JPS62119344A - Defrosting control device of air conditioner - Google Patents

Defrosting control device of air conditioner

Info

Publication number
JPS62119344A
JPS62119344A JP60258001A JP25800185A JPS62119344A JP S62119344 A JPS62119344 A JP S62119344A JP 60258001 A JP60258001 A JP 60258001A JP 25800185 A JP25800185 A JP 25800185A JP S62119344 A JPS62119344 A JP S62119344A
Authority
JP
Japan
Prior art keywords
cycle
temperature
defrosting
heating
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60258001A
Other languages
Japanese (ja)
Other versions
JPH0566488B2 (en
Inventor
Masahiro Watanabe
渡邊 雅洋
Akira Yokouchi
横内 朗
Katsumi Fukuda
克己 福田
Makoto Kaihara
海原 誠
Keiichi Kuriyama
栗山 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60258001A priority Critical patent/JPS62119344A/en
Publication of JPS62119344A publication Critical patent/JPS62119344A/en
Publication of JPH0566488B2 publication Critical patent/JPH0566488B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To secure heating capacity for a given time and take out the limit of heating capacity by switching heating operation to defrosting operation in such a way that heating operation is carried out without detecting frost for a given time after the start of heating operation and the temp. of refrigerant gas in an overheated zone at the inlet piping of an indoor side heat exchanger is detected. CONSTITUTION:After the temporary operation stop of a compressor in refrigerating cycle, the operation time from re-starting is counted and heating operation is continued for the set time. Thereafter, when refrigerant temp. detected by a temp. detecting element 6 placed at the refrigerant inlet side of an indoor side heat exchanger 3 is lower than the set temp., a signal switching a heating cycle to a defrosting cycle is emitted from a judging means to effect defrosting operation. Thereby, heating operation is secured for a given time and such a case as defrosting operation is carried out in spite of no frosting is prevented. Heating capacity near its limit is able to be taken out by simple constitution.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートポンプ式空気調和機の除
1制御装置に関するもので、持に室外側熱交換器の着霜
を室内側で検知し得るようにした空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a control device for a separate heat pump type air conditioner, and particularly to a control device for detecting frost on an outdoor heat exchanger indoors. Regarding air conditioners.

従来の技術 従来、特公昭59−34255号公報に示されるように
、室内側熱交換器の温度変化と室内温度の変化の両者に
基づいて室外側熱交換器へのH,65状態を検知し、暖
房運転と除霜運転を制御する技術が開発されている。
2. Description of the Related Art Conventionally, as shown in Japanese Patent Publication No. 59-34255, the H,65 condition of the outdoor heat exchanger is detected based on both the temperature change of the indoor heat exchanger and the indoor temperature change. , technology has been developed to control heating and defrosting operations.

発明が解決しようとする問題点 しかしながら、かかる従来の構成は、温度検出素子が複
数必要となり、自と回路が複雑化する問題がある。さら
に、空気調和機においては、室内側の送風景が任意に可
変設定されることが常であり、そのためにも従来の技術
に風量補正手段を加味させることは、一層回路を複雑化
にしてしまう。
Problems to be Solved by the Invention However, such a conventional configuration requires a plurality of temperature detection elements, complicating the circuit itself. Furthermore, in air conditioners, the air flow inside the room is usually variably set arbitrarily, and for this reason, adding an air volume correction means to the conventional technology would further complicate the circuit. .

しかも、かかる構成は熱交換器を流れている途中の気液
混合冷媒温度を検出しているため、着′眉時と未着1時
の温度変化が小さく、微小な範囲で着1判定を行わなけ
ればならず、検出精変が安定しない問題がある。
Moreover, since this configuration detects the temperature of the gas-liquid mixed refrigerant while it is flowing through the heat exchanger, the temperature change between arrival and non-arrival is small, making it possible to determine arrival 1 within a minute range. Therefore, there is a problem that the detection process is not stable.

また近年、マイクロコンピュータにて腹雑な信号処理を
行わせ、制御装置を構成することが多いが、従来技術の
ように入力信号源(温度検出素子)が多いことは、その
プログラム作成に当っても俗書のもとであり、プログラ
ムの簡素化にも限界がある。
In addition, in recent years, control devices are often configured by using microcomputers to perform complicated signal processing, but the fact that there are many input signal sources (temperature detection elements) as in the conventional technology makes it difficult to create the program. It is also a popular book, and there are limits to the simplification of the program.

以上のように、従来の技術には問題点が多々あり、改善
が要求されるものである。
As described above, the conventional technology has many problems, and improvements are required.

本発明は、上記従来の間渥点に1み、従来技術の利点を
損うζ、となく、構成の簡素化がはかれる除霜制御装置
を提供するものである。
The present invention addresses the drawbacks of the conventional art and provides a defrosting control device that can be simplified in configuration without the disadvantages of the prior art.

問題点を解決するための手段 上記問題点を解決するために本発明は、第1図に示すよ
うに冷凍サイクルを暖房サイクルから除霜サイクルに制
御する制御装置を、前記圧縮機の一時運転停止後、再運
転開始からの時間を計測する時間計測手段と、あらかじ
め設定された時間を記憶している設定時間記憶手段と、
前記時間計測手段により検出した時間と前記設定時間記
憶手段に設定された時間の一致を検出し出力する第1の
比較手段と、前記室内側熱交換器の冷媒入口側に連結さ
れた配管の温度を検出する温度検出手段と、暖房サイク
ルを除霜サイクルに切換える境界値温度を記憶した設定
温度記憶手段と、前記温度検出手段により検出した温度
が前記設定温度記憶手段に記憶された境界値温度より低
下したことを検出し出力する第2の比較手段と、前記第
1の比較手段による設定時間経過信号と前記第2の比較
手段による境界値低下信号により、暖房サイクルから除
霜サイクルへの切換えを判定する判定手段と、前記判定
手段の出力に応じて前記冷凍サイクルを暖房運転から除
霜運転へ制御する選択出力手段より構成したものである
Means for Solving the Problems In order to solve the above problems, the present invention, as shown in FIG. a time measuring means for measuring the time from the start of restart; a set time storage means for storing a preset time;
a first comparing means for detecting and outputting a match between the time detected by the time measuring means and the time set in the set time storage means; and a temperature of a pipe connected to the refrigerant inlet side of the indoor heat exchanger. temperature detection means for detecting a temperature, set temperature storage means for storing a boundary value temperature for switching a heating cycle to a defrosting cycle, and a set temperature storage means for storing a boundary value temperature at which the temperature detected by the temperature detection means is higher than the boundary value temperature stored in the set temperature storage means; A second comparing means detects and outputs a decrease in temperature, and a set time elapsed signal from the first comparing means and a boundary value drop signal from the second comparing means are used to switch from the heating cycle to the defrosting cycle. The apparatus is comprised of a determining means for making a determination, and a selection output means for controlling the refrigeration cycle from heating operation to defrosting operation in accordance with the output of the determining means.

作   用 この構成により、暖房運転開始から所定時間が経過する
までは暖房運転が確保され、その所定時間経過後におい
て、温度検出手段の検出温度により、除霜運転が制御さ
れる。
Effect: With this configuration, the heating operation is ensured until a predetermined time has elapsed from the start of the heating operation, and after the elapse of the predetermined time, the defrosting operation is controlled based on the temperature detected by the temperature detection means.

実施例 以下、本発明の一実施例を第2図〜第5図を参照にして
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 2 to 5.

第2図は、本発明の一実施例を示す冷凍サイクル図であ
る。
FIG. 2 is a refrigeration cycle diagram showing one embodiment of the present invention.

同図において、冷凍サイクルは圧縮機1、四方切換弁2
、室内側熱交換器3、減圧器4、室外側熱交換器5を順
次連結することにより構成されている。6は配管温度検
出素子であり、暖房時において室内側熱交換器3(凝縮
器)の冷媒入口側となる配管に取り付けられている。こ
の場合、冷房運転時は同図の実線矢印の方向に冷媒が流
れ、暖房運転時には四方切換弁2が切換わることにより
同図の破線矢印の方向に冷媒が流れるようになっている
In the figure, the refrigeration cycle includes a compressor 1 and a four-way switching valve 2.
, an indoor heat exchanger 3, a pressure reducer 4, and an outdoor heat exchanger 5 are connected in sequence. Reference numeral 6 denotes a pipe temperature detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 (condenser) during heating. In this case, during cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure, and during heating operation, the four-way switching valve 2 is switched so that the refrigerant flows in the direction of the broken line arrow in the figure.

さらに、上記圧縮機1、四方切換弁2、減圧器4、室外
側熱交換器5および室外送風機8によって室外ユニット
Aが構成されている。また上記室内側熱交換器3および
室内送風機7、さらに配管温度検出素子6、タイマ機能
および温度調節機能などがプログラムされたマイクロコ
ンピュータ(以下、マイコンと略称する)を有する運転
制御部(図示せず)は室内ユニフトBに設けられている
。ここで、配管温度検出素子6は、室内送風機7の送風
の影響を受けない風回路からはずれた箇所に取付けられ
ている。また、室内ユニットBの近辺でもよい。
Furthermore, the compressor 1, the four-way switching valve 2, the pressure reducer 4, the outdoor heat exchanger 5, and the outdoor blower 8 constitute an outdoor unit A. In addition, an operation control unit (not shown) includes a microcomputer (hereinafter referred to as microcomputer) programmed with the indoor heat exchanger 3 and the indoor blower 7, as well as a pipe temperature detection element 6, a timer function, a temperature control function, etc. ) is provided in indoor unit B. Here, the pipe temperature detection element 6 is attached at a location away from the wind circuit where it is not affected by the air blowing from the indoor blower 7. Alternatively, the location may be near the indoor unit B.

第3図は運転制御部における主要回路図である。FIG. 3 is a main circuit diagram of the operation control section.

同図において、マイコン9内には運転時間を判定するタ
イムセーフ回路を記憶する記憶部10、この記憶部10
に記憶されたタイムセーフ回路と入力値とのアンド回路
から適宜出力信号を発生する駆動信号発生手段11を有
している。このマイコン9の入力側にはコンパレータ1
2を介して温度検出手段である配管温度検出素子6(例
えば配管サーミスタあるいは熱電対素子等)と必要に応
じて抵抗値が変えられる温度設定用抵抗1a・14・1
5が接続されている。また出力側には、スイッチ用トラ
ンジスタTR1〜TR4を介して駆動手段である四方切
換弁コイルを駆動するリレーR1、室内送風機7を駆動
するリレーR2、室外送風機8を駆動するリレーR3、
圧縮機1を駆動するリレーR4が接続されている。
In the figure, the microcomputer 9 includes a storage section 10 that stores a time-safe circuit for determining operating time;
The drive signal generation means 11 generates an appropriate output signal from an AND circuit between the time safe circuit stored in the input value and the input value. Comparator 1 is on the input side of this microcomputer 9.
2, a pipe temperature detection element 6 (for example, a pipe thermistor or thermocouple element, etc.) serving as a temperature detection means and a temperature setting resistor 1a, 14, 1 whose resistance value can be changed as necessary.
5 is connected. Further, on the output side, a relay R1 that drives a four-way switching valve coil that is a driving means via switching transistors TR1 to TR4, a relay R2 that drives an indoor blower 7, a relay R3 that drives an outdoor blower 8,
A relay R4 that drives the compressor 1 is connected.

ここで、第3図の構成と第1図の構成を対比すると、配
管温度検出素子6および抵抗13は第1図の温度検出手
段に相当し、コンパレータ12は第1図の第2の比較手
段に相当し、抵抗14・1Sによって作られる信号は第
1図の設定温度記憶手段の信号に相当し、記憶部10を
含むマイコン9は第1図の設定時間記憶手段、時間計測
手段、第1の比較手段、判定手段、選択出力手段に相当
し、中でも駆動信号発生手段11は判定手段、選択出力
手段に相当する。
Here, comparing the configuration in FIG. 3 with the configuration in FIG. 1, the pipe temperature detection element 6 and the resistor 13 correspond to the temperature detection means in FIG. 1, and the comparator 12 corresponds to the second comparison means in FIG. The signal generated by the resistor 14.1S corresponds to the signal of the set temperature storage means shown in FIG. The drive signal generating means 11 corresponds to the determining means and the selection output means.

次に、暖房運転の開始から除霜運転に至るまでの動作に
ついて説明する。
Next, the operation from the start of heating operation to defrosting operation will be explained.

圧縮機1の吐出冷媒温度をTd、圧縮機1の吸入冷媒温
度をT+s 、圧縮機1の吐出圧力をPd。
The discharge refrigerant temperature of the compressor 1 is Td, the suction refrigerant temperature of the compressor 1 is T+s, and the discharge pressure of the compressor 1 is Pd.

圧縮機1の吸入圧力をPsとし、ポIJ l−ロープ指
数をn(ただし1<n<Kの関係で、Kは断熱圧縮指数
)とすると、吐出冷媒温度Tdは次式で表わされる た
だし配管による熱損 入冷媒温度Tsが高く、又吐出冷媒温度Tdも高い。そ
して外気が下がり、着雪が成長するにつれて、吸入冷媒
温度Taは低下し、吐出冷媒温度Tdも下がる。本発明
における配管温度検出素子6は、室内側熱交換器3の入
口配管に設けられ、圧縮機1から吐出された高温高圧の
過熱域冷媒ガスが流れる部分の温度を検出するが、実際
その温度は吐出ガスに比べて内外接読配管等での熱損失
により所定温度低下した温度である。
When the suction pressure of the compressor 1 is Ps and the poIJ l-rope index is n (where 1<n<K, where K is the adiabatic compression index), the discharge refrigerant temperature Td is expressed by the following formula. The heat loss input refrigerant temperature Ts is high, and the discharge refrigerant temperature Td is also high. As the outside air cools and the snow builds up, the suction refrigerant temperature Ta decreases, and the discharge refrigerant temperature Td also decreases. The pipe temperature detection element 6 in the present invention is installed in the inlet pipe of the indoor heat exchanger 3, and detects the temperature of the part through which the high-temperature, high-pressure superheated refrigerant gas discharged from the compressor 1 flows. is a temperature lower than that of the discharged gas by a predetermined temperature due to heat loss in internal and external reading piping, etc.

したがって、第4図に示すように室外側熱交換器5が未
着5M時は圧縮機1の吸入冷媒温度T3、室内側熱交換
器3の入口配管温度tはともに高く、着1が進むにつれ
て徐々に低下し、そして暖房能力を大幅に低下させる着
雪に至ると、室内側熱交換器3の入口配管温度tは極端
に低下する。すなわち、入口配管温度tが設定記管温度
t1 以下になれば暖房能力は低下し、着雪が進んでい
るので除眉する必要がある。
Therefore, as shown in FIG. 4, when the outdoor heat exchanger 5 has not arrived at 5M, both the suction refrigerant temperature T3 of the compressor 1 and the inlet pipe temperature t of the indoor heat exchanger 3 are high; The temperature t gradually decreases, and when snow accretion occurs which significantly reduces the heating capacity, the temperature t of the inlet pipe of the indoor heat exchanger 3 extremely decreases. That is, if the inlet pipe temperature t becomes lower than the set pipe temperature t1, the heating capacity decreases, and since snow accumulation is progressing, it is necessary to remove the eyebrows.

このように、室内側熱交換器3の入口配管温度tは、過
熱域冷媒ガスの温度であるため、室内送風機7の風量の
影8.田を受けにく(、室内側熱交換器aの入口配管温
度にて適確な除霜運転の判断を行うことができる。
In this way, since the inlet pipe temperature t of the indoor heat exchanger 3 is the temperature of the refrigerant gas in the superheated region, it is affected by the air volume of the indoor blower 7. The defrosting operation can be determined accurately based on the temperature of the inlet pipe of the indoor heat exchanger a.

以上の説明に基づ°き、第3図に示す制御回路は、第5
図に示すフローチャートの内容の制御を行う。
Based on the above explanation, the control circuit shown in FIG.
Controls the contents of the flowchart shown in the figure.

すなわち、第5図のステップ1で示すように暖房運転か
開始されると、マイコン9で所定時間Tのタイマーカウ
ントがセットされる(ステップ2)。
That is, when the heating operation is started as shown in step 1 of FIG. 5, a timer count for a predetermined time T is set by the microcomputer 9 (step 2).

このタイマーカウントセットは、暖房運転開始からT1
時間(例えば1時間)暖房運転を確保するためのもので
、例えば強制的にT1時間暖房を連続することも一つの
手段である。
This timer count set is T1 from the start of heating operation.
This is to ensure heating operation for a period of time (for example, one hour), and one means is to forcibly continue heating for T1 hours, for example.

そしてタイマーカウントがセットされると、ステップ3
でT1時間経過が判定される。T1時間経過するまでは
暖房運転が継続される。
And once the timer count is set, step 3
It is determined that the T1 time has passed. The heating operation is continued until the time T1 has elapsed.

そしてT1時間が経過するとステップ4へ移り、第2タ
イマーカウンタがセットされ、ステップ5に移って圧縮
機1が運転しているか否かがマイコン9内にて判定され
る。仮に運転が行なわれていなかったら(ステップ5を
満足していなければ)、ステップ4へ戻り第1タイマー
カウンタはリセットされる。
Then, when the time T1 has elapsed, the process moves to step 4, where a second timer counter is set, and the process moves to step 5, where it is determined in the microcomputer 9 whether or not the compressor 1 is operating. If no operation is being performed (if step 5 is not satisfied), the process returns to step 4 and the first timer counter is reset.

次にステップ5の条件が満足されるとステップ6にて1
2時間(例えば4分)経過が判定される。
Next, when the conditions of step 5 are satisfied, 1 is set in step 6.
It is determined that two hours (for example, four minutes) have passed.

そして圧縮機1が連続して12時間運転が行なわれると
ステップ7へ移り、配管温度検出素子6による配管温度
tの読み込みが行われ、ステップ8に移って、再び圧縮
機1が運転しているか否かの判定が行われる。
When the compressor 1 has been operated continuously for 12 hours, the process moves to step 7, where the pipe temperature t is read by the pipe temperature detection element 6, and the process moves to step 8 to check whether the compressor 1 is operating again. A determination is made whether or not.

そしてステップ9に移って配管温度tが設定配管温度t
1 よりも低いかが判定される。具体的には第3図のコ
ンパレータ12が判定する。
Then, the process moves to step 9 and the pipe temperature t is set as the set pipe temperature t.
It is determined whether it is lower than 1. Specifically, the comparator 12 in FIG. 3 makes the determination.

そしてステップ9の条件が満足されるとステップ1oへ
移り、除霜運転が開始される。すなわち、第3図のトラ
ンジスタTR1・T’R2・TR3・TR4がそれぞれ
動作し、四方切換弁2を切換え、必要に応じてその前に
圧縮機1を一定時間停止し、室内送風機7および室外送
風機8を停止する。そして冷房サイクルにて除霜を行う
。この除霜運転の内容は従来周知のため、詳細な説明を
省略する。
When the conditions of step 9 are satisfied, the process moves to step 1o, and defrosting operation is started. That is, the transistors TR1, T'R2, TR3, and TR4 in FIG. 3 operate respectively to switch the four-way selector valve 2, and if necessary, before that, the compressor 1 is stopped for a certain period of time, and the indoor blower 7 and the outdoor blower are switched on. Stop 8. Defrost is then performed in the cooling cycle. Since the content of this defrosting operation is conventionally well known, detailed explanation will be omitted.

また暖房運転の復帰についても従来より周知の如く、適
宜手段にて実施できる。
Further, the restoration of the heating operation can be carried out by any suitable means as is well known in the art.

なお、本実施例においては、除霜運転を暖房サイクルか
ら冷房サイクルへの切換えによって行うようにしたが、
例えば暖房サイクルを維持したままとして室外側熱交換
器へ別途蓄熱していた冷媒を流す構成あるいは、別熱源
にて霜を溶かす構成としてもよいことは言うまでもない
。また圧縮機1は除霜運転へ切換え時には連続運転とし
、暖房運転復帰前に一時停止させるようにしてもよい。
In this embodiment, the defrosting operation is performed by switching from the heating cycle to the cooling cycle.
For example, it goes without saying that a configuration may be adopted in which the heating cycle is maintained and a separately stored refrigerant is flowed to the outdoor heat exchanger, or a configuration in which a separate heat source is used to melt the frost. Further, the compressor 1 may be operated continuously when switching to defrosting operation, and may be temporarily stopped before returning to heating operation.

発明の効果 以上述べたように本発明によれば、上記した構成により
、過熱域冷媒ガスの温度を室内側熱交換器入口配管にて
検出し、室内風1の影響をあまり受けずに、適確な除霜
運転を温度検出1点で行うことができ、構成が非常に簡
単であり、また冷媒が、暖房を行う熱量を十分に有して
いるか否かの判定が室内側熱交換器の入口側で行えるた
め、実際の暖房能力の有無を確実に判断して除霜を行う
ことができる。
Effects of the Invention As described above, according to the present invention, with the above-described configuration, the temperature of the refrigerant gas in the superheated region is detected at the indoor heat exchanger inlet piping, and the temperature is detected appropriately without being affected by the indoor wind 1. Reliable defrosting operation can be performed with a single temperature detection point, the configuration is very simple, and it can be determined whether the refrigerant has enough heat for heating by using the indoor heat exchanger. Since defrosting can be performed on the entrance side, it is possible to reliably determine whether there is actual heating capacity before defrosting.

すなわち、本発明は完全に着1が発生している冷媒の温
度が熱交換器の入口部、中間部に差がなく、未着霜時に
入口冷媒温度の方が中間部の冷媒温度に比べて著しく高
い点に着眼し、入口側の冷媒温度を検出することによっ
て、未着霜から着層に至るまでの温度変化が大きくとれ
、1点の温度検出で限界に近い暖房能力を引き出すこと
ができる。また本発明は、暖房開始から一定時間経過す
るまで着霜を検出しないため、その一定時間は暖房能力
が確保され、快適さが損われることもない。
In other words, in the present invention, there is no difference in the temperature of the refrigerant at which frost has completely formed between the inlet and the middle part of the heat exchanger, and when no frost has formed, the inlet refrigerant temperature is higher than the refrigerant temperature in the middle part. By focusing on a point that is extremely high and detecting the refrigerant temperature on the inlet side, it is possible to obtain large temperature changes from unfrosted to frosted, and it is possible to draw out heating capacity close to the limit by detecting the temperature at one point. . Furthermore, since the present invention does not detect frost formation until a certain period of time has elapsed from the start of heating, the heating capacity is ensured for that certain period of time, and comfort is not impaired.

また、暖房運転中圧縮機が一時停止後、再運転開始から
一定時間経過するまで着1を検出しないため例えばサー
モOFF時などの圧縮機再運転直後において、上昇途中
の室内熱交換器配管温度を検知し、誤って未着霜にもか
かわらず、除霜運転を開始することもない。
In addition, after the compressor is temporarily stopped during heating operation, it is not detected until a certain period of time has elapsed since the restart of operation. It will not detect and mistakenly start defrosting operation even though no frost has formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の除霜制御装置を機能実現手段で表現し
たブロック図、第2図は本発明の一実施例を示す空気調
和機の冷凍サイクル図、第3図は同空気調和機における
除霜制御装置の回路図、第4図は同除霜制御装置におけ
る室内側熱交換器へ流入する冷媒温度と圧縮機吸入冷媒
温度の関係を示す特性図、第5図は同除霜制御装置の動
作内容を示すフローチャートである。 1・・・・・・圧縮機、2・・・・四方切換弁、3・・
・・・室内側熱交換器、5・・・・・・室外側熱交換器
、6・・・・・・配管温度検出素子、9・・・・・・マ
イクロコンピュータ、10・・・・・・記憶部、11・
・・・・・駆動信号発生手段、12・・・・・コンパレ
ータ、13・14・15・・・・・温度設定用抵抗、A
・・・・・・室外ユニット、B・・・・・・室内ユニッ
ト。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 /−−−L:g3處 ?−−−四方Vn頂か と一東18N些句灸S 第2図       4−AIL& σ−i外制烈(良器 6−−−舶菅、1枚九木ケ A−−一 宣、夕1−エニ、71 B−m−家内に・ト 10−一一見褒卸 11−一一駈動侶う也)L+抜 /Z−−−フンノ(し−タ /J、/4. )5−一 低 1ツLノγ  /1 第4図 Ts−−一圧陥4& /l pL入1!−#M狩閑 第5rI!J □ ステラ7°l □ ステップ2 □スゲー/ 7’ 3 □ ステップ4 □ステップj □ステツブt □ステップ7 □スグクグδ □ステップ7 □スグッズπ
Fig. 1 is a block diagram expressing the defrosting control device of the present invention using function realizing means, Fig. 2 is a refrigeration cycle diagram of an air conditioner showing an embodiment of the present invention, and Fig. 3 is a block diagram of the defrosting control device of the present invention. A circuit diagram of the defrosting control device, Fig. 4 is a characteristic diagram showing the relationship between the temperature of the refrigerant flowing into the indoor heat exchanger and the compressor suction refrigerant temperature in the defrosting control device, and Fig. 5 is a diagram showing the relationship between the temperature of the refrigerant flowing into the indoor heat exchanger in the defrosting control device 3 is a flowchart showing the operation contents. 1... Compressor, 2... Four-way switching valve, 3...
... Indoor heat exchanger, 5 ... Outdoor heat exchanger, 6 ... Piping temperature detection element, 9 ... Microcomputer, 10 ...・Storage part, 11・
... Drive signal generation means, 12 ... Comparator, 13, 14, 15 ... Temperature setting resistor, A
...Outdoor unit, B...Indoor unit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure/---L: g3? ---Sho Vn top and Ichito 18N trivial moxibustion S Figure 2 4-AIL & σ-i Gaiseretsu (Ryoki 6---Nyokan, 1 Kugike A--1 Sen, Yu 1- Eni, 71 B-m-in the house/to 10-first glance reward 11-11 cantering partner Uya) L+nuki/Z---Funno (shita/J,/4.) 5-1 Low 1tsuLノγ /1 Fig. 4 Ts--1pressure fall 4 & /l pL included 1! -#M Karikan 5th rI! J □ Stella 7°l □ Step 2 □ Amazing / 7' 3 □ Step 4 □ Step j □ Step t □ Step 7 □ Sugukugu δ □ Step 7 □ Sgoods π

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内側熱交換器、減圧装置、室外側熱交換器を
具備した冷凍サイクルに、暖房サイクルと除霜サイクル
を切換えるサイクル切換手段を設け、さらに前記サイク
ル切換手段を暖房サイクルから除霜サイクルに切換える
制御装置を、前記圧縮機の一時運転停止後、再運転開始
からの時間を計測する時間計測手段と、あらかじめ設定
された時間を記憶している設定時間記憶手段と、前記時
間計測手段により検出した時間と前記設定時間記憶手段
に設定された時間の一致を検出し出力する第1の比較手
段と、前記室内側熱交換器の冷媒入口側に連結された配
管の温度を検出する温度検出手段と、暖房サイクルを除
霜サイクルに切換える境界値温度を記憶した設定温度記
憶手段と、前記温度検出手段により検出した温度が前記
設定温度記憶手段に記憶された境界値温度より低下した
ことを検出し出力する第2の比較手段と、前記第1の比
較手段による設定時間経過信号と前記第2の比較手段に
よる境界値低下信号により、暖房サイクルから除霜サイ
クルへの切換えを判定する判定手段と、前記判定手段の
出力に応じて前記冷凍サイクルを暖房運転から除霜運転
へ制御する選択出力手段より構成した空気調和機の除霜
制御装置。
A refrigeration cycle equipped with a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger is provided with cycle switching means for switching between a heating cycle and a defrosting cycle, and the cycle switching means is further configured to switch from a heating cycle to a defrosting cycle. A control device for switching the compressor to the compressor is controlled by a time measuring means for measuring the time from restarting the compressor after the compressor is temporarily stopped, a set time storage means for storing a preset time, and the time measuring means. a first comparison means for detecting and outputting a match between the detected time and the time set in the set time storage means; and a temperature detection means for detecting the temperature of a pipe connected to the refrigerant inlet side of the indoor heat exchanger. means, set temperature storage means that stores a boundary value temperature for switching a heating cycle to a defrosting cycle, and detects that the temperature detected by the temperature detection means has fallen below the boundary value temperature stored in the set temperature storage means. a second comparison means for outputting a second comparison means, and a determination means for determining switching from a heating cycle to a defrosting cycle based on a set time elapsed signal from the first comparison means and a boundary value drop signal from the second comparison means; A defrosting control device for an air conditioner, comprising a selection output means for controlling the refrigeration cycle from heating operation to defrosting operation according to the output of the determination means.
JP60258001A 1985-11-18 1985-11-18 Defrosting control device of air conditioner Granted JPS62119344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60258001A JPS62119344A (en) 1985-11-18 1985-11-18 Defrosting control device of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60258001A JPS62119344A (en) 1985-11-18 1985-11-18 Defrosting control device of air conditioner

Publications (2)

Publication Number Publication Date
JPS62119344A true JPS62119344A (en) 1987-05-30
JPH0566488B2 JPH0566488B2 (en) 1993-09-21

Family

ID=17314154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60258001A Granted JPS62119344A (en) 1985-11-18 1985-11-18 Defrosting control device of air conditioner

Country Status (1)

Country Link
JP (1) JPS62119344A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265343A (en) * 1975-11-26 1977-05-30 Sharp Corp Defrosting apparatus of air conditioner
JPS54154851A (en) * 1978-05-26 1979-12-06 Saginomiya Seisakusho Inc Defrost control method of heating or freezing and cooling apparatus and defrost controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265343A (en) * 1975-11-26 1977-05-30 Sharp Corp Defrosting apparatus of air conditioner
JPS54154851A (en) * 1978-05-26 1979-12-06 Saginomiya Seisakusho Inc Defrost control method of heating or freezing and cooling apparatus and defrost controller

Also Published As

Publication number Publication date
JPH0566488B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
JPS62223552A (en) Defrosting control unit of air conditioner
JPS62218748A (en) Defrosting controller for air-conditioning machine
JPS62210336A (en) Control device for defrosting of air-conditioning machine
JPS62119344A (en) Defrosting control device of air conditioner
JPS62119345A (en) Defrosting device of air conditioner
JPH0566498B2 (en)
JPS62186155A (en) Defrosting control unit of air conditioner
JPH0566490B2 (en)
JPS62218751A (en) Defrosting controller for air-conditioning machine
JPS62213638A (en) Defrost control device for air conditioner
JPH067020B2 (en) Defrost control device for air conditioner
JPS62218750A (en) Defrosting controller for air-conditioning machine
JPS62210341A (en) Control device for defrosting of air-conditioning machine
JPS62218749A (en) Defrosting controller for air-conditioning machine
JPH0454858B2 (en)
JPS62210340A (en) Control device for defrosting of air-conditioning machine
JPH0566497B2 (en)
JPS62223551A (en) Defrosting control unit of air conditioner
JPH0566491B2 (en)
JPS62223548A (en) Defrosting control unit of air conditioner
JPS62210339A (en) Control device for defrosting of air-conditioning machine
JPS62233632A (en) Control device for defrosting of air conditioner
JPH0583819B2 (en)
JPS62213637A (en) Defrost control device for air conditioner
JPS62223550A (en) Defrosting control unit of air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term