JP2915117B2 - Manufacturing method of metal particles - Google Patents

Manufacturing method of metal particles

Info

Publication number
JP2915117B2
JP2915117B2 JP2249604A JP24960490A JP2915117B2 JP 2915117 B2 JP2915117 B2 JP 2915117B2 JP 2249604 A JP2249604 A JP 2249604A JP 24960490 A JP24960490 A JP 24960490A JP 2915117 B2 JP2915117 B2 JP 2915117B2
Authority
JP
Japan
Prior art keywords
molten metal
metal
liquid
temperature
continuous flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2249604A
Other languages
Japanese (ja)
Other versions
JPH04128305A (en
Inventor
朋晋 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCHIHASHI ESUTETSUKU KK
Original Assignee
UCHIHASHI ESUTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UCHIHASHI ESUTETSUKU KK filed Critical UCHIHASHI ESUTETSUKU KK
Priority to JP2249604A priority Critical patent/JP2915117B2/en
Publication of JPH04128305A publication Critical patent/JPH04128305A/en
Application granted granted Critical
Publication of JP2915117B2 publication Critical patent/JP2915117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F2009/0804Dispersion in or on liquid, other than with sieves
    • B22F2009/0812Pulverisation with a moving liquid coolant stream, by centrifugally rotating stream

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属粒体の製造方法に関するものである。The present invention relates to a method for producing metal particles.

(従来の技術) 金属粒体の製造方法として、冷却水を入れたドラムを
高速回転させ、その冷却水を遠心力によって高速回転の
液層に形成し、噴射ノズルより溶融金属の連続流を高速
回転中の冷却水層の壁に向けて噴射し、この連続流に冷
却水層の壁との接触によって剪断力を作用させて小滴に
分断し、この小滴を冷却水により凝固して固体粒体に成
形することが公知である(特許出願公告平1-49769号公
報)。
(Prior art) As a method for producing metal particles, a drum containing cooling water is rotated at a high speed, and the cooling water is formed into a high-speed rotating liquid layer by centrifugal force. The jet is injected toward the wall of the rotating cooling water layer, and the continuous flow contacts the wall of the cooling water layer to apply a shearing force to break the droplet into small droplets. It is known to form particles (Japanese Patent Application Publication No. Hei 1-49769).

しかし、この方法においては、溶融金属の連続流に、
回転中の冷却水層との接触時に剪断力を作用させるに
は、回転冷却水層の周速度を溶融金属の連続流の水層面
に沿う速度成分よりも大きくする必要があり、溶融金属
の連続流が回転冷却水層の水面に接触した瞬間に、その
接触面に上記両速度の差に基づく運動エネルギーの急峻
な変化のために衝撃が発生し、小滴が針状になってしま
い、粒体の球状化が困難である。
However, in this method, the continuous flow of molten metal
In order to apply a shearing force at the time of contact with the rotating cooling water layer, the peripheral velocity of the rotating cooling water layer needs to be larger than the velocity component of the continuous flow of the molten metal along the water layer surface. At the moment when the flow comes into contact with the surface of the rotating cooling water layer, an impact is generated on the contact surface due to a steep change in kinetic energy based on the difference between the two velocities, and the droplets become needle-like, and the droplets become needle-like. Difficulty spheroidizing the body.

従来、上記溶融金属流を、金属の融点よりも600℃以
上高い温度で形成し、回転冷却水層の周速度と溶融金属
の連続流の水層面に沿う速度成分とをほぼ同速度にして
金属粒体を製造することが公知である(特許出願公開平
2-122009号公報)。この方法によれば、回転冷却水層の
周速度と溶融金属の連続流の水層面に沿う速度成分との
差が実質上なくなり、上記衝撃を回避でき、粒体の球状
化を図ることが可能である。
Conventionally, the molten metal flow is formed at a temperature higher than the melting point of the metal by 600 ° C. or more, and the peripheral speed of the rotating cooling water layer and the velocity component along the water layer surface of the continuous flow of the molten metal are set to be substantially the same, and the metal is formed. It is known to produce granules (Patent Application Publication
2-122009). According to this method, the difference between the peripheral velocity of the rotating cooling water layer and the velocity component of the continuous flow of the molten metal along the surface of the water layer is substantially eliminated, and the above impact can be avoided, and the particles can be made spherical. It is.

(解決しようとする課題) しかしながら、金属をその融点より600℃以上も高い
高温に加熱しなければならず、高温化のために設備コス
トの上昇が避けられず、作業も容易ではない。
(Problem to be Solved) However, the metal must be heated to a high temperature that is higher than its melting point by 600 ° C. or more, and an increase in equipment cost is inevitable due to the high temperature, and work is not easy.

上記のように、回転冷却水層の周速度と溶融金属の連
続流の水層面に沿う速度成分とをほぼ同速度にした場
合、溶融金属の連続流が小滴に分断されるのは、空気接
触下での溶融金属の表面エネルギーと水接触下での溶融
金属の表面エネルギーとが異なり、従って、溶融金属の
連続流が水に接触した時に表面張力によって球状化し、
その球状化のために分断が生じるものと推察できる。本
発明者においては、回転冷却水層の周速度と溶融金属の
連続流の水層面に沿う速度成分とを等速度にしたときの
金属粒体の粒径が溶融金属噴射ノズルの噴射口径の2〜
3倍になることを観察しており、この観察結果からも、
上記推察の妥当性を裏付け得る。
As described above, when the peripheral velocity of the rotating cooling water layer and the velocity component of the continuous flow of the molten metal along the water layer surface are substantially the same, the continuous flow of the molten metal is divided into small droplets by air. The surface energy of the molten metal under contact and the surface energy of the molten metal under water contact are different, so that the continuous flow of molten metal becomes spherical by surface tension when it comes into contact with water,
It can be inferred that fragmentation occurs due to the spheroidization. In the present inventor, when the peripheral velocity of the rotary cooling water layer and the velocity component of the continuous flow of the molten metal along the water layer surface are made equal, the particle diameter of the metal particles is 2 times the injection diameter of the molten metal injection nozzle. ~
We observe that it becomes three times, and from this observation result,
This may support the validity of the above assumption.

本発明者において、上記推察に至る過程で種々の実験
を行なったところ、冷却水に、常温において水よりも揮
発性の高い液体を加えれば、溶融金属の温度を金属の融
点より100〜600℃だけ高い範囲にとどめても、粒体の球
状化を充分に達成し得ることを知った。このように、粒
体の球状化を促進できる理由は、揮発性液体のために冷
却液体との接触下での溶融金属の表面エネルギーが高く
なって、その溶融金属の表面張力が増大すること、分断
された溶融金属の小滴が揮発性液体の気化ガスで覆わ
れ、小滴の冷却速度が緩和されて表面張力による球状化
がよく進行してから凝固が終了すること等によると考え
られる。
In the present inventor, when various experiments were performed in the process leading to the above inference, it was found that if a liquid having a higher volatility than water at room temperature was added to the cooling water, the temperature of the molten metal was 100 to 600 ° C. higher than the melting point of the metal. It has been found that the spheroidization of the granules can be sufficiently achieved even if the range is kept as high as possible. Thus, the reason that the spheroidization of the granules can be promoted is that the surface energy of the molten metal under contact with the cooling liquid increases due to the volatile liquid, and the surface tension of the molten metal increases, It is considered that the divided molten metal droplets are covered with the volatile gas vaporized gas, the cooling speed of the droplets is relaxed, spheroidization by surface tension progresses well, and solidification ends.

本発明の目的は上記の知見に基づき、冷却水層の周速
度と溶融金属の連続流の速度とをほぼ同速にし、かつ溶
融金属の温度を該金属の融点より100〜600℃高い範囲内
にとどめる条件のもとで、ほぼ球状の金属粒体を製造し
得る方法を提供することにある。
The object of the present invention is to make the peripheral speed of the cooling water layer and the speed of the continuous flow of the molten metal substantially the same speed, and set the temperature of the molten metal within the range of 100 to 600 ° C. higher than the melting point of the metal based on the above findings. It is an object of the present invention to provide a method capable of producing substantially spherical metal particles under the condition that the metal particles are kept at a minimum.

(課題を解決するための手段) 本発明に係わる金属粒体の製造方法は金属を融点より
100℃〜600℃高い温度で噴射ノズルより、回転冷却液に
向けその液面に沿う噴射速度成分を冷却液の回転周速度
にほぼ等しくして噴射し、上記冷却液には水と水よりも
常温において揮発性の液体との混合物を使用することを
特徴とする構成である。
(Means for Solving the Problems) In the method for producing metal particles according to the present invention, the metal is melted at a temperature lower than the melting point.
At a high temperature of 100 ° C to 600 ° C, the injection nozzle injects the injection speed component along the liquid surface at the temperature higher than the rotation peripheral speed of the cooling liquid from the injection nozzle, almost equal to the rotation peripheral speed of the cooling liquid. The present invention is characterized in that a mixture with a liquid which is volatile at normal temperature is used.

上記において、常温において水よりも揮発性の液体と
しては、メタノール、エタノール、2−プロパノール
(イソプロピルアルコール)、2−メチル−2−プロパ
ノール、n−プロパノール等を用いることができる。揮
発性液体の混合割合は5〜50%(重量%)とすることが
好ましい。
In the above, methanol, ethanol, 2-propanol (isopropyl alcohol), 2-methyl-2-propanol, n-propanol, or the like can be used as a liquid that is more volatile than water at normal temperature. The mixing ratio of the volatile liquid is preferably 5 to 50% (% by weight).

金属には、高融点金属(例えば、Cu-Zn合金、液相線
温度955℃)から比較的低融点の金属(例えば、Sn-Ag合
金、液相線温度221℃)を使用できる。酸化し易い金属
の場合は、後述する回転ドラム内に不活性ガスを充満さ
せること、ノズルの噴射口並びにその近傍に不活性ガス
を吹き付けることが有効である。
As the metal, a metal having a relatively low melting point (for example, a Sn-Ag alloy, a liquidus temperature of 221 ° C.) to a metal having a relatively low melting point (for example, a Cu—Zn alloy, liquidus temperature of 955 ° C.) can be used. In the case of a metal which is easily oxidized, it is effective to fill a rotary drum described later with an inert gas and to blow the inert gas to a nozzle orifice and its vicinity.

製造装置には、回転液中防糸法で用いられている既存
の装置を使用できる。
As the production apparatus, an existing apparatus used in the spinning-in-rotating liquid yarn method can be used.

第1図は本発明において使用する製造装置の一例を示
す説明図、第2図は第1図におけるII-II断面図であ
る。
FIG. 1 is an explanatory view showing an example of a manufacturing apparatus used in the present invention, and FIG. 2 is a sectional view taken along the line II-II in FIG.

第1図並びに第2図において、1は回転ドラムであ
り、堰板11を有し、回転軸12で支持され、電動モーター
2によって回転される。4は噴射ノズルであり、ヒータ
ー41を有し、溶融金属6が不活性ガス圧入管5からのガ
ス圧によって連続流のジエットで噴射される。
In FIG. 1 and FIG. 2, reference numeral 1 denotes a rotating drum, which has a weir plate 11, is supported by a rotating shaft 12, and is rotated by the electric motor 2. Reference numeral 4 denotes an injection nozzle, which has a heater 41, and in which the molten metal 6 is injected in a continuous flow jet by the gas pressure from the inert gas injection pipe 5.

本発明によって金属粒体を製造するには、常温で水よ
りも揮発性の液体と水とを混合した冷却液3をドラム1
内に入れ、モーター2の駆動によりドラム1を高速回転
させ、冷却液3を遠心力により層状に形成し、ノズル4
内の金属をヒーター41により、その金属の融点よりも10
0〜600℃高い温度範囲で加熱し、その溶融金属6を不活
性ガス圧入管5からのガス圧によって冷却液層3に向
け、連続流のジエットで噴射する。この連続流の冷却水
層面に沿う速度成分(連続流の噴射速度をV、連続流と
冷却液層とがなす角をθとすれば、Vcosθ)と回転冷却
液層の周速度vとをほぼ等しくしてある(v/Vcosθ=1.
1〜0.9)。したがって、溶融金属の連続流が回転冷却液
層に接触しても、上記等速化のために溶融金属の連続流
が衝撃を受けるようなことはなく、冷却液との接触下で
の溶融金属の表面エネルギー、すなわち、表面張力のた
めに、溶融金属の連続流が球状化して小滴に分断され、
溶融金属と冷却液との接触によって発生した揮発性液体
の気化ガスで小滴が包囲され、この気化ガスの包囲によ
り小滴が徐冷され、球状化進行を伴いつつ凝固されてい
く。
In order to produce metal particles according to the present invention, a cooling liquid 3 in which a liquid more volatile than water at room temperature is mixed with water is applied to a drum 1.
The cooling liquid 3 is formed into a layer by centrifugal force and the nozzle 4
The metal inside is heated by a heater 41 to a temperature
The molten metal 6 is heated in a temperature range higher by 0 to 600 ° C., and the molten metal 6 is jetted toward the cooling liquid layer 3 by a gas pressure from the inert gas injection pipe 5 by a continuous flow jet. The velocity component of this continuous flow along the surface of the cooling water layer (Vcosθ, where V is the injection velocity of the continuous flow and θ is the angle between the continuous flow and the cooling liquid layer) and the peripheral velocity v of the rotating cooling liquid layer are approximately Are equal (v / Vcosθ = 1.
1-0.9). Therefore, even if the continuous flow of the molten metal comes into contact with the rotary cooling liquid layer, the continuous flow of the molten metal does not receive an impact due to the above-mentioned uniform velocity, and the molten metal under the contact with the cooling liquid is not affected. Surface energy, i.e., due to surface tension, the continuous flow of molten metal becomes spherical and breaks into droplets,
The droplets are surrounded by the vaporized gas of the volatile liquid generated by the contact between the molten metal and the cooling liquid, and the droplets are gradually cooled by the surroundings of the vaporized gas, and are solidified with the progress of spheroidization.

このように、本発明によれば溶融金属の連続流を衝撃
の発生なく小滴に分断でき、小滴の球状化を進行させつ
つ、小滴を凝固できるので、金属粒体の球状化をよく達
成できる。
As described above, according to the present invention, the continuous flow of the molten metal can be divided into small droplets without generating impact, and the droplets can be solidified while the spheroidization of the droplets proceeds. Can be achieved.

以下、本発明の実施例を比較例との対比で説明する。 Hereinafter, examples of the present invention will be described in comparison with comparative examples.

実施例1 使用した金属は、液層線温度が955℃のCu-Zn合金であ
り、ノズル内の溶融金属の温度を1060℃とし、冷却液に
は水:イソピルアルコール比が70:30(重量比)の混合
液を使用した。
Example 1 The metal used was a Cu—Zn alloy having a liquidus temperature of 955 ° C., the temperature of the molten metal in the nozzle was 1060 ° C., and the water: isopropyl alcohol ratio was 70:30 ( (Weight ratio).

得られた金属粒体のアスペクト比を測定したところ、
1.08であった。また、粒体の粒径はノズル出口の穴径の
約2倍であった。
When the aspect ratio of the obtained metal particles was measured,
1.08. The particle diameter of the granules was about twice the hole diameter at the nozzle outlet.

実施例2 使用した金属は、液層線温度が221℃のSn-Ag合金であ
り、ノズル内の溶融金属の温度を800℃とし、冷却液に
は水:エタノール比が70:30(重量比)の混合液を使用
した。
Example 2 The metal used was an Sn-Ag alloy having a liquidus temperature of 221 ° C., the temperature of the molten metal in the nozzle was 800 ° C., and the water: ethanol ratio was 70:30 (weight ratio) in the cooling liquid. ) Was used.

得られた金属粒体のアスペクト比を測定したところ、
1.02であった。また、粒体の粒径はノズル出口の穴径の
約3倍であった。
When the aspect ratio of the obtained metal particles was measured,
1.02. The particle size of the granules was about three times the hole diameter at the nozzle outlet.

比較例1 実施例1に対し、冷却液に水のみを使用した以外実施
例1と同じ条件とした。粒体にはならず、細線状となっ
た。
Comparative Example 1 The conditions were the same as in Example 1 except that only water was used as the cooling liquid. It did not become granules but became fine lines.

比較例2 実施例2に対し、冷却液に水のみを使用した以外実施
例2と同じ条件とした。粒体にはならず、細線状となっ
た。
Comparative Example 2 The conditions were the same as in Example 2 except that only water was used as the cooling liquid. It did not become granules but became fine lines.

(発明の効果) 本発明に係わる金属粒体の製造方法は上述した通りの
構成であり、冷却水に常温で水よりも揮発性の液体を混
合するだけで、ノズルより噴射する溶融金属の加熱温度
を、従来の「融点より600℃以上」の条件から、融点よ
り100〜600℃高い範囲内に緩和して、ノズルからの溶融
金属の連続流を回転冷却液層に衝撃の発生なく接触させ
て小滴化し、これを冷却液で球状に凝固することを可能
にしている。したがって、溶融金属の加熱温度を低減で
き、設備コスト上並びに作業上有利である。
(Effects of the Invention) The method for producing metal granules according to the present invention has the above-described configuration, and only by mixing a liquid that is more volatile than water at room temperature in cooling water, heats molten metal injected from a nozzle. The temperature is relaxed from the conventional condition of `` 600 ° C or higher than the melting point '' to a range of 100 to 600 ° C higher than the melting point, and the continuous flow of molten metal from the nozzle is brought into contact with the rotating cooling liquid layer without impact. It is possible to make the droplets small and solidify them spherically with a cooling liquid. Therefore, the heating temperature of the molten metal can be reduced, which is advantageous in terms of equipment costs and work.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明において使用する製造装置の一例を示す
説明図、第2図は第1図におけるII-II断面図である。 1……回転ドラム、3……冷却液、4……ノズル、6…
…溶融金属。
FIG. 1 is an explanatory view showing an example of a manufacturing apparatus used in the present invention, and FIG. 2 is a sectional view taken along the line II-II in FIG. 1 ... rotating drum, 3 ... cooling liquid, 4 ... nozzle, 6 ...
... Molten metal.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属を融点より100℃〜600℃高い温度で噴
射ノズルより、回転冷却液に向けその液面に沿う噴射速
度成分を冷却液の回転周速度にほぼ等しくして噴射し、
上記冷却液には水と水よりも常温において揮発性の液体
との混合物を使用することを特徴とする金属粒体の製造
方法。
1. Injecting a metal at a temperature 100 ° C. to 600 ° C. higher than a melting point from an injection nozzle toward a rotary cooling liquid with an injection velocity component along the liquid surface substantially equal to the rotational peripheral velocity of the cooling liquid;
A method for producing metal particles, wherein a mixture of water and a liquid that is more volatile at room temperature than water is used as the cooling liquid.
JP2249604A 1990-09-18 1990-09-18 Manufacturing method of metal particles Expired - Fee Related JP2915117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2249604A JP2915117B2 (en) 1990-09-18 1990-09-18 Manufacturing method of metal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2249604A JP2915117B2 (en) 1990-09-18 1990-09-18 Manufacturing method of metal particles

Publications (2)

Publication Number Publication Date
JPH04128305A JPH04128305A (en) 1992-04-28
JP2915117B2 true JP2915117B2 (en) 1999-07-05

Family

ID=17195495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2249604A Expired - Fee Related JP2915117B2 (en) 1990-09-18 1990-09-18 Manufacturing method of metal particles

Country Status (1)

Country Link
JP (1) JP2915117B2 (en)

Also Published As

Publication number Publication date
JPH04128305A (en) 1992-04-28

Similar Documents

Publication Publication Date Title
KR100302164B1 (en) Method for producing coated powder
JPS6016482B2 (en) Method and apparatus for producing flake particles from molten material
CA2516992C (en) Method and apparatus for producing fine particles
JPS6254842B2 (en)
JP2011525419A (en) Rotary atomizer to spray molten material
US4824478A (en) Method and apparatus for producing fine metal powder
JP2021514028A (en) Melting point metal or alloy powder atomizing manufacturing process
US4818279A (en) Method and device for the granulation of a molten material
JP2915117B2 (en) Manufacturing method of metal particles
US4559187A (en) Production of particulate or powdered metals and alloys
WO1989000471A1 (en) Centrifugal disintegration
JPH0754019A (en) Production of powder by multistage fissure and quenching
Minagawa et al. Production of fine spherical lead-free solder powders by hybrid atomization
US6093449A (en) Atomizer for spray forming ring structures
WO1989000470A1 (en) Double disintegration powder method
JPH0321602B2 (en)
JPH07102307A (en) Production of flaky powder material
JPH1085583A (en) Method for producing fine powder
JPS5815218B2 (en) Metal wire manufacturing equipment using liquid metal or alloy jets
JPH01262938A (en) Manufacture of fine powder and equipment therefor
JPH02145710A (en) Manufacture of metal fine powder
JP2930655B2 (en) Method and apparatus for producing spherical slag
CN117753979A (en) Device for preparing metal powder with fine particle size by using coarse powder and application method thereof
JPS62161443A (en) Casting method for fine metallic wire
JPS5867805A (en) Preparation of powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees