−D程度)となって
おり、2その焼結鉱品質は、焼結鉱中FI30(成品F
ed)が6〜′11%糧度となって・いる。
That is, the negative pressure of the blower 725 of the sintering machine 15 is 1000~
At about 1600 to Aq, the layer thickness of raw material 6 square 2] is 300-5
00frIjn, production rate is 1.4~1.5T/h
r/m2 (approximately 33,6-3e, oTB-D), and the quality of the sintered ore is FI30 (finished product F).
ed) has a food content of 6 to 11%.

例えば、表1に示す配合割合の原料9叫、表2に示す粒
度の粉コLクス10を3.2%添加した表3に示す粒度
分布の原料11をドラムミキサー12及び13で混合及
び造粒した原料14の粒度は平均粒径2.5〜3.5m
m、  ’1.0mm20〜30%ありこの原料14の
通気性を示す指標では40“JIU〜50JPUであっ
た。この通気度50.TPUの原料14を、表4に示す
仕様の−DL焼結機15に原料供給装置17で装入い層
厚500mの原料層21を形成じ゛て生産率35 T/
+m’・Dで焼結した。
For example, raw material 9 with the blending ratio shown in Table 1 and raw material 11 with the particle size distribution shown in Table 3 to which 3.2% of powder cox 10 with the particle size shown in Table 2 was added are mixed and manufactured using drum mixers 12 and 13. The average particle size of the granulated raw material 14 is 2.5 to 3.5 m.
m, '1.0 mm 20 to 30%, and the index showing the air permeability of this raw material 14 was 40"JIU to 50 JPU. This raw material 14 with an air permeability of 50.TPU was subjected to -DL sintering with the specifications shown in Table 4. A raw material layer 21 with a layer thickness of 500 m is formed by charging the raw material supply device 17 into the machine 15, and the production rate is 35 T/
Sintered at +m'・D.

この操業の結果、成品歩@ ’7.5%、冷間強度(S
X)/’T −Sであフた。また表5は焼結鉱成分を示
゛す。
As a result of this operation, the finished product walk @ '7.5%, the cold strength (S
X)/'T -S and it was over. Table 5 also shows the sintered ore components.

(1971年)、に規定された焼結鉱の6間強度指数で
ある。
(1971), is the six-point strength index of sintered ore.

注(2)壕だ、前記原料14の通気性を示す指りCある
通気度P(、、TPU)は1料144第2図に示”すガ
ラス製容器に入れ75λ/wRで空気を吸引し、この蒔
の吸引圧ブSr++mAqとすると次式で通気度Pを一
計算jたものである。
Note (2) The air permeability P (,, TPU), which indicates the air permeability of the raw material 14, is 1. The material is placed in a glass container shown in Figure 2 and sucks air at 75λ/wR. However, if the suction pressure of this sowing is Sr++mAq, then the air permeability P is calculated using the following formula.

、v:通風量(−/躯)=ニア5XIO赫i ・A : I&引面積(rn’)=a、4zx1o  
rr?h:装入層厚(m) ==0.3’m B:吸引圧力(wnA q ) 表 1 原料の配合割合・ 罠 ヒ  。
, v: ventilation volume (-/body) = near 5XIO 赫i ・A: I & drawing area (rn') = a, 4zx1o
rr? h: Charging layer thickness (m) ==0.3'm B: Suction pressure (wnAq) Table 1 Mixing ratio of raw materials.

、       ・表 2原料粉コークス゛表 3 原
料の粒度分布 表4焼結機 表 5 焼結鉱成分 本発明は前記現状の焼結鉱の製造方法における焼結機ブ
ロワ−負圧を増強することなく、冷間強度、成品FeO
にすぐれた焼結鉱を低コークス原単位で、かつ高歩留で
得ることのできる製造方法を提供するもので、その技術
思想は高通気性原料を高層厚で焼結するものであ−る。
, ・Table 2 Raw material coke powder Table 3 Particle size distribution table of raw materials Table 4 Sintering machine Table 5 Sintered ore components Cold strength, finished product FeO
This product provides a manufacturing method that can produce sintered ore with low coke consumption and high yield, and its technical philosophy is to sinter highly permeable raw materials in a high thickness layer. .

以下本発明の焼結鉱の製造方法について説明する。The method for producing sintered ore of the present invention will be explained below.

本発明者等は、第1図のドラムミキサー13後の通気度
50JPUの原料14を試験鍋に現状の層厚500■と
々るように装入してこれを焼成し、焼成後層厚方向に5
分割処理し、層高各位置の焼結鉱のFeo及び冷間強度
を調査した。この結果を第3図及び第4図に示す。これ
からFeOは、層厚方向の下層になる程減少し、一方今
間強度は下層になる程、増加し上層より400調程度よ
りほぼ一定となることが明らかとなった。
The present inventors charged the raw material 14 with an air permeability of 50 JPU after the drum mixer 13 in FIG. to 5
The sintered ore was divided and the Feo and cold strength of the sintered ore at each layer height were investigated. The results are shown in FIGS. 3 and 4. From this, it is clear that FeO decreases as the layer becomes lower in the layer thickness direction, while the strength increases as the layer becomes lower, and becomes almost constant from about 400 to the upper layer.

これらの調査結果−から本発明者等は層厚方向で相対的
に低FeOでかつ高冷間強度の下層部を増大することで
、成品FeOを減少し、冷間強度を増大することができ
る点に着目した。
Based on these investigation results, the present inventors were able to reduce FeO and increase the cold strength of the finished product by increasing the lower layer with relatively low FeO and high cold strength in the layer thickness direction. I focused on the points.

そこで前記原料14を試験鍋に現状層厚500mmより
も大きい高層厚の600,700.”50゜800調と
なるように装入して・これを焼成し・焼成後層厚方向各
位置の焼結鉱のFeO及び冷間強度を調査した。
Therefore, the raw material 14 was placed in a test pot with a layer thickness of 600,700 mm, which is larger than the current layer thickness of 500 mm. The sintered ore was charged so as to have an angle of 50°800, was fired, and after firing, the FeO and cold strength of the sintered ore at each position in the layer thickness direction were investigated.

これらの調査結果の内・’75 ot+m層厚の結果を
第3図及び第4図に併記している。この試験結果から現
状の層厚500rranでは層厚方向の平均のFeOが
5.56%1層厚方向の平均の冷間強度が76.1%で
あったものが、600,70ρ、’i’50゜800y
nmの高層厚では、低FeO部、筒強度部比率か増大し
、層厚方向の平均の成品FeO及び層厚方向の平均の冷
間強度が表6の通り向jすることがわかった。
Among these survey results, the results for the '75 ot+m layer thickness are also shown in Figures 3 and 4. From this test result, with the current layer thickness of 500rran, the average FeO in the layer thickness direction was 5.56%, and the average cold strength in the layer thickness direction was 76.1%, but 600,70ρ,'i' 50°800y
It was found that at a high layer thickness of nm, the ratio of low FeO part and cylindrical strength part increases, and the average product FeO in the layer thickness direction and the average cold strength in the layer thickness direction change in the direction j as shown in Table 6.

表6 以上の調査結果から、本発明では5C+Omm層厚に比
してF、eO及び冷間強度ともに、充分なる向上代を有
する700rrrm以上の高層厚で焼結するものである
Table 6 From the above investigation results, in the present invention, sintering is performed at a layer thickness of 700 rrrm or more, which has a sufficient margin for improvement in both F, eO, and cold strength compared to a layer thickness of 5C+Omm.

次に第1図の焼結鉱製造フローにおける原料9へのコー
クスlOの配合率の成品強度、成品FeOへの影響を調
査した。
Next, the influence of the blending ratio of coke 1O in the raw material 9 in the sintered ore manufacturing flow shown in FIG. 1 on the product strength and product FeO was investigated.

具体的には、g1図のフローにおいて、前記原料9への
コークス10の配合率を3、O、,3,2,3,4゜3
,6%に調整して得たコークス配合率3. O、’3.
2゜3.4,3.6%の原料14を使用して・500諭
と’750mの2種類の層厚について、前記と同様な鍋
試験を実施した。この結果を第5図に示す。第5図から
は、成品強度(S工)88%を確保するに必要なコーク
ス配合率は11層厚が500+mnから”7501MI
へ高層厚化することで0.28%減少し、しかも成品F
eOも1.1%減少することが明かとなったん 以」二の様に’i’oom以上の高層厚で焼結すること
により、成品強度及び成品FθOともに向上した焼結鉱
を、低コークス原単位で得ることができるが、一方プロ
ワー負圧が所定値の既存のDL焼結汝で、現状の5’O
O■層厚から700間以上の高層厚化するとパレット上
の原料層の通気性が悪化1−、、Aトランド長が所定値
や既存のDL焼結機で □は・、パンツトスピードを低
下せざるを得す、生産率が低下してしまう。
Specifically, in the flow of diagram g1, the blending ratio of coke 10 to the raw material 9 is 3, O, , 3, 2, 3, 4° 3
, the coke blending ratio obtained by adjusting it to 6% 3. O, '3.
A pot test similar to that described above was carried out using the raw material 14 of 2°3.4% and 3.6% for two types of layer thickness: 500 m and 750 m. The results are shown in FIG. From Figure 5, the coke blending ratio necessary to ensure product strength (S work) of 88% is 11 layers from 500+mm to 7501MI.
By increasing the thickness of the upper layer, it decreased by 0.28%, and the product F
It was revealed that eO also decreased by 1.1%.As shown in 2, by sintering to a layer thickness of more than 'i'oom, sintered ore with improved product strength and product FθO can be produced with low coke. However, with the existing DL sintering machine where the blower negative pressure is a predetermined value, the current 5'O
When the layer thickness increases from O■ layer thickness to 700 or more, the permeability of the raw material layer on the pallet deteriorates. This will inevitably lead to a drop in production rate.

例えばブロワ−負圧1500mAqの表4の焼結機にお
ける通気度P=50JPHの原料]4の層厚と生産性の
関係を第6図に示す。即ち、例えば層厚f:500y+
onから7oOwnとした場合、生産性Id、 35 
T/i・Dから30T/m2−Dに低下してしまう。
For example, FIG. 6 shows the relationship between the layer thickness and productivity of the raw material with air permeability P=50 JPH in the sintering machine shown in Table 4 with a blower negative pressure of 1500 mAq. That is, for example, layer thickness f: 500y+
If from on to 7oOwn, productivity Id is 35
T/i・D decreases to 30T/m2-D.

更に例えば800■層厚として、生産性35T/fn2
・Dを維持しようとするとブロワ−負圧としては250
0?+1mA C1が必要とたってしまう。
Furthermore, for example, if the layer thickness is 800cm, the productivity is 35T/fn2.
・If you try to maintain D, the blower negative pressure will be 250
0? +1mA C1 is required.

そこで本発明者等は、層厚i’70 ot++m以上の
高層厚にしても焼結機のプロワ−負圧を高めることなく
、しかも現状のi5oomm層厚時の生産性を維持する
方法について検討した。この結果、パレット上に装入さ
れて所定層厚の原料層21を形成する混合造粒原料14
の通気r(JPU)k’Mめることを着想した。そして
プロワ−負圧1500mAq下で層厚をパラメータとす
る原料14の通気度P(JPU)と生産性(Tk”/D
)との関係を第7図の如く新らたに見い出した。即ち・
層厚”00mでは、原料14の必要な通気度Pは70J
PU以上でありsoo叫では80JPU以上である。
Therefore, the present inventors investigated a method of maintaining the productivity at the current i5oomm layer thickness without increasing the blower negative pressure of the sintering machine even when the layer thickness is increased to i'70 ot++ m or more. . As a result, the mixed granulated raw material 14 is charged onto a pallet and forms a raw material layer 21 with a predetermined thickness.
The idea was to increase the ventilation r(JPU)k'M. Then, the air permeability P (JPU) and productivity (Tk”/D) of the raw material 14 using the layer thickness as a parameter under the blower negative pressure of 1500 mAq
) was newly discovered as shown in Figure 7. That is,
At a layer thickness of 00 m, the required air permeability P of the raw material 14 is 70 J.
It is more than PU and is more than 80 JPU in soo scream.

そこで次に本発明者等は、通気度Pが70〜80JPU
の高通気性原料14を得る方法について検討した。
Therefore, the inventors next determined that the air permeability P is 70 to 80 JPU.
A method for obtaining highly air permeable raw material 14 was studied.

この検討過程でまず、本発明者等は第1図に示すプロセ
スで・配合原料11とドラムミキサー13から排出され
た造粒原料14との粒度構成について調査した。第8図
はその調査結果を示し破線は、配合原料11を一点鎖線
は、造粒原料14を示す。
In this study process, the inventors first investigated the particle size structure of the blended raw material 11 and the granulated raw material 14 discharged from the drum mixer 13 in the process shown in FIG. FIG. 8 shows the results of the investigation, and the broken line indicates the blended raw material 11, and the dashed line indicates the granulated raw material 14.

このように造粒原料14の粒度分布は微粒部が減少して
いるものの、−2胡φの粒子がまだ20%もあシ、この
微粒子が原料層の通気性を阻害し、通気度Pが50JP
Uと低位にとどまっていることがわかった。
Although the particle size distribution of the granulation raw material 14 has decreased in the fine part, there are still 20% of -2 φ particles, and these fine particles impede the air permeability of the raw material layer, and the permeability P is reduced. 50JP
It was found that it remained at a low rank of U.

そこで造粒強化を目的に配合原料を造粒するに除して造
粒機種をドラムミキサー13にかえてディスク型ペレタ
イザーを使用した結果、造粒原料の通気度Pを80 J
 P 、Uにすることができた。この時、使用したディ
スク型ペレタイザーは直径6mφであり、運転条件はデ
ィスク回転数9r、p、mデ、イスク角度54°で原料
供給速度130T/Hであった。
Therefore, when granulating the blended raw materials for the purpose of strengthening granulation, we changed the granulation machine to the drum mixer 13 and used a disk-type pelletizer, and as a result, the permeability P of the granulated raw materials was reduced to 80 J.
I was able to make it P and U. At this time, the disk type pelletizer used had a diameter of 6 mφ, and the operating conditions were a disk rotation speed of 9 r, p, m de, an isk angle of 54°, and a raw material supply rate of 130 T/H.

第8図には、前記の如くディスク型ペレタイザーでドラ
ムミキサー12からの混合原料を造粒した原料の粒度分
布を併記している。
FIG. 8 also shows the particle size distribution of the raw material obtained by granulating the mixed raw material from the drum mixer 12 using the disk type pelletizer as described above.

このようにディスク型ペレタイザー造粒物は、細粒の粗
粒への付着が促進され、平均粒径が向上すると共に粒度
分布が均一化される。この結果、造粒原料の通気度が向
上し、ちなみにその原料の通気度は80JPUであった
In this way, in the disk-type pelletizer granules, the adhesion of fine particles to coarse particles is promoted, the average particle size is improved, and the particle size distribution is made uniform. As a result, the air permeability of the granulated raw material was improved, and the air permeability of the raw material was 80 JPU.

以上の検討結果から、現状の層厚500間から’700
g以上の高層厚にすることにより低コークス原単位で、
成品FeO及び冷間強度のすぐれた焼結鉱を得ることが
出来るが現状の装入原料の事前処理法では装入原料の通
気度Pが50.7PU程度であり現状の焼結機のプロワ
−負圧を増強しない限り生産性が低下する欠点を解消す
るだめ、本発明では例えば配合原料をディスク型ペレタ
イザーで造粒することに上り・1通気度Pが’70JP
U以上の高通気性原料を得て、この通気度Pが’70J
PU以上の高通気性原料を使用するものである。
From the above study results, the current layer thickness ranges from 500 to '700.
Low coke consumption by making the layer thicker than g
Although it is possible to obtain finished product FeO and sintered ore with excellent cold strength, the current pre-treatment method for charging raw materials has a permeability P of about 50.7 PU, and the current sintering machine's processor In order to eliminate the drawback that productivity decreases unless the negative pressure is increased, the present invention uses, for example, granulating the blended raw materials with a disk-type pelletizer.
We obtained a raw material with high air permeability of U or higher, and this air permeability P is '70J.
It uses a highly air permeable raw material that is higher than PU.

即ち、通気度70JPU以上の高通気性原料を層厚’7
ooto+以上の高層厚で焼結することにより現状の5
0JP’U前後の通気度の原料を層厚500?llIn
で焼結している既存の焼結機のブロワ−負圧を増強しな
いで生産性を低下することなく、低コークス原単位で成
品FθOの低い、冷間強度の高い品質の優れた焼結鉱を
製造することができる。
In other words, a highly air permeable raw material with an air permeability of 70 JPU or more is layered with a layer thickness of 70 JPU or more.
By sintering with a high layer thickness of ooto+ or more, the current 5
A layer thickness of 500? llIn
The blower of the existing sintering machine that is sintered with the blower of the existing sintering machine produces excellent quality sintered ore with low coke consumption, low finished product FθO, and high cold strength without increasing the negative pressure or reducing productivity. can be manufactured.

前記本発明の焼結鉱の製造方法を実施する製造70−′
例は第9図の通シである。第9図は第1図のドラムミキ
サー13にかえてディスク型ペレタイザー27を設置し
たものであり、これによって通気度ツ○、TPU以上の
原料14を得て焼結機15のパレット16上の原料層2
1の層厚は700WrTn以上の一定値にするものであ
る。
Production 70-' carrying out the method for producing sintered ore of the present invention
An example is the passage in FIG. In FIG. 9, a disk-type pelletizer 27 is installed in place of the drum mixer 13 in FIG. layer 2
The layer thickness of No. 1 is set to a constant value of 700 WrTn or more.

表6に本発明法の実施例を、従来法と共に示した。なお
70JPU以上の高通気性原料を得る方法としては前記
ディスク型ペレタイザーを用いる方法のみならず、造粒
能のすぐれたベントナイト等のバインダーを添加してド
ラムミキサーで造粒して得る方法等様々の方法が採用で
きる。ただしディスク型ペレタイザーを用いる方法は・
格別なバインダー等を使用することなく高通気性原料を
得ることができ経済的にすぐれている−
Table 6 shows examples of the present invention method along with the conventional method. In addition, methods for obtaining highly air permeable raw materials of 70 JPU or more include not only the method using the disk type pelletizer described above, but also various methods such as adding a binder such as bentonite with excellent granulation ability and granulating it with a drum mixer. method can be adopted. However, the method using a disk type pelletizer is
It is economically superior as it allows you to obtain highly air permeable raw materials without using special binders etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1117Jは、従来の焼結鉱の製造方法の説明図、第
2図は原料の通気度の測定法の説明図、第3図及び第4
図は、層厚方向の各位置の焼結鉱のFeO及び冷間強度
の調査結果の説明図、第5図は層厚tパラメータとする
コークス配合率と成品強度釜ひに成品FeOとの関係の
調1査結果の説明図、第6図は層厚と生産性との関係説
明図、第マ図は原料通気度と生産性の関係説明図、第8
図は造粒前原料粒要と造粒後原料粒間の説明図、第9図
は不発′明の焼結鉱の製造方法の説明図である。 l○・・・ ・・粉コークス Jユ・・・・・配合原料 ユ2・・  ・ ・ドラムミキサー ]3・ ・ ・・ ・ ドラムミキサー14・・ ・・
装入原料 15・・・・・DL焼結機 16・・・  ・パレット 17・・・・・・原料供給装置 21・・・・・・原料層 22・・・  ・・ウィンドボックス 23・ ・・・・・排風支管 24・・・・・・排ガス排出ダクト 25・ ・・ ・・・ブロワ− 26・・・・・・点火炉 27・・・・・・ディスク型ペレタイザー出 願 人 
新日本製鐵株式会社 第1図 第4111ffi、”を図 第5図 ゴーワ艮絆穆「レロ
1117J is an explanatory diagram of a conventional method for manufacturing sintered ore, Figure 2 is an explanatory diagram of a method for measuring the permeability of raw materials, and Figures 3 and 4 are
The figure is an explanatory diagram of the investigation results of FeO and cold strength of sintered ore at each position in the layer thickness direction, and Figure 5 is the relationship between the coke blending ratio, which is the layer thickness t parameter, and the product strength and product FeO Figure 6 is an explanatory diagram of the relationship between layer thickness and productivity. Figure M is an explanatory diagram of the relationship between raw material permeability and productivity.
The figure is an explanatory diagram of the raw material grains before granulation and the raw material grains after granulation, and FIG. 9 is an explanatory diagram of the uninvented method for producing sintered ore. l○... ... Coke powder J... Blended raw material U2... Drum mixer] 3... Drum mixer 14...
Charged raw material 15...DL sintering machine 16... Pallet 17... Raw material supply device 21... Raw material layer 22... Wind box 23... ...Exhaust branch pipe 24...Exhaust gas discharge duct 25...Blower 26...Ignition furnace 27...Applicant for disc type pelletizer
Nippon Steel Corporation Figure 1 Figure 4111ffi, Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)焼結機で焼結鉱を製造するに際して、通気度’7
0JPU以上の高通気性原料を使用して焼結機パレット
上の原料層の層厚を7oofi以上の高層厚とすること
を特徴とする焼結鉱の製造方法。
(1) When producing sintered ore with a sintering machine, the air permeability '7
A method for producing sintered ore, characterized in that the material layer on a sintering machine pallet has a layer thickness of 7 oofi or more using a highly air permeable raw material of 0 JPU or more.
(2)通気度’70JPU以上の高通気性原料は配合原
料をディスク型ペレタイザーで造粒して得ることを特徴
とする特許請求の範囲第(1)項記載の焼結鉱の製造方
法。
(2) The method for producing sintered ore according to claim (1), wherein the highly air permeable raw material having an air permeability of '70 JPU or more is obtained by granulating the blended raw materials with a disk-type pelletizer.
JP13926581A 1981-09-04 1981-09-04 Manufacture of sintered ore Pending JPS5842733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13926581A JPS5842733A (en) 1981-09-04 1981-09-04 Manufacture of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13926581A JPS5842733A (en) 1981-09-04 1981-09-04 Manufacture of sintered ore

Publications (1)

Publication Number Publication Date
JPS5842733A true JPS5842733A (en) 1983-03-12

Family

ID=15241253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13926581A Pending JPS5842733A (en) 1981-09-04 1981-09-04 Manufacture of sintered ore

Country Status (1)

Country Link
JP (1) JPS5842733A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109932A (en) * 1985-11-08 1987-05-21 Sumitomo Metal Ind Ltd Sintering method for two-step firing system
JPS62177131A (en) * 1986-01-30 1987-08-04 Nippon Kokan Kk <Nkk> Manufacture of briquetted ore
JPS6441263U (en) * 1986-08-29 1989-03-13
JP2011038735A (en) * 2009-08-17 2011-02-24 Jfe Steel Corp Sintering machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109932A (en) * 1985-11-08 1987-05-21 Sumitomo Metal Ind Ltd Sintering method for two-step firing system
JPS62177131A (en) * 1986-01-30 1987-08-04 Nippon Kokan Kk <Nkk> Manufacture of briquetted ore
JPS6441263U (en) * 1986-08-29 1989-03-13
JP2011038735A (en) * 2009-08-17 2011-02-24 Jfe Steel Corp Sintering machine

Similar Documents

Publication Publication Date Title
JP5315659B2 (en) Method for producing sintered ore
JPS5842733A (en) Manufacture of sintered ore
CN106939373A (en) A kind of control method of sintering fuel granularity
WO1994005817A1 (en) Method for producing sintered ore
JP4228694B2 (en) Method for manufacturing raw materials for sintering
JP3879408B2 (en) Method for producing sintered ore and sintered ore
US4001007A (en) Material for sintering emitting a lesser amount of nitrogen oxide and a method for manufacturing the same
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
EP4286546A1 (en) Method for the manufacturing of sinter granules
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JPS5817813B2 (en) A method to improve productivity in the production of sintered ore using fine iron ore
US3864119A (en) Method and apparatus for simultaneously producing large and small heat hardened agglomerates of mineral ore
JPH0551652A (en) Production of sintering accelerator and sintered ore
JP4706583B2 (en) How to charge the bellless blast furnace
JP2000290734A (en) Pretreatment of sintering raw material
JP2018070954A (en) Method for loading raw materials into blast furnace
JPS60121232A (en) Pretreatment of starting material to be sintered
JPS62130227A (en) Method for sintering fine ore
JPS59166633A (en) Preparation of sintered ore
JPH01180911A (en) Method for charging sintered ore to blast furnace
JPS62214137A (en) Method for granulating starting material to be sintered
JPH0635608B2 (en) Blast furnace raw material charging method
JP2808344B2 (en) Blast furnace charging method
JPH0379730A (en) Manufacture of sintered ore having excellent property to be reduced and resistance to powering during reduction
JPS5891148A (en) Manufacture of sintered chrome ore