JPS621209Y2 - - Google Patents

Info

Publication number
JPS621209Y2
JPS621209Y2 JP1981171991U JP17199181U JPS621209Y2 JP S621209 Y2 JPS621209 Y2 JP S621209Y2 JP 1981171991 U JP1981171991 U JP 1981171991U JP 17199181 U JP17199181 U JP 17199181U JP S621209 Y2 JPS621209 Y2 JP S621209Y2
Authority
JP
Japan
Prior art keywords
molten metal
skull
rotating body
powder
receiving part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981171991U
Other languages
Japanese (ja)
Other versions
JPS5878103U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17199181U priority Critical patent/JPS5878103U/en
Publication of JPS5878103U publication Critical patent/JPS5878103U/en
Application granted granted Critical
Publication of JPS621209Y2 publication Critical patent/JPS621209Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nozzles (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案は、遠心噴霧用回転体に関するもので
ある。 粉末製造法には従来より種々の方法があるが、
その一つに遠心噴霧法がある。この遠心噴霧法
は、溶湯流に対して遠心力を付与することによつ
て当該溶湯を飛散霧化させて粉末を得る方法であ
り、一般に装置が比較的簡単なもので済むため設
備費が安価であり、溶湯流の飛散霧化に必要なエ
ネルギも小さく、しかも汚染の少ない粉末を得る
ことができるという利点を有している。この遠心
噴霧法を実施する装置においても種々の構造のも
のがあるが、通常は、高速で回転している回転体
の受湯部に溶湯流を供給し、初期において上記受
湯部上に前記溶湯流が凝固したスカル(skull)
を形成し、スカル形成後にこのスカル上に引続い
て溶湯流を供給して該溶湯流を遠心力によつて飛
散霧化させることにより粉末を得る構造のもので
ある。 この場合、回転体は高速で回転しているため、
受湯部で形成されたスカルに多少なりとも不均衡
が生ずると、このスカルが回転体より離脱して塊
状で飛散し、装置に損傷を与えるなどの事故をひ
き起すだけでなく、スカルの離脱後に再度新規の
溶湯流によつて回転体の受湯部上でスカルが形成
されることとなるため、溶湯供給量に対する粉末
生成量が少なくなつて粉末収率が低下するなどの
問題点を有していた。 この考案は、上記した従来の欠点を解消するた
めになされたもので、回転体の受湯部上で溶湯流
が凝固して形成されたスカルの離脱を防ぐことが
できる遠心噴霧用回転体を提供することを目的と
している。 すなわち、この考案は、回転体の受湯部に溶湯
流を供給して該溶湯流に遠心力を与えることによ
り飛散霧化させて粉末を製造する遠心噴霧装置に
おいて、前記回転体の受湯部に、該受湯部上で凝
固した前記溶湯のスカルの前記回転体の回転時に
おける離脱を防ぐことができる凹状スカル係止部
を設けたことを特徴としている。 以下、この考案の実施例を図面に基いてさらに
詳細に説明する。 第1図はこの考案の第一実施例を示す図であつ
て、遠心噴霧装置のとくに回転体の部分を示して
いる。この回転体1は、図示しないるつぼまたは
タンデイツシユ等から供給される溶湯流2を受け
る受湯面3aを有する受湯部3と、前記受湯部3
の底面側に配設した断熱材4と、受湯部3の囲り
に配設した受湯部固定部材5と、この受湯部固定
部材5を介して前記受湯部3および断熱材4を固
定保持する保持部材6とから主として構成されて
おり、この保持部材6を図示しないモータに連結
した回転軸7に固定して、回転体1の全体が高速
回転可能であるようになつている。さらに、前記
受湯部3の略中央部分には窪み形の凹状スカル係
止部3bを設けている。 次に、上記溶湯流2から粉末を製造する状況に
ついて説明すると、先ず、図示しない電動モータ
やエアモータ等によつて回転体1を高速で回転
(例えば10000〜15000rpm)させる。次いで図示
しないるつぼまたはタンデイツシユ等から溶湯流
2を回転体1の受湯部3上に供給する。このと
き、溶湯流2を受湯部3上に供給した初期におい
ては、受湯部3に形成した窪み形の凹状スカル係
止部3b内および受湯面3a上で、前記溶湯が凝
固したスカル9が形成される。引続いて溶湯流2
を供給すると、該溶湯流2は凝固することなく上
記スカル9上で遠心力によつて広がり、続いてス
カル9上から離れて飛散霧化して粉末10とな
る。このときのスカル9の厚さは、受湯部3の温
度や熱伝導度、溶湯流2の温度や流量によつて定
まつてくるが、円形状の受湯面3a上においてす
べて同一であるとはいえず、時によつてはスカル
9の厚さに下均衡を生じる。しかし、スカル9は
その一部が窪み形の凹状スカル係止部3b内で凝
固しているので前記不均衡が生じたとしてもこれ
によつてスカル9が塊状で飛散することはない。 第2図はこの考案の第二実施例を示す図であつ
て、遠心噴霧装置のとくに回転体の部分を示して
いる。この回転体11は、溶湯流2を受ける受湯
面13aを有すると共に略中央部分に貫通孔より
なる凹状スカル係止部13bを有する受湯部13
と、該受湯部13の底面側に配設した良熱伝導性
の支持板14と、受湯部13の囲りに配設した受
湯部固定部材15と、この受湯部固定部材15を
介して前記受湯部13および支持板14を固定保
持する保持部材16とから主として構成され、保
持部材16の前記支持板底部に水冷空間18が形
成された構造をなしている。さらに、回転体11
の保持部材16は、シール用Oリング19を介し
て回転軸17に固定されて、回転体11の全体が
高速回転可能であるようになつている。また、回
転軸17は二重管構造となつており、内管17a
より供給した冷却水20を水冷空間18に入れ、
水冷空間18内の冷却水20を内管17aと外管
17bの間より排出して、支持板14を介してス
カル9の冷却を行いうる構造となつている。 次に、上記回転体11を使用した場合の作用に
ついて説明すると、先ず、図示しないモータによ
つて回転体11を高速で回転させ、次いで溶湯流
2を回転体11の受湯部13上に供給する。ここ
で、溶湯流2は貫通孔形の凹状スカル係止部13
b内に入り、続いて受湯面13a上に流れて上記
溶湯が凝固したスカル9が形成される。引続いて
溶湯流2を供給すると、該溶湯流2は凝固するこ
となく上記スカル9上で遠心力によつて広がり、
続いてスカル9上から離れて飛散霧化して粉末1
0となる。このとき、スカル9の厚さに不均衡を
生じたとしても、スカル9の一部は凹状スカル係
止部13b内で凝固し、しかも良熱伝導性の支持
板14を介して冷却水20によつて冷却されてい
るため、溶湯流2の温度が高い場合であつたりま
た流量が多い場合であつたりしたときでもスカル
9の形成が良好に維持されるので、スカル9が飛
散することはない。このように、冷却水20を供
給してスカル9の一部を強制冷却することによつ
て、スカル9の安定性を一層増すことができる。 実験例 1 この実験では、第1図に示す形状の回転体1を
用いた遠心噴霧装置によつて粉末の製造実験を行
つた。この実験条件を第1表に示す。
This invention relates to a rotating body for centrifugal spraying. There are various methods for producing powder, but
One of them is the centrifugal spray method. This centrifugal atomization method applies centrifugal force to the molten metal flow to disperse and atomize the molten metal to obtain powder, and generally requires relatively simple equipment, resulting in low equipment costs. This has the advantage that the energy required for scattering and atomizing the molten metal stream is small, and powder with little contamination can be obtained. There are various types of devices for carrying out this centrifugal spraying method, but usually, a flow of molten metal is supplied to a receiving section of a rotating body rotating at high speed, and the above-mentioned metal is initially placed on the receiving section. Skull made of solidified molten metal flow
After the scalp is formed, a molten metal flow is successively supplied onto the skull, and the molten metal flow is dispersed and atomized by centrifugal force to obtain powder. In this case, the rotating body is rotating at high speed, so
If there is some imbalance in the skulls formed in the hot water receiving section, the skulls will separate from the rotating body and scatter in chunks, which may not only cause accidents such as damage to the equipment, but also cause the skulls to become detached. Later, a new flow of molten metal will cause a skull to be formed on the receiving part of the rotating body, resulting in problems such as a decrease in the amount of powder produced relative to the amount of molten metal supplied, resulting in a decrease in powder yield. Was. This idea was made in order to eliminate the above-mentioned conventional drawbacks, and it is a rotating body for centrifugal spraying that can prevent the skull formed by solidification of the molten metal flow on the receiving part of the rotating body from detaching. is intended to provide. That is, this invention provides a centrifugal spraying device that produces powder by supplying a molten metal flow to a molten metal receiving portion of a rotary body and applying centrifugal force to the molten metal flow to disperse and atomize the molten metal flow. The present invention is characterized in that a concave skull locking portion is provided that can prevent the skull of the molten metal solidified on the metal receiving portion from coming off when the rotating body is rotated. Hereinafter, embodiments of this invention will be described in more detail based on the drawings. FIG. 1 is a diagram showing a first embodiment of this invention, and particularly shows the rotating body portion of the centrifugal spray device. The rotating body 1 includes a receiving section 3 having a receiving surface 3a for receiving a molten metal flow 2 supplied from a crucible or tundish (not shown), and the receiving section 3.
The hot water receiving portion 3 and the heat insulating material 4 are connected to the hot water receiving portion 3 and the heat insulating material 4 through the hot water receiving portion fixing member 5. The holding member 6 is fixed to a rotating shaft 7 connected to a motor (not shown), so that the entire rotating body 1 can rotate at high speed. . Furthermore, a recessed skull locking portion 3b is provided approximately at the center of the hot water receiving portion 3. Next, the situation of producing powder from the molten metal flow 2 will be described. First, the rotating body 1 is rotated at high speed (for example, 10,000 to 15,000 rpm) by an electric motor, an air motor, etc. (not shown). Next, the molten metal flow 2 is supplied onto the molten metal receiving portion 3 of the rotating body 1 from a crucible or tundish (not shown) or the like. At this time, in the initial period when the molten metal flow 2 is supplied onto the receiving part 3, the molten metal solidifies in the skull locking part 3b formed in the receiving part 3 and on the receiving surface 3a. 9 is formed. Subsequently, molten metal flow 2
When supplied, the molten metal stream 2 spreads on the skull 9 due to centrifugal force without solidifying, and then leaves the skull 9 and becomes atomized into powder 10. The thickness of the skull 9 at this time is determined by the temperature and thermal conductivity of the molten metal receiving part 3 and the temperature and flow rate of the molten metal flow 2, but it is all the same on the circular molten metal receiving surface 3a. However, sometimes there is a downward balance in the thickness of the skull 9. However, since a portion of the skull 9 is solidified within the concave skull locking portion 3b, even if the imbalance occurs, the skull 9 will not be scattered in chunks. FIG. 2 is a diagram showing a second embodiment of this invention, and particularly shows the rotating body portion of the centrifugal spray device. The rotating body 11 has a receiving surface 13a for receiving the molten metal flow 2, and a receiving portion 13 having a concave skull locking portion 13b formed of a through hole approximately at the center.
, a support plate 14 with good thermal conductivity disposed on the bottom side of the hot water receiving section 13 , a hot water receiving section fixing member 15 disposed around the hot water receiving section 13 , and this hot water receiving section fixing member 15 It is mainly composed of a holding member 16 that fixes and holds the hot water receiving part 13 and the support plate 14 via the holding member 16, and has a structure in which a water cooling space 18 is formed at the bottom of the support plate of the holding member 16. Furthermore, the rotating body 11
The holding member 16 is fixed to the rotating shaft 17 via a sealing O-ring 19, so that the entire rotating body 11 can rotate at high speed. Further, the rotating shaft 17 has a double tube structure, and an inner tube 17a
The cooling water 20 supplied from the above is put into the water cooling space 18,
The cooling water 20 in the water cooling space 18 is discharged from between the inner tube 17a and the outer tube 17b, and the skull 9 can be cooled through the support plate 14. Next, to explain the operation when using the rotating body 11, first, the rotating body 11 is rotated at high speed by a motor (not shown), and then the molten metal flow 2 is supplied onto the molten metal receiving portion 13 of the rotating body 11. do. Here, the molten metal flow 2 is a concave skull locking part 13 in the form of a through hole.
b, and then flows onto the receiving surface 13a to form a skull 9 in which the molten metal solidifies. When the molten metal stream 2 is subsequently supplied, the molten metal stream 2 spreads on the skull 9 due to centrifugal force without solidifying.
Next, it separates from the top of Skull 9 and becomes atomized into powder 1.
It becomes 0. At this time, even if there is an imbalance in the thickness of the skull 9, a part of the skull 9 will solidify within the concave skull locking part 13b, and will be transferred to the cooling water 20 via the support plate 14, which has good thermal conductivity. Since the molten metal stream 2 is cooled, the formation of the skull 9 is well maintained even when the temperature of the molten metal stream 2 is high or the flow rate is large, so the skull 9 does not scatter. . By supplying the cooling water 20 and forcibly cooling a portion of the skull 9 in this manner, the stability of the skull 9 can be further increased. Experimental Example 1 In this experiment, a powder production experiment was conducted using a centrifugal spray device using a rotating body 1 having the shape shown in FIG. The experimental conditions are shown in Table 1.

【表】【table】

【表】 実験の結果、上記第1図に示す回転体1を用い
た場合に遠心噴霧終了までの間においてスカルの
離脱は全く見られなかつた。 他方、受湯部の表面に溝状および突起状の係止
部を設けない従来の回転体を用い、実験条件を第
1表に示す内容に準拠させて行つたところ、溶湯
供給量が2.1Kgとなつた時点でスカルの離脱を生
じた。 実験例 2 この実験では、第1図および第2図に示す形状
の回転体1,11を用いた遠心噴霧装置によつて
粉末の製造実験を行つた。この実験条件を第2表
に示す。
[Table] As a result of the experiment, when the rotating body 1 shown in FIG. 1 was used, no skull detachment was observed until the centrifugal spraying was completed. On the other hand, when a conventional rotating body without groove-like or protruding locking parts on the surface of the receiving part was used and the experimental conditions were conducted in accordance with the contents shown in Table 1, the amount of molten metal supplied was 2.1 kg. At that point, Skull's departure occurred. Experimental Example 2 In this experiment, a powder production experiment was conducted using a centrifugal spraying apparatus using rotating bodies 1 and 11 having the shapes shown in FIGS. 1 and 2. The experimental conditions are shown in Table 2.

【表】 実験の結果、第2図の水冷構造を用いた場合に
は溶湯供給量25Kgの噴霧終了時までスカルの離脱
は見られなかつたが、第1図の水冷構造を用いな
い場合には溶湯供給量8.3Kg,13.6Kg,17.0Kgの各
時点においてスカルの離脱飛散が見られ、粉末製
造の際の粉末収率が若干低下した。 以上説明してきたように、この考案によれば、
遠心噴霧装置に使用する回転体の受湯部に、該受
湯部上で凝固した溶湯のスカルの離脱を防ぐ凹状
スカル係止部を設けることにしたから、粉末の製
造時において回転体の受湯部から該受湯部の表面
に形成されたスカルが離脱するのを極力防ぐこと
ができ、スカルの離脱に基く粉末収率の著しい低
下を回避することが可能であるなどのすぐれた効
果を有する。
[Table] As a result of the experiment, when the water cooling structure shown in Fig. 2 was used, no skull separation was observed until the end of spraying when the molten metal was supplied at an amount of 25 kg, but when the water cooling structure shown in Fig. 1 was not used, no skull detachment was observed. Skull detachment and scattering was observed at each point of molten metal supply amount of 8.3Kg, 13.6Kg, and 17.0Kg, and the powder yield during powder production decreased slightly. As explained above, according to this idea,
Since we decided to provide a recessed skull locking part on the receiving part of the rotary body used in the centrifugal spraying device to prevent the skull of the molten metal solidified on the receiving part from coming off, it is possible to prevent the receiving part of the rotating body during powder production. It has excellent effects such as being able to prevent skulls formed on the surface of the molten metal receiving part from detaching from the hot water part as much as possible, and avoiding a significant decrease in powder yield due to the detachment of skulls. have

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの考案の各実施例にお
ける遠心噴霧装置用回転体の各々断面説明図であ
る。 1,11……回転体、2……溶湯流、3,13
……受湯部、3a,13a……受湯面、3b,1
3b……凹状スカル係止部、7,17……回転
軸、9……スカル、10……粉末。
FIGS. 1 and 2 are explanatory cross-sectional views of a rotating body for a centrifugal spray device in each embodiment of this invention. 1, 11... Rotating body, 2... Molten metal flow, 3, 13
... Hot water receiving part, 3a, 13a... Hot water receiving surface, 3b, 1
3b... Concave skull locking part, 7, 17... Rotating shaft, 9... Skull, 10... Powder.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 回転体の受湯部に溶湯流を供給して該溶湯流に
遠心力を与えることにより飛散霧化させて粉末を
製造する遠心噴霧装置において、前記回転体の受
湯部に、該受湯部上で凝固した前記溶湯のスカル
の離脱を防ぐ凹状スカル係止部を設けたことを特
徴とする遠心噴霧用回転体。
In a centrifugal spraying device that produces a powder by supplying a molten metal flow to a molten metal receiving part of a rotating body and applying a centrifugal force to the molten metal flow to disperse and atomize the molten metal flow, the molten metal receiving part is provided in a molten metal receiving part of the rotary body. A rotating body for centrifugal spraying, characterized in that a concave skull locking part is provided to prevent the skull of the molten metal solidified above from coming off.
JP17199181U 1981-11-20 1981-11-20 Rotating body for centrifugal spraying Granted JPS5878103U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17199181U JPS5878103U (en) 1981-11-20 1981-11-20 Rotating body for centrifugal spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17199181U JPS5878103U (en) 1981-11-20 1981-11-20 Rotating body for centrifugal spraying

Publications (2)

Publication Number Publication Date
JPS5878103U JPS5878103U (en) 1983-05-26
JPS621209Y2 true JPS621209Y2 (en) 1987-01-13

Family

ID=29963903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17199181U Granted JPS5878103U (en) 1981-11-20 1981-11-20 Rotating body for centrifugal spraying

Country Status (1)

Country Link
JP (1) JPS5878103U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2747919T3 (en) * 2011-08-26 2017-10-31 Primetals Tech Limited Slag granulation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138670A (en) * 1974-09-30 1976-03-31 Matsushita Electric Works Ltd SHAKUHOGATADENJISHAKUSOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138670A (en) * 1974-09-30 1976-03-31 Matsushita Electric Works Ltd SHAKUHOGATADENJISHAKUSOCHI

Also Published As

Publication number Publication date
JPS5878103U (en) 1983-05-26

Similar Documents

Publication Publication Date Title
US4207040A (en) Rotary atomization means for the production of metal powder
JPS621209Y2 (en)
JPS633003B2 (en)
JPS6220245B2 (en)
JPH10263749A (en) Production of molded pig iron and apparatus therefor
JPS63230807A (en) Rotary disk for centrifugal atomization
SE8307155L (en) DISTRIBUTION PROCEDURE AVERAGE ROTATION
JPH0521047B2 (en)
JPH06100353A (en) Production of microcapsule for refractory
JPS62112709A (en) Production of metallic powder
JPS57190643A (en) Granulating method and apparatus therefor
JP2632379B2 (en) Mold cooling method and apparatus
JPH02101103A (en) Method and apparatus for atomizing molten metal
JPH05177157A (en) Manufacture of microcapsule
JPS637308Y2 (en)
JP2915117B2 (en) Manufacturing method of metal particles
Singer Metal Forming e. g. Casting, Process and Apparatus
JPS5861947A (en) Casting method for mold
JPS62112710A (en) Production of metallic powder
Chang et al. Numerical study of fluidity in evaporative pattern process including latent heat effect
JPS6211933Y2 (en)
JPH0543973Y2 (en)
Brugger Mold Facing for Cladding a Centrifugal Mould for for Casting Copper or Its Alloys
JPS5941059Y2 (en) Synthetic resin cooling and solidification equipment
JPS5835901U (en) Flake substance manufacturing equipment