JPH0198216A - Formation of amorphous thin-film - Google Patents

Formation of amorphous thin-film

Info

Publication number
JPH0198216A
JPH0198216A JP62255508A JP25550887A JPH0198216A JP H0198216 A JPH0198216 A JP H0198216A JP 62255508 A JP62255508 A JP 62255508A JP 25550887 A JP25550887 A JP 25550887A JP H0198216 A JPH0198216 A JP H0198216A
Authority
JP
Japan
Prior art keywords
light
vacuum chamber
film
substrate
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62255508A
Other languages
Japanese (ja)
Inventor
Tadashi Tomikawa
唯司 富川
Hideo Itozaki
糸崎 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62255508A priority Critical patent/JPH0198216A/en
Publication of JPH0198216A publication Critical patent/JPH0198216A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To form an excellent thin-film stably at a fixed film formation rate at all times regardless of the lapse of time by measuring the intensity of light in a vacuum chamber, controlling an output from a light source on the basis of the measured value and keeping the intensity of light constant with time. CONSTITUTION:The inside of a vacuum chamber 1 in which a substrate 2 is arranged horizontally is decompressed through an exhaust valve 5. A raw material gas to which mercury is doped is fed from a raw-material gas supply nozzle 4 while the substrate 2 is heated by a heater 3. The upper section of the surface of the substrate 2 in the vaccum chamber 1 is irradiated vertically with light through a window 7 composed of synthetic quartz glass, etc., from a light source 6 such as a low pressure mercury lamp installed outside the vacuum chamber 1. An output from the light source 6 is controlled by a light-source output control section 10 on the basis of the measured value of the intensity of light in the vacuum chamber 1 by employing a light-intensity measuring instrument 8 such as photoelectric tube mounted into the vacuum chamber 1 at that time. The intensity of light in the vacuum chamber 1 is kept constant at all times. The film formation rate of an amorphous thin-film on the substrate 2 is held constant all the time, thus also preventing the change of the quality of the film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光0’VD法により非晶質シリフン、非晶質ゲ
ルマニウム等の非晶質薄膜を基板上に形成する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming an amorphous thin film of amorphous silicon, amorphous germanium, etc. on a substrate by a photo 0'VD method.

〔従来の技術〕[Conventional technology]

非晶質S1(以下a−3iと略記する)、非晶質Ge 
(以下a−Geと略記する)、非晶質5iGe’ (以
下a−3iGeと略記する)等は優れた光電特性を有す
ることから、太陽電池、電子写真感光体、光センサ−、
薄膜トランジスタ等の広範な分野に利用されている。
Amorphous S1 (hereinafter abbreviated as a-3i), amorphous Ge
(hereinafter abbreviated as a-Ge), amorphous 5iGe' (hereinafter abbreviated as a-3iGe), etc. have excellent photoelectric properties, so they can be used in solar cells, electrophotographic photoreceptors, optical sensors, etc.
It is used in a wide range of fields such as thin film transistors.

a−9i等の非晶質薄膜の製造方法としてはイオンブレ
ーティング法、スパッタリング法、真空蒸着法、及びO
V D (C!hemicalVaperDeposi
tion)法等があるが、SiH等のシラン類(S1H
)を4                   n  
2n+2グロー放電により分解して生成させたa −S
 iを基!上に堆積させるプラズマCVD法が一般的に
使用されている。
Methods for manufacturing amorphous thin films such as a-9i include ion blating method, sputtering method, vacuum evaporation method, and O
V D (C!chemical Vaper Deposit
tion) method, etc., but silanes such as SiH (S1H
) to 4 n
a-S generated by decomposition by 2n+2 glow discharge
Based on i! Plasma CVD methods are commonly used to deposit on.

しかし近年の研究により、プラズマCVD法で製造され
たa−3i薄膜等の非晶質薄膜は、プラズマによる膜の
損傷及び水素原子によるチャンバー内壁から膜中への不
純物の取り込み等のために、光電特性の向上に限界のあ
ることが明らかになってきた。
However, recent research has shown that amorphous thin films such as the a-3i thin film manufactured by plasma CVD are photosensitive due to damage to the film due to plasma and the introduction of impurities into the film from the inner wall of the chamber due to hydrogen atoms. It has become clear that there are limits to the improvement of characteristics.

そこで、最近では上記の問題点のない光CVD法が採用
されるようになってきた。この方法は光エネルギーによ
り原料ガスを励起し、ラジカルを生成させて基板上にa
=si薄膜等の非晶質薄膜を堆積させるものであり、直
接励起法と水銀増感励起法とがある。直接励起法はエキ
シマレーザ−等の極めて強い光を原料ガスに照射して原
料ガスを直接励起する方法であるが、まだ技術的に確立
された方法とは云い難い。他方、水銀増感励起法は原料
ガスに微量の水銀蒸気をドープし、光源からの照射光に
より水銀を励起し、生成した水銀ラジカルと原料ガスと
の反応によりa−3i薄膜等の非晶質薄膜を基板上に堆
積させる方法であり、徐々に使用されつつある。
Therefore, recently, a photo-CVD method that does not have the above-mentioned problems has been adopted. This method uses light energy to excite the raw material gas, generate radicals, and deposit a
This method involves depositing an amorphous thin film such as a Si thin film, and there are two methods: a direct excitation method and a mercury-sensitized excitation method. The direct excitation method is a method in which the source gas is directly excited by irradiating the source gas with extremely strong light such as an excimer laser, but it cannot be said to be a technically established method yet. On the other hand, in the mercury sensitized excitation method, a raw material gas is doped with a trace amount of mercury vapor, the mercury is excited by irradiation from a light source, and the generated mercury radicals react with the raw material gas to form amorphous materials such as a-3i thin films. It is a method of depositing thin films onto a substrate, and is increasingly being used.

従来、水銀増感による光CVD法は第2図に示すような
装置を用いて実施されていた。即ち、真空チャンバー1
内に基板2を水平に配置し、排気バルブ5を介して真空
チャンバー1内を減圧し、ヒーター3で基板2を加熱し
ながら、原料ガス供給ノズル4から例えばシラン類又は
これらのハロゲン化物、若しくはシリコンハロゲン化物
等の原料ガスに水銀をドープしたガスを供給する。真空
チャンバー1外には低圧水銀ランプ等の光源6が設けて
あり、真空チャンバー1に設けた紫外線を透過し易い合
成石英ガラス等からなる窓7を通して光を基板2の表面
上に垂直に照射することによって、水銀及び原料ガスの
光化学反応を生起せしめるようになっている。
Conventionally, the photo-CVD method using mercury sensitization has been carried out using an apparatus as shown in FIG. That is, vacuum chamber 1
The substrate 2 is placed horizontally in the vacuum chamber 1, the pressure inside the vacuum chamber 1 is reduced through the exhaust valve 5, and while the substrate 2 is heated by the heater 3, for example, silanes or their halides, or A gas doped with mercury is supplied to a raw material gas such as silicon halide. A light source 6 such as a low-pressure mercury lamp is provided outside the vacuum chamber 1, and irradiates light vertically onto the surface of the substrate 2 through a window 7 provided in the vacuum chamber 1 made of synthetic quartz glass or the like that easily transmits ultraviolet rays. This causes a photochemical reaction between mercury and the raw material gas.

しかし、かかる光OVD法においては、光が入射する窓
7の真空チャンバ−1側表面にも薄膜が付着することが
避けられなかった。このため成膜時間の経過に伴ない真
空チャンバー1内での光強度が次第に低下し、成膜速度
が漸減する欠点があった。又、第5図にa−8iGe薄
膜中のGe組戊比を例にとって示すように、光強度の変
化に伴ない基板2上に形成される非晶質薄膜の組成が変
わるので、一定の特性の非晶質薄膜を安定して形成する
ことが難しかった。
However, in this optical OVD method, it was inevitable that a thin film would also adhere to the surface of the window 7 on the vacuum chamber 1 side through which light enters. For this reason, there was a drawback that the light intensity within the vacuum chamber 1 gradually decreased as the film forming time progressed, and the film forming rate gradually decreased. Furthermore, as shown in FIG. 5 by taking the Ge composition ratio in the a-8iGe thin film as an example, the composition of the amorphous thin film formed on the substrate 2 changes as the light intensity changes, so that certain characteristics cannot be maintained. It was difficult to stably form an amorphous thin film.

このような光OVD装置の窓への薄膜付着を防止する方
法に関しては、日本電子工業振興協会による「新電子材
料に関する調査研究報告書■、光励起プロセス技術調査
報告1」昭和61年3月、第35〜38頁に詳述されて
いるが、いずれの方法も充分とは云い難かった。
Regarding the method of preventing thin film adhesion to the windows of optical OVD equipment, please refer to "Survey Report on New Electronic Materials ■, Photoexcitation Process Technology Research Report 1" by the Japan Electronic Industry Promotion Association, March 1986, Vol. Although detailed explanations are given on pages 35 to 38, none of the methods could be said to be sufficient.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はかかる従来の事情に鑑み、光OVD法によりな
がら、時間の経過に拘りなく常に一定の成膜速度で優れ
た特性の非晶質薄膜を安定して形成することのでさる方
法を提供しようとするものである。
In view of such conventional circumstances, the present invention provides a method for stably forming an amorphous thin film with excellent characteristics at a constant film formation rate regardless of the passage of time, using the optical OVD method. That is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は光OVD法により基板上に非晶質薄膜を形成す
る方法であって、真空チャンバー内の光強度を測定し、
この測定値に基すいて光源の出力を制御することにより
真空チャンバー内の光強度を経時的に一定とすることを
特徴とする。
The present invention is a method of forming an amorphous thin film on a substrate by optical OVD method, in which the light intensity in a vacuum chamber is measured,
The method is characterized in that the light intensity within the vacuum chamber is kept constant over time by controlling the output of the light source based on this measured value.

本発明方法を製造装置の一具体例を示した第1図により
詳しく説明する。
The method of the present invention will be explained in detail with reference to FIG. 1, which shows a specific example of a manufacturing apparatus.

通常の場合と同様に、真空チャンバー1内に基板2を水
平に配置し、排気バルブ5を介して真空チャンバー1内
を減圧し、ヒーター3で基板2を加熱しながら原料ガス
供給ノズル4から水銀をドープした原料ガスを供給する
。真空チャンバー1外に設けた低圧水銀ランプ等の光源
6から合成石英ガラス等からなる窓7を通して光を真空
チャンバー1内の基板2の表面上に垂直軽照射する。
As in the normal case, the substrate 2 is placed horizontally in the vacuum chamber 1, the pressure inside the vacuum chamber 1 is reduced through the exhaust valve 5, and while the substrate 2 is heated with the heater 3, mercury is supplied from the raw material gas supply nozzle 4. A raw material gas doped with is supplied. Light is vertically irradiated onto the surface of the substrate 2 inside the vacuum chamber 1 from a light source 6 such as a low-pressure mercury lamp provided outside the vacuum chamber 1 through a window 7 made of synthetic quartz glass or the like.

この時、真空チャンバー1内に設けた光電管等の通常の
光強度測定器8を用いて真空チャンバー1内の光強度を
測定し、この測定値に基ずいて光源6の出力を光源出力
制御部10により制御し、真空チャンバー1内の光強度
を常に一定とする。
At this time, the light intensity inside the vacuum chamber 1 is measured using a normal light intensity measuring device 8 such as a phototube installed inside the vacuum chamber 1, and the light source output control section adjusts the output of the light source 6 based on this measurement value. 10 to keep the light intensity inside the vacuum chamber 1 constant.

光強度測定器8が常に光の照射領域内に固定されていれ
ば、その表面に薄膜が付着して正確な測光ができなくな
るので、回転モータ9等の手段により光強度測定器8を
入射光の照射領域内に出し入れすることが好ましい。こ
の様な間欠的な光強度の測定によっても、真空チャンバ
ー1内の光強度を一定に維持することが充分可能である
If the light intensity measuring device 8 is always fixed within the light irradiation area, a thin film will adhere to its surface and accurate photometry will not be possible. It is preferable to take it in and out of the irradiation area. Even by such intermittent measurement of light intensity, it is possible to maintain the light intensity within the vacuum chamber 1 constant.

尚、本発明方法を実施する場合においても、窓7への薄
膜付着防止手段として既に知られているように窓7の真
空チャンバー1個の表面に蒸気圧が低く且つ紫外線を透
過する過フッ素化ポリエーチル(商品名7オンプリンオ
イル)を薄く塗布することは有効である。
In addition, even when carrying out the method of the present invention, perfluorination, which has a low vapor pressure and transmits ultraviolet rays, is applied to the surface of one vacuum chamber of the window 7, as already known as a means for preventing thin film adhesion to the window 7. It is effective to apply a thin layer of polyethyl (trade name: 7 Onpurin Oil).

〔作用〕[Effect]

本発明方法においては、光を入射する窓7に薄膜が付着
して真空チャンバー1内の光強度が低下すると、これを
光強度測定器8が検知して光源出力制御部10が光源6
の出力を増加させるので、成膜時間の経過に拘らず真空
チャンバー1内の光強度は常に一定となる。
In the method of the present invention, when a thin film adheres to the window 7 through which light enters and the light intensity inside the vacuum chamber 1 decreases, the light intensity measuring device 8 detects this and the light source output control section 10 controls the light source 6.
, the light intensity inside the vacuum chamber 1 is always constant regardless of the elapse of the film forming time.

従って、基板2上での非晶質薄膜の成膜速度は常に一定
となり、又光強度変化に依存する非晶質薄膜の膜質変化
をも防止することができる。
Therefore, the deposition rate of the amorphous thin film on the substrate 2 is always constant, and changes in the film quality of the amorphous thin film that depend on changes in light intensity can also be prevented.

〔実施例〕〔Example〕

第1図の装置を用いて、次の条件で水銀増感光OVD法
により基板上にa −SiG、薄膜を形成した。
Using the apparatus shown in FIG. 1, a thin film of a-SiG was formed on a substrate by a mercury-sensitized OVD method under the following conditions.

光 源 :低圧水銀ランプ(185mm、 254 n
m)原料ガス: SiH50sccm+GeH105c
an圧  力  :  0.30 torr水銀温度=
600 基板温度: 200 C 尚、窓7の真空チャンバ−1側表面にはフオンプリンオ
イルを塗布シた。
Light source: Low pressure mercury lamp (185mm, 254n
m) Raw material gas: SiH50sccm+GeH105c
an pressure: 0.30 torr mercury temperature =
600 Substrate temperature: 200 C Incidentally, the surface of the window 7 on the vacuum chamber 1 side was coated with Fonpurine oil.

この場合に、実施例1として回転モータ9により光強度
測定器8を光の照射領域内に間欠的に回転させて出し入
れしながら光強度を3分ごとに測定し、真空チャンバー
1内の光強度がIQ mJ/fi1m2になるように光
源出力制御部10を制御してa−3iGe薄膜を基板2
上に形成させた。
In this case, as a first embodiment, the light intensity measuring device 8 is intermittently rotated into and out of the light irradiation area by the rotary motor 9, and the light intensity is measured every 3 minutes, and the light intensity inside the vacuum chamber 1 is measured. The a-3iGe thin film is applied to the substrate 2 by controlling the light source output control unit 10 so that IQ mJ/fi1m2.
formed on top.

又、実施例2として、光強度測定器8を常に光の照射領
域内に固定したま\光強度を測定し、同じく光強度が1
0m欧惺になるように光源出力制御部10を制御してa
−3iGe薄膜を基板2上に形成させた。実施例1及び
2において、光強度の測定には低圧水銀ランプの254
 mmの共鳴線を用いた。
In addition, as Example 2, the light intensity was measured while the light intensity measuring device 8 was always fixed within the light irradiation area, and the light intensity was also 1.
Control the light source output control unit 10 so that the distance is 0m.
-3iGe thin film was formed on substrate 2. In Examples 1 and 2, a low-pressure mercury lamp of 254 liters was used to measure the light intensity.
A resonance line of mm was used.

更に比較例として、従来方法と同様に真空チャンバー1
内の初期光強度を10mW膚に設定したま\、光源出力
の制御を行なわずにa−3iGe薄膜を基板2上に形成
させた。
Furthermore, as a comparative example, vacuum chamber 1 was
An a-3iGe thin film was formed on the substrate 2 with the initial light intensity set at 10 mW and without controlling the light source output.

第3図に、形成した各a−3iGe薄膜の膜厚と成膜時
間との関係を示した。比較例では成膜時間の経過と共に
膜の付着によって窒7が曇るため光強度が減少し、成膜
速度が漸減してゆくのに対して本発明の実施例1では成
膜速度が常に一定であることが判る。又、実施例2では
成膜時間の経過と共に成膜速度が上昇しているが、これ
は固定した光強度測定器に膜が徐々に付着してゆき、そ
の分だけ光強度を弱く測定した為である。
FIG. 3 shows the relationship between the film thickness and film-forming time of each a-3iGe thin film formed. In the comparative example, as the film deposition time progresses, the nitrogen 7 becomes cloudy due to the adhesion of the film, so the light intensity decreases and the film formation rate gradually decreases, whereas in Example 1 of the present invention, the film formation rate is always constant. It turns out that there is something. In addition, in Example 2, the film formation rate increased as the film formation time progressed, but this was because the film gradually adhered to the fixed light intensity measuring device, and the light intensity was measured accordingly. It is.

又、実施例1と比較例で得られたa−8iGe薄膜につ
いて、Ge組成比の膜厚方向プロファイルを夫々E S
 CA (E/ectron 5pectroscop
y for Chemi−aal Analysis)
により測定し、第4図に示した。
In addition, for the a-8iGe thin films obtained in Example 1 and Comparative Example, the Ge composition ratio profile in the film thickness direction was determined by E S
CA (E/ectron 5pectroscope
y for Chemi-aal Analysis)
The results are shown in FIG.

比較例では成膜時間の経過に伴ない(表面側になる程)
 Ge量が減少しているのに対して、実施例1では膜厚
方向にほぼ一定のGe組成比が得られ、均質なa−3i
Ge薄膜が形成されたことが判る。
In the comparative example, as the film formation time progresses (the closer it gets to the surface)
In contrast to the decrease in the Ge content, in Example 1, a nearly constant Ge composition ratio was obtained in the film thickness direction, resulting in a homogeneous a-3i film.
It can be seen that a Ge thin film was formed.

尚、本発明方法は実施例に示したa−3iGe薄膜以外
の非晶質薄膜の形成にも適用でき、又光CVD法であれ
ば水銀増感法ばかりでなく直接励起法であっても良いこ
とは云うまでもない。
It should be noted that the method of the present invention can be applied to the formation of amorphous thin films other than the a-3iGe thin films shown in the examples, and as long as it is a photo-CVD method, not only the mercury sensitization method but also the direct excitation method may be used. Needless to say.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、成膜時間の経過に拘らず真空チャンバ
ー1内の光強度を常に一定とすることができるので、経
時的に一定の成膜速度で常に一定膜質を有する優れた非
晶質薄膜を基板上に安定して形成することができる。
According to the present invention, the light intensity within the vacuum chamber 1 can be kept constant regardless of the elapse of the film formation time, so that an excellent amorphous film with constant film quality can be obtained at a constant film formation rate over time. A thin film can be stably formed on a substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置の一具体例を
示す概略断面図であり、第2図は従来の装置の概略断面
図である。第3図は実施例と比較例についてa−3iG
e薄膜の膜厚と成膜時間の関係を示すグラフであり、第
4図は同じ(a−8iGe薄膜の膜厚方向のGe組成比
を示すグラフである。 第5図は光OVD法による光強度とa−3iGe薄膜の
Ge組成比の関係を示すグラフである。 1・・真空チャンバー 2・・基板 3・・ヒーター4
・・原料ガス供給ノズル 6・・光源7・・窓 8・・
光強度測定器 9・・回転モータ 1o・・光源出力制御部第2図 第3図 成膜時間(分)
FIG. 1 is a schematic sectional view showing a specific example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a schematic sectional view of a conventional apparatus. Figure 3 shows a-3iG for the example and comparative example.
This is a graph showing the relationship between the film thickness and film formation time of the e thin film, and Fig. 4 is the same (a-8i) graph showing the Ge composition ratio in the film thickness direction of the thin film. It is a graph showing the relationship between the strength and the Ge composition ratio of the a-3iGe thin film. 1. Vacuum chamber 2. Substrate 3. Heater 4
・・Raw material gas supply nozzle 6・・Light source 7・・Window 8・・
Light intensity measuring device 9...Rotating motor 1o...Light source output control section Fig. 2 Fig. 3 Film forming time (minutes)

Claims (2)

【特許請求の範囲】[Claims] (1)光CVD法により基板上に非晶質薄膜を形成する
方法において、真空チャンバー内の光強度を測定し、こ
の測定値に基ずいて光源の出力を制御することにより真
空チャンバー内の光強度を経時的に一定とすることを特
徴とする非晶質薄膜の形成方法。
(1) In a method of forming an amorphous thin film on a substrate using the photoCVD method, the light intensity in the vacuum chamber is measured and the output of the light source is controlled based on this measurement value. A method for forming an amorphous thin film characterized by keeping the strength constant over time.
(2)真空チャンバー内において光強度測定器を光の照
射領域内に出し入れして、間欠的に光強度を測定するこ
とを特徴とする、特許請求の範囲(1)項記載の非晶質
薄膜の形成方法。
(2) The amorphous thin film according to claim (1), wherein the light intensity is intermittently measured by moving a light intensity measuring device into and out of the light irradiation area in a vacuum chamber. How to form.
JP62255508A 1987-10-09 1987-10-09 Formation of amorphous thin-film Pending JPH0198216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62255508A JPH0198216A (en) 1987-10-09 1987-10-09 Formation of amorphous thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62255508A JPH0198216A (en) 1987-10-09 1987-10-09 Formation of amorphous thin-film

Publications (1)

Publication Number Publication Date
JPH0198216A true JPH0198216A (en) 1989-04-17

Family

ID=17279726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62255508A Pending JPH0198216A (en) 1987-10-09 1987-10-09 Formation of amorphous thin-film

Country Status (1)

Country Link
JP (1) JPH0198216A (en)

Similar Documents

Publication Publication Date Title
US4585671A (en) Formation process of amorphous silicon film
US5214002A (en) Process for depositing a thermal CVD film of Si or Ge using a hydrogen post-treatment step and an optional hydrogen pre-treatment step
US4581248A (en) Apparatus and method for laser-induced chemical vapor deposition
JPH05267177A (en) Optical chemical vapor deposition system
JPH0639703B2 (en) Deposited film formation method
JPH0198216A (en) Formation of amorphous thin-film
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
JPS60117712A (en) Forming method of thin film
JPS60128265A (en) Device for forming thin film in vapor phase
JPH0587171B2 (en)
JPH0639702B2 (en) Deposited film formation method
JPS63219585A (en) Production of amorphous thin film
Dekhtyar et al. Interface of silicon nitride nanolayers with oxygen deficiency
JPH0651908B2 (en) Method of forming thin film multilayer structure
JP2637121B2 (en) Photoexcitation reactor
JPS62139875A (en) Formation of deposited film
JPS62227090A (en) Formation of amorphous thin film
JPS60219728A (en) Forming method of deposited film
De et al. Effect of deposition parameters on the properties of hydrogenated amorphous silicon films prepared by photochemical vapour deposition
JPH0645882B2 (en) Deposited film formation method
JPH0682616B2 (en) Deposited film formation method
JP3024543B2 (en) Crystalline silicon film and method of manufacturing the same
JPS6343313A (en) Manufacture of amorphous semiconductor thin film
JPS60249334A (en) Formation of thin film
JPS6343314A (en) Manufacture of amorphous semiconductor thin film