JPS63230807A - Rotary disk for centrifugal atomization - Google Patents

Rotary disk for centrifugal atomization

Info

Publication number
JPS63230807A
JPS63230807A JP6248487A JP6248487A JPS63230807A JP S63230807 A JPS63230807 A JP S63230807A JP 6248487 A JP6248487 A JP 6248487A JP 6248487 A JP6248487 A JP 6248487A JP S63230807 A JPS63230807 A JP S63230807A
Authority
JP
Japan
Prior art keywords
disk
molten metal
core material
upper face
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6248487A
Other languages
Japanese (ja)
Other versions
JPH0321602B2 (en
Inventor
Katsuji Kusaka
草加 勝司
Yoshihiro Sumida
隅田 義博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6248487A priority Critical patent/JPS63230807A/en
Publication of JPS63230807A publication Critical patent/JPS63230807A/en
Publication of JPH0321602B2 publication Critical patent/JPH0321602B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To quickly transmit rotation of a disk to molten metal and to prevent slipping of the molten metal on the upper face of the disk by forming the upper face of the disk to concave face and burying a core material made of the same material as the molten metal at the center of the upper face of the disk. CONSTITUTION:The upper face of the disk 2 for centrifugal atomization is formed to continuous concave face and at the center the core material 3 composing of the same or >=90% of the same composition as the molten metal 5 flowed down. An explosure area of the core material 3 to the upper face of the disk 2 is desirable to the ratio of <=1/10 of total area of the upper face of the disk 2. This core material 3 intermittently forms solidified skull 6 of the molten metal 5 on the upper face of the disk 2. By this method, the rotation of the disk 2 is surely transmitted to the flowed molten metal 5 and can prevent from the slipping. Therefore, the efficiency of disintegration is improved and the fine powder can be produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は遠心噴霧法の主要部1回転ディスクの材質、構
造を改良することにより、金属溶湯の噴lI現象を安定
化し、粉化効果を向上する発明に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention stabilizes the spraying phenomenon of molten metal and improves the powdering effect by improving the material and structure of the main part of the centrifugal spraying process, the one-rotation disk. It is about an invention that improves.

[発明の背景] 通常、高純度の合金粉末の製造には溶湯噴霧法が採用さ
れ、その内不活性ガス噴霧法と遠心噴霧法が工業化され
ている。前者はAr、N2などの高圧ガスを金属等、−
湯滴に吹きつけ、噴霧、凝固させるものであるが、凝固
速度が比較的遅い、これに対し、後者は金属溶湯に何等
かの手段で遠心力【 ゛却媒の熱伝導率などの物性定数を選定することに゛ぐ −より9合金粉末の凝固速度を増大し、粉末組織を微細
化したり、非晶質状態を現出させるには都合がよい。
[Background of the Invention] Usually, a molten metal atomization method is employed to produce high-purity alloy powder, and among these, an inert gas atomization method and a centrifugal atomization method have been industrialized. The former is a high-pressure gas such as Ar or N2, etc.
This method involves spraying, atomizing, and solidifying hot water droplets, but the solidification rate is relatively slow.On the other hand, the latter applies centrifugal force to the molten metal by some means [physical property constants such as the thermal conductivity of the coolant]. It is convenient to increase the solidification rate of Alloy 9 powder, refine the powder structure, and make it appear amorphous.

この遠心噴霧法の内、金属溶湯を高速回転しているディ
スク上に流下し、その遠心力で溶湯を飛散、凝固させる
方法は、大きな遠心力を付与でき。
Among these centrifugal spray methods, the method in which the molten metal falls onto a disk rotating at high speed and uses the centrifugal force to scatter and solidify the molten metal can apply a large centrifugal force.

かつ注湯温度を適宜設定できるため有利であるが。Moreover, it is advantageous because the pouring temperature can be set appropriately.

反面ディスクの回転速度を10000rp+e以上に増
速し。
On the other hand, increase the rotational speed of the disc to 10,000 rpm+e or more.

かつその回転を安定化させるための特殊な構造設計が必
要となる。
In addition, a special structural design is required to stabilize the rotation.

一方この遠心噴霧法の粉化効率は溶湯に対して如何に遠
心力を効率よく付与するかによって律速されるが、本発
明者らの遠心噴霧法に関する研究結果では、生成粉末の
最頻出粒径(da)とディスク回転数(R)との関係は
、 dn+をμts、 Rをrpa+で表わすと、次式
で近似される。
On the other hand, the powdering efficiency of this centrifugal spraying method is determined by how efficiently centrifugal force is applied to the molten metal, but according to the research results of the present inventors on the centrifugal spraying method, the most frequently occurring particle size of the powder produced The relationship between (da) and the disk rotation speed (R) is approximated by the following equation, where dn+ is expressed by μts and R is expressed by rpa+.

d m= 4 XIO’ X f<−”4このように生
成粉末の粒径はディスクの回転速度への依存度が大きい
d m= 4 XIO'

なおこのことは、尋問紙「鉄と鋼」71(1985れて
いる。
This is mentioned in the interrogation paper "Tetsu to Hagane" 71 (1985).

[従来技術の問題点] この場合、理想的には溶湯が回転ディスクの端を離れる
瞬間のいわゆる粉化点が重要で、その速度(ヘディスク
の周速度)が粉末粒径を決定するが、通常は溶湯がディ
スク面上ですベリ必ずしもディスク周速度までは増速さ
れない。極端な場合は、溶湯がディスク面上を中心から
周辺部に向ってすべり、はとんど回転せず、従って遠心
力が付与されないまま離散するため、50 m / s
ee以上のディスク周速度で噴霧してもブレーク状の金
属片しか得られないという問題があった。
[Problems with the prior art] In this case, ideally the so-called pulverization point at the moment when the molten metal leaves the edge of the rotating disk is important, and its speed (peripheral speed of the pulverization disk) determines the powder particle size. When the molten metal is on the disk surface, the speed is not necessarily increased to the circumferential speed of the disk. In an extreme case, the molten metal slides on the disk surface from the center to the periphery, hardly rotating, and therefore scattering without being subjected to centrifugal force, resulting in a speed of 50 m/s.
There was a problem in that even if sprayed at a disk circumferential speed higher than ee, only break-shaped metal pieces could be obtained.

この問題に対して本発明者らは金属溶湯とディスク材質
との関係を広範囲に調査し、溶湯との濡れ性を増大させ
ることが重要でその増大にはBNや5i3Naなどのセ
ラミックスで、熱伝導率の低い物質をディスクの構成材
料とするがよいことをすでに見い出している。(特開昭
60−116704号公報参照)。
In response to this problem, the present inventors extensively investigated the relationship between the molten metal and the disk material, and found that it is important to increase the wettability with the molten metal. It has already been found that it is advantageous to use materials of low densities as materials of construction for the disks. (Refer to Japanese Patent Application Laid-open No. 116704/1983).

しかしその場合でも熱伝導率の悪い物質は高速ず、破壊
に至るという問題点があった。
However, even in this case, there was a problem that materials with poor thermal conductivity could not be used at high speeds, leading to destruction.

する遠心噴霧法において、ディスクの上面を凹面状に形
成すると共に、その中心に金属溶湯とその組成が90%
以上同一である芯材をその上面が露呈するように埋設し
たことを特徴とする遠心噴霧用の回転ディスクである。
In the centrifugal spraying method, the upper surface of the disk is formed into a concave shape, and the molten metal and its composition are 90%
This rotary disk for centrifugal spraying is characterized by having the same core material buried so that its upper surface is exposed.

また本発明は、ディスク上面上への芯材の露呈面積がデ
ィスク上面の全面積の10分の1以下の割合となるよう
にし、ディスク上面を構成する芯材以外の材料は熱伝導
率が0.3cal/am sec”0以上の物質とし、
該ディスクの下面に冷却媒体を接触させるようにしたこ
とをその実施態様とするものである。
Further, in the present invention, the exposed area of the core material on the top surface of the disk is set to be 1/10 or less of the total area of the top surface of the disk, and the materials other than the core material constituting the top surface of the disk have a thermal conductivity of 0. .3cal/am sec” 0 or more substance,
In this embodiment, a cooling medium is brought into contact with the lower surface of the disk.

[作用] 連続的な凹面状に形成されたディスク上面は、その中心
に落下した金属溶湯が遠心力によりディスクの周辺部に
移動する際、この傾斜部でディスク面との間に強制的に
摩擦を生じさせる。これによりディスクの回転が溶湯に
速やかに伝達され。
[Function] When the molten metal that falls at the center of the disk, which is formed in a continuous concave shape, moves to the periphery of the disk due to centrifugal force, friction is forcibly created between the top surface of the disk and the disk surface at this inclined part. cause This allows the rotation of the disc to be quickly transmitted to the molten metal.

溶湯とディスク上面とのすべりが防止される。ま[実施
例] 次に図面と共に本発明の一実施例を説明する。
Slippage between the molten metal and the upper surface of the disk is prevented. [Embodiment] Next, an embodiment of the present invention will be described with reference to the drawings.

図において、1は鉛直に軸支され高速回転する回転軸、
2は該スピンドル1の上端に水平に固着されたディスク
である。ディスク2はCu  Beなどの高強度Cu合
金、その他の材料で常温付近の熱伝導率が0.3cal
/c■sec ”C以上の物質で製作される。そしてデ
ィスク2の上面を凹球面状等の連続的な凹面状に形成す
ると共に、その中心に流下される金属溶湯5と同一また
は90%以上同一組成からなる芯材3を埋設する。モし
て該芯材3のディスク2上面への露呈面積はディスク2
上面の全面積の10分の1以下の割合となるようにする
。なお、スピンドル1およびディスク2は中空状に形成
され該スピンドルl中に設けられたノズル4から冷却水
を数Kg/am”の圧力でディスク2内面にジェット噴
射し該ディスク2を強制冷却する。
In the figure, 1 is a rotating shaft that is vertically supported and rotates at high speed;
2 is a disk fixed horizontally to the upper end of the spindle 1. Disk 2 is made of high-strength Cu alloy such as Cu Be, or other materials, and has a thermal conductivity of 0.3 cal at room temperature.
/csec ``It is manufactured from a substance of C or higher.The upper surface of the disk 2 is formed into a continuous concave shape such as a concave spherical shape, and the upper surface of the disk 2 is the same as or 90% or more of the molten metal 5 flowing down at the center. A core material 3 having the same composition is buried.The exposed area of the core material 3 on the upper surface of the disk 2 is
The ratio should be 1/10 or less of the total area of the upper surface. The spindle 1 and the disk 2 are formed in a hollow shape, and cooling water is jetted onto the inner surface of the disk 2 at a pressure of several kg/am'' from a nozzle 4 provided in the spindle 1 to forcibly cool the disk 2.

ディスク2の幾何学的な形状は、前記のごとく遮塵な角
度で内側に向は傾斜面をもつ連続的な凹面状であればよ
い。高速回転下では軸対称の凹面を””’構成する必要
がありそうすることで金属溶湯とのあまり急峻では後述
のスカル離散時の衝撃荷重が大きくスピンドルの回転系
に悪影響を及ぼす、このため例えば曲率半径20cmの
球面で直径9c+sのものがよい効果を得た。この幾何
学的な形状の改良だけでも濡れ性の悪いディスクでもあ
る程度金属溶湯の噴霧は可能になったが、さらに粉化効
率を噴火させるため前記のように芯材3をその中心に埋
設する。この芯材3はディスク上面に金属溶湯の凝固ス
カル6を間欠的に形成させる。この凝固スカル6の役目
はディスク上面からの熱伝導を妨げ、スカル6自体を適
度な加熱状態にし、溶湯との濡れ性を良好にすると同時
にスカル面の凹凸により溶湯のスカル面の摩擦力を増大
させる。即ち。
The geometrical shape of the disk 2 may be a continuous concave shape having an inwardly inclined surface at a dust-proof angle as described above. Under high-speed rotation, it is necessary to configure an axially symmetrical concave surface, and if the contact with the molten metal is too steep, the impact load during skull dispersion, which will be described later, will be large and have a negative effect on the spindle rotation system. A spherical surface with a radius of curvature of 20 cm and a diameter of 9 c+s produced good effects. This geometrical improvement alone made it possible to spray molten metal to some extent even with a disk with poor wettability, but in order to further increase powdering efficiency, the core material 3 is buried in the center as described above. This core material 3 causes solidified skulls 6 of molten metal to be intermittently formed on the upper surface of the disk. The role of this solidification skull 6 is to prevent heat conduction from the top surface of the disk, keep the skull 6 itself in a moderately heated state, and improve wettability with the molten metal. At the same time, the unevenness of the skull surface increases the frictional force of the molten metal on the skull surface. let That is.

ディスク中心部に金属溶湯と同一または類似物質の芯材
3を予め埋設し、流下する溶湯を融着させることで適度
な注湯温度にてスカル6が発生し、このスカル6はある
程度成長(厚肉化)すると回転運動に追従できずに融着
部で破断、離散し、また新らしい凝固スカルが発生、成
長する。その状況を第1図〜第4図に順に示した。
A core material 3 made of the same or similar material as the molten metal is buried in the center of the disk in advance, and the flowing molten metal is fused to form a skull 6 at an appropriate pouring temperature, and this skull 6 grows to some extent (thickness). When it becomes fleshy), it cannot follow the rotational movement and breaks and becomes separated at the fused part, and a new solidified skull is generated and grows. The situation is shown in FIGS. 1 to 4 in order.

スカルの根元の融着部が強固になりスカルの破断離散が
遅れ、振動発生や偏心荷重のかかる確率が増大するため
スピンドルの回転系を損傷しやすいことがわかった。逆
に面積率が小さすぎると、スカル発生が困難となるが、
その限界は金属溶湯の材質や注湯温度、ディスク回転数
などに依存するものと思われる。また、芯材以外のディ
スク面は、内質部も含めCuBeなどの高強度Cu合金
か、その他常温付近の熱伝導率が0.3cal/am 
5ecTl:以上である物質で構成されるのが好ましい
、これより熱伝導率が大巾に小さいと水冷効果が弱まり
、溶湯との焼付きを生じて、前記凝固スカルの発生機構
に支障をきたす、またスピンドル回転系の軸部を循環さ
せている構造上、冷却水圧を過度に上昇することは固定
と回転の両軸間の摩擦を増大し。
It was found that the fused part at the base of the skull became stronger, delaying the skull's breakage and dispersion, and increasing the probability of vibration generation and eccentric loading, which could easily damage the spindle rotation system. On the other hand, if the area ratio is too small, it will be difficult to generate skulls;
The limit seems to depend on the material of the molten metal, the pouring temperature, the number of rotations of the disk, etc. In addition, the disk surface other than the core material, including the inner part, is made of high-strength Cu alloy such as CuBe, or other material with a thermal conductivity of 0.3 cal/am at room temperature.
5ecTl: It is preferable to be composed of a substance with a thermal conductivity much lower than this. If the thermal conductivity is significantly lower than this, the water cooling effect will be weakened, causing seizure with the molten metal, and interfering with the solidification skull generation mechanism. Additionally, due to the structure of the spindle rotation system that circulates around the shaft, excessively increasing the cooling water pressure increases the friction between the fixed and rotating shafts.

ディスクの高速回転を妨げるため好ましくない。This is undesirable because it impedes high-speed rotation of the disk.

芯材3は金属溶湯と同一材質であることが理想であるが
、実際には噴霧粉末の不純物許容限によって決定される
。実験によれば、注湯初期の溶湯−′:い場合でも90
%以上が同一組成であれば、粉末汚J・、l −染量は0.05%以下に抑えられることが判明してい
る。
Ideally, the core material 3 is made of the same material as the molten metal, but in reality it is determined by the impurity tolerance limit of the sprayed powder. According to experiments, molten metal −′ at the initial stage of pouring: 90
It has been found that if the composition is the same, the powder stain amount can be suppressed to 0.05% or less.

[発明の効果] 以上実施例について説明したように1本発明に係る回転
ディスクは凹面状なる形態とその中心に金属溶湯と共材
となる芯材を埋設したことによって凝固スカルを間欠的
に生成させ流下した金属溶湯にディスクの回転をより確
実に伝達しすベリを防止できるものであるので、粉化効
率を向上させ微細粉末の製造を可能とする有益なもので
ある。
[Effects of the Invention] As explained in the embodiments above, the rotating disk according to the present invention has a concave shape and a core material that is a co-material with the molten metal is embedded in the center of the concave shape, so that solidified skulls are intermittently generated. Since the rotation of the disk can be more reliably transmitted to the molten metal flowing down to prevent smearing, it is useful for improving the powdering efficiency and making it possible to manufacture fine powder.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (2)

【特許請求の範囲】[Claims] (1)水平面内で高速回転させるディスクの上面中心に
金属溶湯を流下しその遠心力で該金属溶湯を粉化する遠
心噴霧法において、ディスクの上面を凹面状に形成する
と共に、その中心に金属溶湯とその組成が90%以上同
一である芯材をその上面が露呈するように埋設したこと
を特徴とする遠心噴霧用の回転ディスク。
(1) In the centrifugal spraying method, in which molten metal flows down the center of the upper surface of a disk that rotates at high speed in a horizontal plane, and the molten metal is powdered by the centrifugal force, the upper surface of the disk is formed into a concave shape, and the center of the molten metal is A rotating disk for centrifugal spraying, characterized in that a core material whose composition is 90% or more identical to that of the molten metal is embedded so that its upper surface is exposed.
(2)ディスク上面上への芯材の露呈面積はディスク上
面の全面積の10分の1以下の割合となるようにし、デ
ィスク上面を構成する芯材以外の材料は常温付近の熱伝
導率が0.3cal/cm sec℃以上の物質とし、
該ディスクの下面に冷却媒体を接触させるようにした特
許請求の範囲第1項に記載の遠心噴霧用の回転ディスク
(2) The exposed area of the core material on the top surface of the disk should be one-tenth or less of the total area of the top surface of the disk, and the materials other than the core material that make up the top surface of the disk have a thermal conductivity near room temperature. A substance with a temperature of 0.3 cal/cm sec°C or higher,
The rotating disk for centrifugal spraying according to claim 1, wherein a cooling medium is brought into contact with the lower surface of the disk.
JP6248487A 1987-03-19 1987-03-19 Rotary disk for centrifugal atomization Granted JPS63230807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6248487A JPS63230807A (en) 1987-03-19 1987-03-19 Rotary disk for centrifugal atomization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6248487A JPS63230807A (en) 1987-03-19 1987-03-19 Rotary disk for centrifugal atomization

Publications (2)

Publication Number Publication Date
JPS63230807A true JPS63230807A (en) 1988-09-27
JPH0321602B2 JPH0321602B2 (en) 1991-03-25

Family

ID=13201500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6248487A Granted JPS63230807A (en) 1987-03-19 1987-03-19 Rotary disk for centrifugal atomization

Country Status (1)

Country Link
JP (1) JPS63230807A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101173499B1 (en) 2010-12-28 2012-08-14 재단법인 포항산업과학연구원 Apparatus for granulation of melting slag
GB2500039A (en) * 2012-03-08 2013-09-11 Siemens Plc Rotary slag granulator with an annular metal disc and central cylinder containing plug of refractory material
CN103764320A (en) * 2011-08-26 2014-04-30 西门子有限公司 Slag granulation device
CN103781575A (en) * 2011-08-26 2014-05-07 西门子有限公司 Slag granulation device
CN106563810A (en) * 2016-12-16 2017-04-19 江苏广昇新材料有限公司 Centrifugal atomized powder making technology of high-performance solder powder and device thereof
CN110605402A (en) * 2019-09-18 2019-12-24 河南科技大学 3D printing device and method based on centrifugal atomization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133303A (en) * 1982-12-27 1984-07-31 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Metal powder manufacturing method and device
JPS621209U (en) * 1985-06-20 1987-01-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133303A (en) * 1982-12-27 1984-07-31 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Metal powder manufacturing method and device
JPS621209U (en) * 1985-06-20 1987-01-07

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101173499B1 (en) 2010-12-28 2012-08-14 재단법인 포항산업과학연구원 Apparatus for granulation of melting slag
CN103764320A (en) * 2011-08-26 2014-04-30 西门子有限公司 Slag granulation device
CN103781575A (en) * 2011-08-26 2014-05-07 西门子有限公司 Slag granulation device
CN103781575B (en) * 2011-08-26 2016-12-21 西门子有限公司 Slag pelletization device
GB2500039A (en) * 2012-03-08 2013-09-11 Siemens Plc Rotary slag granulator with an annular metal disc and central cylinder containing plug of refractory material
CN106563810A (en) * 2016-12-16 2017-04-19 江苏广昇新材料有限公司 Centrifugal atomized powder making technology of high-performance solder powder and device thereof
CN106563810B (en) * 2016-12-16 2018-06-01 江苏广昇新材料有限公司 The centrifugal atomizing flouring technology and its device of high-performance solder powder
CN110605402A (en) * 2019-09-18 2019-12-24 河南科技大学 3D printing device and method based on centrifugal atomization
CN110605402B (en) * 2019-09-18 2021-04-30 河南科技大学 3D printing device and method based on centrifugal atomization

Also Published As

Publication number Publication date
JPH0321602B2 (en) 1991-03-25

Similar Documents

Publication Publication Date Title
US4215084A (en) Method and apparatus for producing flake particles
US4996025A (en) Engine bearing alloy composition and method of making same
US4154284A (en) Method for producing flake
US4482375A (en) Laser melt spin atomized metal powder and process
JPS63230807A (en) Rotary disk for centrifugal atomization
US4701289A (en) Method and apparatus for the rapid solidification of molten material in particulate form
JPH0754019A (en) Production of powder by multistage fissure and quenching
JPH0151523B2 (en)
JPH0437122B2 (en)
JPH02145710A (en) Manufacture of metal fine powder
WO1982004200A1 (en) Method and apparatus for producing particulate
JPS61143502A (en) Production of granular material of lead alloy
JPS62112710A (en) Production of metallic powder
JPS62112709A (en) Production of metallic powder
JPS60116704A (en) Manufacture of alloy powder
JPS6333508A (en) Production of metallic powder of alloy powder
JP2001172704A (en) Method of manufacturing metallic flake
JPH0463125A (en) Production of powder by centrifugal atomization
JPH0321603B2 (en)
JPH07145408A (en) Production of rapidly solidified powder
JPH0892609A (en) Production of metal powder
JPH02101103A (en) Method and apparatus for atomizing molten metal
JPS6241287B2 (en)
JPH01201403A (en) Rotary disk for centrifugal atomizing
JPH03146609A (en) Centrifugal atomizing device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term