JPS6212122A - Controlling equipment for thick film - Google Patents

Controlling equipment for thick film

Info

Publication number
JPS6212122A
JPS6212122A JP15072685A JP15072685A JPS6212122A JP S6212122 A JPS6212122 A JP S6212122A JP 15072685 A JP15072685 A JP 15072685A JP 15072685 A JP15072685 A JP 15072685A JP S6212122 A JPS6212122 A JP S6212122A
Authority
JP
Japan
Prior art keywords
film thickness
film
deposition
light
transmitted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15072685A
Other languages
Japanese (ja)
Other versions
JPH0650728B2 (en
Inventor
Masaaki Niwa
正昭 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15072685A priority Critical patent/JPH0650728B2/en
Publication of JPS6212122A publication Critical patent/JPS6212122A/en
Publication of JPH0650728B2 publication Critical patent/JPH0650728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To make it possible to control with high precision the optical characteristics in the wavelength region near absorption band edge which is important to determine the optical features of film, by irradiating the light near the optical absorption band edge of the material to be deposited in the forming process of film, such as, the photoelectric conversion film which requires optical characteristics, and measuring the quantity of transmitted light during the deposition process. CONSTITUTION:The He-Ne laser (632.8nm wavelength) light source and the photo diode are used as the light emitting device 6 and the photo detector 7, respectively. The detected signal processing circuit 12 calculates the transmission coefficient T from the detected quantity of transmitted light, and calculates the film thickness (d) based on the absorption coefficient alpha obtained from the preliminary deposition material. When the calculated (d) reaches the desired film thickness previously input, the high frequency power source B, the driving power source for plasma discharge, is turned OFF. In this manner, the discharge automatically stops to half the deposition when the detected film thickness reaches the desired film thickness.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光電変換膜などプラズマ過程や真空蒸着などの
手法を必要とする膜形成技術において所望の膜厚又は光
学的透過率を有する光電変換膜を均質で大量に作成でき
うる膜厚制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is useful for forming photoelectric conversion films having a desired thickness or optical transmittance in film formation techniques that require methods such as plasma processes and vacuum evaporation. This invention relates to a film thickness control device that is homogeneous and can be produced in large quantities.

従来の技術 従来、光電変換膜を作成する場合においては、堆積中の
膜厚を、水晶振動子などを用いた電気的測定手段もしく
は単色光照射時の透過光量を検出する光学的測定手段に
よって監視していた。(例えば、日本学術振興会、薄膜
第131委員会編オーム社発行「薄膜ハンドブック」第
2章2.5・2(p137)、2.5.3(1)140
))発明が解決しようとする問題点 プラズマ放電過程を必要とする膜形成装置において水晶
振動子を用いて膜厚を監視する場合、真空容器内の温度
上昇に伴なう水冷温度補正が必要である他、電気的な測
定であるためにプラズマ近傍に設置すると水晶振動子出
力に強い雑音障害を伴ない、そのためプラズマから離れ
た位置に水晶振動子を設置しなければならず、基板と同
じ位置において膜厚を測定することはできず間接的にし
か測定できないという問題があった。このことは導入ガ
ス流量の変動や放電の入力電力の変動によりプラズマ形
状が変った場合、検出出力に大きな誤差を生むことにな
る。また、真空蒸着法による膜形成装置においてはプラ
ズマによる誤差の影響はないにしても高温過程を必要と
する際には温度補正が必要となり誤差の原因になる。
Conventional Technology Conventionally, when creating a photoelectric conversion film, the thickness of the film during deposition is monitored by electrical measuring means using a crystal oscillator or the like, or optical measuring means that detects the amount of transmitted light when irradiated with monochromatic light. Was. (For example, Japan Society for the Promotion of Science, edited by the 131st Thin Film Committee, published by Ohmsha, "Thin Film Handbook", Chapter 2 2.5.2 (p137), 2.5.3 (1) 140
)) Problems to be Solved by the Invention When monitoring film thickness using a crystal resonator in a film forming apparatus that requires a plasma discharge process, water cooling temperature correction is required as the temperature rises inside the vacuum container. In addition, since it is an electrical measurement, if it is installed near the plasma, the crystal oscillator output will be affected by strong noise interference, so the crystal oscillator must be installed in a position away from the plasma, and it is not possible to place the crystal oscillator in the same position as the board. However, there was a problem in that the film thickness could not be measured and could only be measured indirectly. This will cause a large error in the detection output if the plasma shape changes due to fluctuations in the flow rate of the introduced gas or fluctuations in the input power for discharge. Further, in a film forming apparatus using a vacuum evaporation method, although there is no influence of errors due to plasma, when a high temperature process is required, temperature correction is required, which causes errors.

また、単色光を用いた透過光量検出による光学的膜厚監
視手法は上述の様な誤差は発生しないと考えられるが、
水晶振動子などによる電気的測定手段にせよ、単色光照
射による光学的測定手段にせよ、イメージセンサとして
利用される際に重要となる光学的吸収端付近の特性に関
する情報を膜堆積中に得ることはできない。
In addition, it is thought that the optical film thickness monitoring method using monochromatic light to detect the amount of transmitted light does not cause the above-mentioned error.
Whether using electrical measurement means such as a crystal oscillator or optical measurement means using monochromatic light irradiation, it is possible to obtain information about characteristics near the optical absorption edge, which is important when used as an image sensor, during film deposition. I can't.

本発明はかかる点を鑑み、堆積中において堆積材料の光
吸収端付近の波長を有する光を照射し透過光量を測定す
ることにより材料の光学的吸収端付近の特性を再現性よ
く大量に作成できるようにすることを目的とする。
In view of this, the present invention makes it possible to create a large quantity of characteristics near the optical absorption edge of a material with good reproducibility by irradiating light having a wavelength near the optical absorption edge of the deposited material during deposition and measuring the amount of transmitted light. The purpose is to do so.

問題点を解決するための手段 本発明は上記問題点を解決するため、試料を並べた試料
支持板の上に膜厚検出用、即ち透過光量検出用の基板を
セットし、その基板上に堆積する材料の光学的吸収端付
近の光を照射する。そして上記基板上に堆積される膜厚
に応じて変化する透過光量を放電プラズマの電気的影響
を受けることなく検出することによって膜厚を堆積中に
測定するものである。また吸収端付近の透過率を把握す
ることにより堆積制御系にフィードバックをかけるもの
でもあり、所望の膜厚もしくは透過率で膜の堆積が自動
的に停止できるものである。この際本番の堆買本堆積ぬ
前に予め本堆積と同一条件で適当な膜厚を基板上に堆積
した試料、(予備堆積試料な作成し、分光透過率測定な
どの手段により膜厚d、光学的吸収係数αを次式によっ
て求めておく。
Means for Solving the Problems In order to solve the above problems, the present invention sets a substrate for film thickness detection, that is, for detecting the amount of transmitted light, on a sample support plate on which samples are arranged, and deposits the film on the substrate. irradiate light near the optical absorption edge of the material to be used. The film thickness is measured during deposition by detecting the amount of transmitted light, which changes depending on the thickness of the film deposited on the substrate, without being affected by electrical discharge plasma. Furthermore, by grasping the transmittance near the absorption edge, feedback is applied to the deposition control system, and film deposition can be automatically stopped at a desired film thickness or transmittance. At this time, before the actual deposition, a sample (preliminary deposition sample) is prepared that has been deposited on the substrate to an appropriate thickness under the same conditions as the actual deposition, and the film thickness d is determined by means such as spectral transmittance measurement. The optical absorption coefficient α is determined by the following formula.

α=−gn(’r) ここで、Tは分光透過率測定から得られる透過率である
α=-gn('r) Here, T is the transmittance obtained from spectral transmittance measurement.

本堆積の際には、予備堆積試料の測定で得られたαと本
堆積中に得られる透過率Tとを用いて膜厚dを算出して
ゆく。この方法で得られる検出膜厚値が所望の膜厚値に
達すると自動的に放電が停止もしくはシャッターを介し
て堆積を停止する。
During the main deposition, the film thickness d is calculated using α obtained by measuring the preliminary deposited sample and the transmittance T obtained during the main deposition. When the detected film thickness value obtained by this method reaches a desired film thickness value, the discharge is automatically stopped or the deposition is stopped via a shutter.

作用 本発明は上記した構成において膜堆積中に堆積する材料
の光学的吸収端付近の波長を持つ光を試料に照射して直
接、膜厚を測定することにより、真空蒸着法はもとより
プラズマ等による電気的影響を受けることなく検出する
ことができる。回転基板を用いる場合には、より均質で
膜厚のばらつきがない膜を大量に作成できる。更に検出
した膜厚から所望の膜厚もしくは透過率を有する膜の作
成を自動的に制御できうるものである。
Effects of the present invention In the above-described configuration, the film thickness can be directly measured by irradiating the sample with light having a wavelength near the optical absorption edge of the material deposited during film deposition. It can be detected without being affected by electricity. When a rotating substrate is used, it is possible to produce a large quantity of films that are more homogeneous and have no variation in film thickness. Furthermore, it is possible to automatically control the creation of a film having a desired film thickness or transmittance based on the detected film thickness.

実施例 以下、本発明の実施例について図面とともに説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図は第1の実施例の膜厚制御装置における膜厚検出
部分を示したものであり、同図(ム)は真空容器を上か
ら見た図である。1は真空容器、2は試料を固定する回
転基板、3は堆積膜厚を光学的に測定する際に用いるガ
ラス基板、4は試料基板、6は堆積を行っているプラズ
マ領域と膜厚を光学的に測定する領域を電気的、物理的
に分離するための遮蔽板、6は光源として用いる発光素
子、7は透過光を検出するための受光素子、8及び9は
プラズマ放電を発生させるための電極で、電極8にはヒ
ーター、9にはガス導入孔が設けである。1oは回転軸
を示す。
FIG. 1 shows the film thickness detection portion of the film thickness control device of the first embodiment, and FIG. 1 (m) is a top view of the vacuum vessel. 1 is a vacuum container, 2 is a rotating substrate for fixing the sample, 3 is a glass substrate used for optically measuring the deposited film thickness, 4 is a sample substrate, and 6 is a plasma region in which deposition is performed and a device for optically measuring the film thickness. 6 is a light emitting element used as a light source; 7 is a light receiving element for detecting transmitted light; 8 and 9 are for generating plasma discharge; Regarding the electrodes, electrode 8 is provided with a heater, and electrode 9 is provided with a gas introduction hole. 1o indicates the rotation axis.

第1図(B)は同図(ム)の断面構造を示したものであ
る。この第1の実施例では発光素子6としてHθ−NO
レーザー(波長e32.anm)光源を、受光素子7と
してフォトダイオードを用いた。まず、真空容器1を高
真空に保ち、シランガスを導入して電極7,8間に高圧
交流電圧を印加して両極間にプラズマ放電を発生させる
ことによりアモルファスシリコン光導電膜を作成した。
FIG. 1(B) shows the cross-sectional structure of FIG. 1(B). In this first embodiment, Hθ-NO is used as the light emitting element 6.
A laser (wavelength: e32.am) light source was used, and a photodiode was used as the light receiving element 7. First, an amorphous silicon photoconductive film was prepared by keeping the vacuum container 1 at a high vacuum, introducing silane gas, and applying a high-voltage AC voltage between the electrodes 7 and 8 to generate plasma discharge between the electrodes.

この際、試料基板として単結晶シリコンの上に金属モリ
ブデンを真空蒸着にて堆積したものを用いている。膜厚
検出用のガラス基板として石英ガラスを用いである。
At this time, the sample substrate used was one in which metal molybdenum was deposited by vacuum evaporation on single crystal silicon. Quartz glass is used as a glass substrate for film thickness detection.

膜作成条件は回転基板温度を250℃、投入電力20W
シランガス〜0.6 Torr 、回転基板回転数10
 rp!1mで実験した。本実施例では波長が632.
8 nm において透過率が6チを有する光電変換膜の
作成を1指した。
The film creation conditions were a rotating substrate temperature of 250°C and an input power of 20W.
Silane gas ~0.6 Torr, rotating board rotation speed 10
rp! The experiment was conducted at 1 m. In this example, the wavelength is 632.
1 refers to the creation of a photoelectric conversion film having a transmittance of 6 cm at 8 nm.

第2図は実施例1における膜厚制御装置のブロック図で
ある。11はHa −Neレーザーを駆動させるための
光源電源回路、12はフォトダイオードによる透過光量
の検出信号処理回路で、検知した透過光量から透過率T
を計算し、予備堆積試料から求めた吸収係数αの値を用
いて膜厚dを計算し、予め入力しておいた所望膜厚値に
達するとプラズマ放電の駆動電源である高周波電源回路
13において回路が開放される機能を有する。回路12
113でフィードバック回路Fを構成する≦なお、先述
したようにα=HAn(T)である。
FIG. 2 is a block diagram of the film thickness control device in Example 1. 11 is a light source power supply circuit for driving the Ha-Ne laser, and 12 is a detection signal processing circuit for the amount of transmitted light by a photodiode, which calculates the transmittance T from the detected amount of transmitted light.
is calculated, and the film thickness d is calculated using the value of the absorption coefficient α determined from the preliminary deposited sample. When the desired film thickness value inputted in advance is reached, the high frequency power supply circuit 13, which is the drive power source for plasma discharge, It has the function of opening the circuit. circuit 12
The feedback circuit F is configured in step 113. As mentioned above, α=HAn(T).

第3図は検出信号処理回路12に入力される信号波形を
示しておシ、所望の膜厚d′に達した時の透過率はT′
であり、堆積開始後からt′の時間を経過した時、高周
波電源回路が開放され、堆積が自動的に停止した。
FIG. 3 shows the signal waveform input to the detection signal processing circuit 12, and the transmittance when the desired film thickness d' is reached is T'.
When the time t' elapsed after the start of the deposition, the high frequency power supply circuit was opened and the deposition was automatically stopped.

尚、第1の実施例における予備堆積試料の波長632.
8nm における分光透過率測定結果から同波長におけ
る透過率Tは5,7%又、表面断差計を用いて測定した
実測膜厚dは1.28μmであった。
Note that the wavelength of the preliminary deposited sample in the first example is 632.
According to the spectral transmittance measurement results at 8 nm, the transmittance T at the same wavelength was 5.7%, and the actual film thickness d measured using a surface profilometer was 1.28 μm.

従って同波長における吸収係数αは となり、この値を検出信号処理回路12に入力しである
Therefore, the absorption coefficient α at the same wavelength is as follows, and this value is input to the detection signal processing circuit 12.

第4図はこの様にして本堆積したアモルファスシリコン
光電変換膜の分光感度特性である。この膜の波長が63
2.8 nHにおける所望の透過率は6チであったのに
対し透過率の誤差が5チの精度で作成することができた
FIG. 4 shows the spectral sensitivity characteristics of the amorphous silicon photoelectric conversion film deposited in this manner. The wavelength of this film is 63
Although the desired transmittance at 2.8 nH was 6 cm, it was possible to create a transmittance with an accuracy of 5 cm.

また、本実施例においては試料を30枚準備しだが、こ
れらの膜厚のばらつき誤差は2・4%という高い精度が
得られた。
Further, in this example, 30 samples were prepared, and a high accuracy was obtained with a variation error of 2.4% in the film thickness.

次に第2の実施例として真空蒸着装置における膜厚制御
装置の例を示す。第5図はこの第20実施例における膜
厚制御装置の膜厚検出部分を示したものであり、同図(
ム)は真空容器を上から見た図である。第5図(Blは
同図(Alの断面構造を示したものであり、本実施例で
はセレン、テルル、ヒ素からなるカルコゲン材料を3つ
の蒸発源から所定の温度条件で蒸発させる抵抗加熱方式
を示す。同図において第1蒸発源14には5e67ムS
、5、第2蒸発源15にはSθ55ムs 5Te46、
第3蒸発源16にはSeg5ムS5が入っている。各蒸
発源はルツボとシュラウドと電動シャッター17が具備
されている。
Next, as a second embodiment, an example of a film thickness control device in a vacuum evaporation apparatus will be shown. FIG. 5 shows the film thickness detection part of the film thickness control device in this 20th embodiment, and the same figure (
Figure 1) is a top view of the vacuum vessel. Figure 5 (Bl shows the cross-sectional structure of Al in the same figure. In this example, a resistance heating method is used in which chalcogen material consisting of selenium, tellurium, and arsenic is evaporated from three evaporation sources under predetermined temperature conditions. In the figure, the first evaporation source 14 has a 5e67mm S.
, 5. The second evaporation source 15 has Sθ55ms 5Te46,
The third evaporation source 16 contains Seg5 MU S5. Each evaporation source is equipped with a crucible, a shroud, and an electric shutter 17.

尚、膜厚制御回路のブロック図は第1の実施例における
第2図と同様で検出信号処理回路の出力は各電動シャッ
ター17の駆動電源に接続されており、実施例1と同様
に所望の膜厚に達すると自動的にシャッターが全閉され
堆積が停止される。本実施例において波長JE e s
 2.8 nmの透過率は6.6%であったのに対して
透過率の誤差が4%の精度で作成することができた。ま
た30枚の試料に対して膜厚のばらつき誤差は3.2%
(所望膜厚3.20μm)という高い精度で膜厚制御を
行なうことができた。
The block diagram of the film thickness control circuit is the same as that shown in FIG. 2 in the first embodiment, and the output of the detection signal processing circuit is connected to the drive power source of each electric shutter 17, and as in the first embodiment, the desired When the film thickness is reached, the shutter is automatically fully closed and deposition is stopped. In this example, the wavelength JE e s
Although the transmittance at 2.8 nm was 6.6%, it was possible to create the transmittance with an accuracy of 4% error. Also, the film thickness variation error for 30 samples was 3.2%.
The film thickness could be controlled with high accuracy (desired film thickness: 3.20 μm).

尚、本発明の実施例において、抵抗加熱方式による真空
蒸着とプラズマ放電による堆積例を示したが、電子ビー
ム蒸着などその他の薄膜形成装置においても適用できる
ことは言うまでもない。。
In the embodiments of the present invention, examples of vacuum deposition using a resistance heating method and deposition using plasma discharge are shown, but it goes without saying that the present invention can also be applied to other thin film forming apparatuses such as electron beam evaporation. .

発明の効果 以上、本発明によれば、光電変換膜など光学的特性が要
求される膜作成技術において堆積する材料の光学的吸収
端付近の光を照射し、堆積中にその透過光量を測定する
ことによって膜の光学的特性を決定づける重要な吸収端
付近の光学特性を高精度で制御することができる。そし
てイメージセンサ−など分光感度特性が特に重要視され
る様な光電変換膜の作成における再現性を大幅に向上で
きる。
As described above, according to the present invention, in a film production technique that requires optical properties such as a photoelectric conversion film, light near the optical absorption edge of a material to be deposited is irradiated, and the amount of transmitted light is measured during deposition. By doing so, the optical properties near the absorption edge, which are important in determining the optical properties of the film, can be controlled with high precision. Furthermore, the reproducibility in producing photoelectric conversion films for image sensors and the like where spectral sensitivity characteristics are particularly important can be greatly improved.

更に、本発明によればこれらの膜を均質で大量に自動的
に作成する仁とが可能となる。
Furthermore, according to the present invention, it is possible to automatically produce these films in a uniform manner in large quantities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(ム)は本発明の一実施例のプラズマ放電による
膜形成に用いる膜厚制御装置の要部平面図、同図■)は
同装置の断面図、第2図は同膜厚制御装置のブロック図
、第3図は同装置の入力信号波形図、第4図はアモルフ
ァスシリコン光電変換膜の分光感度特性図、第5図(ム
)は抵抗加熱による膜形成に用いる膜厚制御装置の要部
平面図、同図(B)は同装置の断面図である。 2・・・・・・回転基板、3・・・・・・ガラス基板、
4・・・・・・試料基板、6・・・・・・発光素子、7
・・・・・・受光素子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 フィードパ177回銘慴 塚 13図 第4図 シ皮 長 久(nm) 第5I21
Figure 1 (m) is a plan view of the main parts of a film thickness control device used for film formation by plasma discharge according to an embodiment of the present invention, figure (2) is a sectional view of the same device, and Figure 2 is a plan view of the same film thickness control device used for film formation by plasma discharge. A block diagram of the device, Fig. 3 is an input signal waveform diagram of the device, Fig. 4 is a spectral sensitivity characteristic diagram of an amorphous silicon photoelectric conversion film, and Fig. 5 (m) is a film thickness control device used for film formation by resistance heating. FIG. 2B is a plan view of the main parts of the device, and FIG. 2...Rotating substrate, 3...Glass substrate,
4...Sample substrate, 6...Light emitting element, 7
······Light receiving element. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure Feed Pa 177th Meiheizuka 13 Figure 4 Shiki Nagaku (nm) No. 5I21

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に堆積する材料の光学的吸収端付近の光を
照射する手段と、上記基板上に堆積される材料の膜厚に
応じて変化する透過光を検出する手段を備え、上記検出
手段の検出結果により堆積中の膜厚を光学的にかつ直接
的に監視するように構成した膜厚制御装置。
(1) comprising means for irradiating light near the optical absorption edge of the material deposited on the substrate and means for detecting transmitted light that changes depending on the film thickness of the material deposited on the substrate; A film thickness control device configured to optically and directly monitor the film thickness during deposition based on the detection result of the means.
(2)材料が堆積される基板を回転基板上に支持した特
許請求の範囲第1項記載の膜厚制御装置。
(2) The film thickness control device according to claim 1, wherein the substrate on which the material is deposited is supported on a rotating substrate.
(3)検出手段で検出した透過光から膜厚を計算し、所
望の膜厚に達すると自動的に堆積が停止するように構成
した特許請求の範囲第1項記載の膜厚制御装置。
(3) The film thickness control device according to claim 1, wherein the film thickness is calculated from the transmitted light detected by the detection means, and the deposition is automatically stopped when the desired film thickness is reached.
JP15072685A 1985-07-09 1985-07-09 Film thickness control device Expired - Fee Related JPH0650728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15072685A JPH0650728B2 (en) 1985-07-09 1985-07-09 Film thickness control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15072685A JPH0650728B2 (en) 1985-07-09 1985-07-09 Film thickness control device

Publications (2)

Publication Number Publication Date
JPS6212122A true JPS6212122A (en) 1987-01-21
JPH0650728B2 JPH0650728B2 (en) 1994-06-29

Family

ID=15503066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15072685A Expired - Fee Related JPH0650728B2 (en) 1985-07-09 1985-07-09 Film thickness control device

Country Status (1)

Country Link
JP (1) JPH0650728B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189029A (en) * 2003-12-25 2005-07-14 National Institute Of Advanced Industrial & Technology Method for detecting substrate contamination particle and its apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189029A (en) * 2003-12-25 2005-07-14 National Institute Of Advanced Industrial & Technology Method for detecting substrate contamination particle and its apparatus

Also Published As

Publication number Publication date
JPH0650728B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US20010043668A1 (en) Method and apparatus for measuring thin film, and thin film deposition system
US3654109A (en) Apparatus and method for measuring rate in flow processes
US3620814A (en) Continuous measurement of the thickness of hot thin films
JPH05113416A (en) Method of inspecting precipitation of heterogeneous phase of single crystal material
JPS6212122A (en) Controlling equipment for thick film
JPS5948786B2 (en) Molecular beam crystal growth method
JP2612089B2 (en) Method of detecting film thickness of film to be etched, film thickness detecting device and etching device
JP2681613B2 (en) Silicon single crystal evaluation method
JPS5665973A (en) Vapor depositing method
JPH01320408A (en) Thin film monitor using laser and film thickness measuring method
JPH07180055A (en) Vacuum film forming device
JPH059728A (en) Formation of thin film
JPS6358913B2 (en)
JP2001289714A (en) Temperature measurement method and measurement device of substrate and treating device of the substrate
KR102411117B1 (en) Substrate processing apparatus and method of substrate processing
JPS5974636A (en) Measuring device for film thickness
JPH0394444A (en) Method and apparatus for measuring film thickness, and thin-film manufacturing apparatus
JP2005002462A (en) Deposition controller and program, and method for manufacturing optical thin film
JP3221606B2 (en) Donor killer untreated semiconductor wafer thickness measurement method and donor killer untreated semiconductor wafer flatness measurement method
JP2970020B2 (en) Method of forming coating thin film
JPH02171605A (en) Method for measuring film thickness in case of metallic thin film growth
JPH01132767A (en) Method and device for forming thin film
JPS61272937A (en) Control of vapor growing chemical evaporation
JPH0545128B2 (en)
JPH0198216A (en) Formation of amorphous thin-film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees