JPS62119165A - Silicon nitride base sintered body - Google Patents

Silicon nitride base sintered body

Info

Publication number
JPS62119165A
JPS62119165A JP60254784A JP25478485A JPS62119165A JP S62119165 A JPS62119165 A JP S62119165A JP 60254784 A JP60254784 A JP 60254784A JP 25478485 A JP25478485 A JP 25478485A JP S62119165 A JPS62119165 A JP S62119165A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
strength
oxide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60254784A
Other languages
Japanese (ja)
Inventor
恒行 金井
忠彦 三吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60254784A priority Critical patent/JPS62119165A/en
Publication of JPS62119165A publication Critical patent/JPS62119165A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化珪素焼結体に係り、特に常温における機械
的強度に優れ、高温下における強度低下の少ない高密度
窒化珪素焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a silicon nitride sintered body, and particularly to a high-density silicon nitride sintered body that has excellent mechanical strength at room temperature and little decrease in strength at high temperatures.

C従来の技術〕 窒化珪素焼結体は、機械強度、耐熱性、耐食性。C. Conventional technology] Silicon nitride sintered bodies have mechanical strength, heat resistance, and corrosion resistance.

耐熱衝撃性などに優れているため、近年例えば、ガスタ
ービン用部品などの高温構造材料の素材として注目され
ている。しかし、窒化珪素は共有結合性が高いため、焼
結性に乏しく、窒化珪素単体では高密度かつ高強度の焼
結体を得ることは困難である。そのため、従来より窒化
珪素を焼結するに際しては、MgO,AQ203および
希土類元素の酸化物等を焼結助剤として添加配分して焼
結することが試みられている。これら焼結助剤の役割は
、窒化珪素の原料表面に存在する微量の5iozと反応
し、低融点のガラス相を生成し焼結を促進することにあ
る。従ってこれらの焼結助剤を使用して得られる最終の
焼結体は、β′−窒化珪素組成(Sie−zA Q z
Oztls−z  O< Z < 4 、2 )と粒界
相とから構成される。ところが、一般にこの粒界相は、
1000℃付近から軟化するガラス相であるため、焼結
体の高温強度を劣化する主原因となっていた。
Due to its excellent thermal shock resistance, it has recently attracted attention as a material for high-temperature structural materials such as gas turbine parts. However, since silicon nitride has a high covalent bonding property, it has poor sinterability, and it is difficult to obtain a high-density and high-strength sintered body from silicon nitride alone. Therefore, when sintering silicon nitride, attempts have been made to add and distribute MgO, AQ203, rare earth element oxides, etc. as sintering aids. The role of these sintering aids is to react with a trace amount of 5ioz present on the surface of the silicon nitride raw material, generate a low melting point glass phase, and promote sintering. Therefore, the final sintered body obtained using these sintering aids has a β'-silicon nitride composition (Sie-zA Q z
Oztls-z O<Z<4, 2) and a grain boundary phase. However, this grain boundary phase is generally
Since it is a glass phase that softens from around 1000°C, it has been the main cause of deterioration of the high temperature strength of the sintered body.

この問題点を解決するため、特開昭55−116671
には、窒化珪素にAQzG8あるいはAQNと希土類元
素の酸化物とを添加配合し、粒界相を5isN4・R2
08(Rは周期律表1Va族元素を表わす)型構造の結
晶で構成し、高温高強度材料とする方法が述べられてい
る。しかしながら、この方法では、3点曲げ強度で、室
温では120 kg/ nw”程度とあまり大きくなら
ず、1200℃の強度も110 kg/ tm”程度で
あった。
In order to solve this problem,
To do this, AQzG8 or AQN and rare earth element oxides are added to silicon nitride to form a grain boundary phase of 5isN4/R2.
08 (R represents an element in group 1 Va of the periodic table) type crystal structure, and a method for producing a high-temperature, high-strength material is described. However, with this method, the three-point bending strength was not very high at room temperature, about 120 kg/nw", and the strength at 1200° C. was also about 110 kg/tm".

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、粒界相に5iNa・R2O3を析出さ
せるために、粒界相の酸素量を比較的少なくする必要が
ある。このため酸素元素を含む焼結助剤すなわちAug
Os量は制限され、約2重量%程度である。従って、焼
結過程で生成する粒界相量は少なくなり、この生成粒界
相の量の少ないことが、室温強度を大きくできない原因
である。
In the above conventional technology, in order to precipitate 5iNa.R2O3 in the grain boundary phase, it is necessary to make the amount of oxygen in the grain boundary phase relatively small. For this reason, a sintering aid containing oxygen element, namely Aug.
The amount of Os is limited and is about 2% by weight. Therefore, the amount of grain boundary phases produced during the sintering process is reduced, and this small amount of produced grain boundary phases is the reason why room temperature strength cannot be increased.

すなわち、窒化珪素の焼結では、焼結中、α−5iN+
原料粉末粒子の周辺部に生ずる液相にα−3iaN4粒
子が溶解し、再びβ−3isNi結晶として析出する過
程がある。このときβ−3iaNi結晶は、異方性粒子
(柱状・針状形状)に成長し、これら粒子同志のからみ
合いにより窒化珪素焼結体の高強度化が達成される。従
って、生成液相量が多い程、異方性粒子になり易く、か
らみ合いの程度も大きくなるため、液相量が多い程高強
度化が達成できる。
That is, in the sintering of silicon nitride, α-5iN+
There is a process in which α-3iaN4 particles are dissolved in the liquid phase generated around the raw material powder particles and precipitated again as β-3isNi crystals. At this time, the β-3iaNi crystal grows into anisotropic particles (columnar/acicular shape), and the entanglement of these particles makes it possible to increase the strength of the silicon nitride sintered body. Therefore, the larger the amount of liquid phase produced, the easier it is to form anisotropic particles, and the degree of entanglement becomes greater. Therefore, the larger the amount of liquid phase, the higher the strength can be achieved.

粒界相に5isN+・RzOsを析出させる従来技術で
は、焼結過程で生成する液相量が少ないため、針状のβ
’−3isNa粒子の発達は十分ではなく、室温強度は
小さくなってしまう。
In the conventional technology in which 5isN+・RzOs is precipitated in the grain boundary phase, the amount of liquid phase generated in the sintering process is small, so the acicular β
'-3isNa particles are not sufficiently developed and the room temperature strength becomes small.

本発明の目的は、室温での強度に優れ、しかも高温での
強度低下の少ない窒化珪素焼結体を提供することにある
An object of the present invention is to provide a silicon nitride sintered body that has excellent strength at room temperature and less decreases in strength at high temperatures.

〔問題点を解決するための手段〕[Means for solving problems]

高温での強度低下の少ない窒化珪素焼結体については、
室温における強度が低いという従来の欠点を解決するた
めに、液相生成量が多く、室温強度が大きい組成粉末に
助剤を付加し、種々検討をA Q x、os)結晶が結
晶粒界に析出し、この焼結体は高温下においても強度劣
化が起こらず、耐熱高温部材として極めて優れているこ
とを見い出し本発明に至った。
Regarding silicon nitride sintered bodies with little strength loss at high temperatures,
In order to solve the conventional drawback of low strength at room temperature, we added an auxiliary agent to the composition powder that produces a large amount of liquid phase and has high room temperature strength, and various studies were conducted. The inventors have discovered that this sintered body exhibits no strength deterioration even at high temperatures and is extremely excellent as a heat-resistant, high-temperature member, leading to the present invention.

すなわち、本発明は、β’  5iaNaを主構成相と
する窒化珪素焼結体において、結晶粒界にYzoA Q
 zsj30sδN4が析出していることを特徴とする
窒化珪素焼結体に関するものである。
That is, the present invention provides a silicon nitride sintered body containing β' 5iaNa as the main constituent phase, in which YzoA Q is present at the grain boundaries.
The present invention relates to a silicon nitride sintered body characterized in that zsj30sδN4 is precipitated.

本発明では、液相生成量が多く、室温強度の大きい組成
を達成するため、窒化珪素に窒化アルミニウム、酸化ア
ルミニウム、酸化イツトリウムを付加し、更に希土類元
素の酸化物、例えば酸化エルビウムを付加使用すること
を必須条件とするものである。このような、室温強度の
大きな窒化珪素組成に適当量の助剤を加えることにより
、粒界相にYLOA Q zsi^01MN4結晶が析
出し、室温曲げ強度が大きいばかりでなく、高温度下に
おいても従来品よりもはるかに優れた機械的強度を有す
る焼結体となるものである。
In the present invention, in order to achieve a composition that generates a large amount of liquid phase and has high room temperature strength, aluminum nitride, aluminum oxide, and yttrium oxide are added to silicon nitride, and an oxide of a rare earth element, such as erbium oxide, is added. This is an essential condition. By adding an appropriate amount of auxiliary agent to such a silicon nitride composition with high room temperature strength, YLOA Q zsi^01MN4 crystals are precipitated in the grain boundary phase, resulting in not only high room temperature bending strength but also high temperature resistance. This results in a sintered body that has far superior mechanical strength to conventional products.

本発明の窒化珪素焼結体を得るには、たとえば窒化珪素
80〜95重量%、酸化イットリウis 3〜10重量
%、酸化アルミニウム4〜10重量%および、窒化アル
ミニウム0.1〜3重量%含有してなる窒化珪素組成粉
末に対して、3〜20モル%の希土類酸化物を含有させ
るように配合すればよい。
In order to obtain the silicon nitride sintered body of the present invention, for example, it contains 80 to 95% by weight of silicon nitride, 3 to 10% by weight of yttrium oxide, 4 to 10% by weight of aluminum oxide, and 0.1 to 3% by weight of aluminum nitride. What is necessary is just to mix|blend so that 3-20 mol% of rare earth oxides may be contained with respect to the silicon nitride composition powder formed by.

粉末組成として上記組成範囲に限定される理由を次に示
す。
The reason why the powder composition is limited to the above composition range is as follows.

窒化珪素80〜95重量% 窒化珪素が80重量%より少ないと粒界相の量が多くな
り、高温特性が悪くなる。一方、95重量%より多いと
焼結助剤の量が少なくなり、焼結性が劣化するので、窒
化珪素は80〜95重量%の範囲とした。
Silicon nitride: 80 to 95% by weight If the silicon nitride content is less than 80% by weight, the amount of grain boundary phase increases, resulting in poor high-temperature properties. On the other hand, if it exceeds 95% by weight, the amount of the sintering aid decreases and the sinterability deteriorates, so the silicon nitride content was set in the range of 80 to 95% by weight.

酸化イットリウ11、酸化アルミニウム、窒化アルミニ
ウムおよび21RLQNポリタイプ、酸化イツトリウム
、酸化アルミニウム、窒化アルミニラ11の少なくとも
一方が、所定の範囲より少ない量であると、焼結性が悪
なり、高強度の焼結体は得られないにのIt!Bを越え
ると焼結性は向上するが、粒界相の量が多くなり高温で
の強度低下が大きくなる。また、窒化アルミニウムの代
りに21RA Q Nポリタイプを使用する場合には、
1.0〜5.0 重量%範囲であることが必要である。
If the amount of at least one of yttrium oxide 11, aluminum oxide, aluminum nitride, and 21RLQN polytype, yttrium oxide, aluminum oxide, and aluminum nitride 11 is less than a predetermined range, sintering properties will be poor, resulting in high strength sintering. It's impossible to get a body! When B is exceeded, the sinterability improves, but the amount of grain boundary phase increases and the strength decreases significantly at high temperatures. Also, when using 21RA Q N polytype instead of aluminum nitride,
It is necessary that the content is in the range of 1.0 to 5.0% by weight.

この範囲を越えろと、焼結性が阻害され強度が低くなる
If it exceeds this range, sinterability will be inhibited and the strength will decrease.

一方、上述したような窒化珪素に焼結助剤を混合した窒
化珪素組成粉末に対する希土類酸化物、例えば酸化エル
ビウム、酸化ホルミウム、酸化ツリウム、酸化イッテル
ビウム量は3〜20モル%にすることが望ましい。3モ
ル%以下であると、粒界ガラス相の結晶化の度合が低く
、高温強度には寄与らず、逆に20モル%以上であると
、粒界相は結晶化しているが、粒界相の割合が大きいた
め、室温強度の大きな材料は得られないためである。
On the other hand, it is desirable that the amount of rare earth oxides, such as erbium oxide, holmium oxide, thulium oxide, and ytterbium oxide, be 3 to 20 mol % with respect to the silicon nitride composition powder obtained by mixing silicon nitride with a sintering aid as described above. If it is less than 3 mol%, the degree of crystallization of the grain boundary glass phase will be low and will not contribute to high temperature strength.On the other hand, if it is more than 20 mol%, the grain boundary phase will be crystallized, but the grain boundary glass phase will be crystallized. This is because a material with high room temperature strength cannot be obtained due to the large phase ratio.

〔作用〕[Effect]

本発明は、液相生成量が多く、室温強度の大きい組成に
、適当量の希土類酸化物を加えることにより、粒界相に
’11oA A zsjaoxaN4結晶を析出させ、
室温強度ばかりでなく、高温度下においても従来品より
もはるかに優れた機械強度を有する焼結体を可能にする
。その理由は、■結晶時の生成液相量が多い組成である
ため、β’−3iaNa結晶が十分針状に発達し、室温
強度が大きくなること、■粒界ガラス相が結晶化し、Y
zoA Q xsis01sN番が粒界に析出するため
、高温になっても強度低下が小さいという2つの効果に
よるためである。このため、室温強度としては140k
g/mm”程度の強度を容易に得ることができ、また、
1200”Cでの高温強度も120 kg/ me”程
度のものが得られる。
In the present invention, '11oA A zsjaoxaN4 crystals are precipitated in the grain boundary phase by adding an appropriate amount of rare earth oxide to a composition that produces a large amount of liquid phase and has high room temperature strength,
This makes it possible to produce a sintered body that has not only room temperature strength but also mechanical strength far superior to conventional products even at high temperatures. The reasons for this are: (1) the composition produces a large amount of liquid phase during crystallization, so the β'-3iaNa crystals develop sufficiently into needle shapes, increasing the room temperature strength; (2) the grain boundary glass phase crystallizes, and the Y
This is because zoA Q xsis01sN precipitates at the grain boundaries, resulting in two effects: strength decrease is small even at high temperatures. Therefore, the room temperature strength is 140k.
It is possible to easily obtain a strength of about 100 g/mm, and
The high temperature strength at 1200"C is also about 120 kg/me".

以上の本発明の窒化珪素焼結体を製造するには、窒化珪
素80〜95重量%に酸化イツトリウム3〜10重量%
、酸化アルミニウム4〜10重量%および、窒化アルミ
ニラls 0 、1〜3重量%を含有する窒化珪素組成
粉末に対して3〜20モル%の希土類酸化物を混合粉砕
した後、加圧成形法により成形体を形成し、続いて16
00〜1900℃の温度で非酸化性雰囲気中で焼結する
。この製造に際し、窒化珪素組成粉末及び希土類酸化物
の混合粉砕にはボールミルなどを用いればよく、また加
圧成形の際の圧力は1ton/cd程度が望ましい、こ
れら原料混合粉末の焼結は1600〜1950℃の温度
範囲で、常圧焼結あるいは加圧焼結を行う。焼結温度が
1600℃より低いと充分緻密化した焼結体が得られず
、また、1950℃を越えると窒化珪素自身の分解が激
しくなり健全な焼結体が得られない。
In order to produce the silicon nitride sintered body of the present invention as described above, 80 to 95% by weight of silicon nitride and 3 to 10% by weight of yttrium oxide are added.
After mixing and pulverizing 3 to 20 mol% of a rare earth oxide to a silicon nitride composition powder containing 4 to 10% by weight of aluminum oxide and 1 to 3% by weight of aluminum nitride ls0, forming a molded body, followed by 16
Sintering is carried out in a non-oxidizing atmosphere at a temperature of 00-1900°C. In this production, a ball mill or the like may be used to mix and grind the silicon nitride composition powder and the rare earth oxide, and the pressure during pressure molding is preferably about 1 ton/cd. Normal pressure sintering or pressure sintering is performed in a temperature range of 1950°C. If the sintering temperature is lower than 1,600°C, a sufficiently densified sintered body cannot be obtained, and if it exceeds 1,950°C, silicon nitride itself decomposes rapidly, making it impossible to obtain a healthy sintered body.

また、粒界相にYIOA Q 2si30x8N+結晶
相を析出させるために、焼結時間は30分以上必要で、
2時間程度が望ましい。更に、焼結後の冷却速度は、熱
的な相平衡を保つため、なるべく遅くした方が良く、2
0℃/min以下程度が良い。
In addition, in order to precipitate the YIOA Q 2si30x8N+ crystal phase in the grain boundary phase, the sintering time is required to be 30 minutes or more.
Approximately 2 hours is desirable. Furthermore, the cooling rate after sintering should be as slow as possible in order to maintain thermal phase equilibrium;
A rate of 0° C./min or less is good.

以上のようにして、粒界相にYIOA Q zsisO
tδN4結晶を析出させた窒化珪素焼結体は、窒化強度
が極めて大きいばかりでなく、高温においても強度低下
が少なく、高温構造用部材として最適な材料となる。。
In the above manner, YIOA Q zsisO is added to the grain boundary phase.
A silicon nitride sintered body in which tδN4 crystals are precipitated not only has extremely high nitriding strength but also exhibits little decrease in strength even at high temperatures, making it an optimal material for high-temperature structural members. .

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 平均粒径0.6μmの窒化珪素粉末86.01地%に平
均粒径1μmの酸化アルミニウム粉末7.0重量%と、
平均粒径3μmの窒化アルミニウム1.0重量%と、平
均粒径3μmの酸化イツトリウム粉末6.0重量%の混
合粉末に対して、酸化エルビウムを1〜25モル%を変
えて混合した後、1000kg/adの圧力で成形し、
次にこの成形体を1750℃、1気圧の窒素雰囲気中で
、2時間300kg/dの圧力を加えてホットプレス焼
結した。なお焼結後の冷却速度は20 ℃/ mj、n
とした。
Example 1 86.01% by weight of silicon nitride powder with an average particle size of 0.6 μm and 7.0% by weight of aluminum oxide powder with an average particle size of 1 μm,
After mixing 1.0% by weight of aluminum nitride with an average particle size of 3 μm and 6.0% by weight of yttrium oxide powder with an average particle size of 3 μm with varying amounts of erbium oxide from 1 to 25 mol%, 1000 kg /ad pressure,
Next, this molded body was hot press sintered at 1750° C. in a nitrogen atmosphere of 1 atmosphere for 2 hours by applying a pressure of 300 kg/d. The cooling rate after sintering is 20 °C/mj, n
And so.

この焼結体から3x4x30+mの試験片を切り出し表
面を研摩した後、スパン30mm、フロスヘラドスピー
ド0 、5 nu / m、i、nの条件で3点曲は試
験を行い、室温と7200℃での強度を測定した。
After cutting out a 3x4x30+m test piece from this sintered body and polishing the surface, a 3-point bend test was conducted under the conditions of a span of 30 mm and a Flossherad speed of 0, 5 nu/m, i, and n. The strength was measured.

その結果を表1に示す。この表より適正な組成であれば
、室温強度は約150 kg/ m2と非常に高強度で
あること、また、ErzOsを3モル%以上添加すると
、1200℃強度は急激に増加し、120kg/mm”
程度まで大きくなることがわかる。しかしながら、20
モル%以上の添加では、室温強度、高温強度とも低下す
ることがわかる。
The results are shown in Table 1. According to this table, if the composition is appropriate, the room temperature strength is very high at approximately 150 kg/m2, and when 3 mol% or more of ErzOs is added, the 1200°C strength increases rapidly, reaching 120 kg/mm2. ”
It can be seen that the size increases to a certain extent. However, 20
It can be seen that if the addition amount exceeds mol %, both room temperature strength and high temperature strength decrease.

第1図に1モル%、15モル%[!rzOs添加材(試
料番号5、及び試料番号3)のX線回折図形を示す、、
1モル%、F!rz9g添加材では、β’ −3iaN
4結晶のみであるのに対して、15モル%Er2O3添
加材ではYroA Q xsj30s8th結品の回折
線が多数存在している。このことから、高温強度の改善
は、YIOA Q 2s’r30xsN+結晶の析出に
よるものであることがわかる。
Figure 1 shows 1 mol% and 15 mol% [! Showing the X-ray diffraction patterns of rzOs additive materials (sample number 5 and sample number 3),
1 mol%, F! For rz9g additive material, β'-3iaN
In contrast, in the case of the 15 mol % Er2O3 additive material, there are many diffraction lines of YroA Q xsj30s8th crystals. This shows that the improvement in high temperature strength is due to the precipitation of YIOA Q 2s'r30xsN+ crystals.

この効果は、Ho2O3、 TIIIZOII、 Yb
zOs を添加しても同様に得られた。
This effect is caused by Ho2O3, TIIIZOII, Yb
A similar result was obtained by adding zOs.

実施例2 実施例1と同じ、窒化珪素、酸化アルミニウム酸化イッ
トリウl〜、酸化エルビウム粉末と、平均粒径3μmの
21RiNポリタイプ粉末とを表2に示す割合で撃合し
た。
Example 2 As in Example 1, silicon nitride, aluminum oxide, yttrium oxide, erbium oxide powder and 21RiN polytype powder having an average particle size of 3 μm were combined in the proportions shown in Table 2.

これを実施例1.と同じ方法でホットプレス焼結したあ
と、室温及び1200℃での曲げ強度を測定した。この
結果を表2に示す、 ErzOsを3〜20モル%添加
したときに、室温及び1200℃強度とも高強度になる
ことがわかる。
This is Example 1. After hot press sintering in the same manner as above, the bending strength at room temperature and 1200°C was measured. The results are shown in Table 2. It can be seen that when 3 to 20 mol % of ErzOs is added, high strength is obtained both at room temperature and at 1200°C.

一方、本発明の所定組成範囲外の試料番号11〜14は
、室温あるいは1200℃での強度が本発明品より劣る
ことがわかる。これらの効果は、)102011. T
mzO3,Yb20s添加材でも同様に得られた。
On the other hand, it can be seen that samples Nos. 11 to 14, which are outside the predetermined composition range of the present invention, are inferior to the products of the present invention in strength at room temperature or 1200°C. These effects are )102011. T
Similar results were obtained with mzO3 and Yb20s additives.

なお、実施例においては、ホットプレス焼結の場合につ
いて述べたが、この方法に限らず、常圧焼結、雰囲気加
圧焼結、FT IP焼結等によっても本発明品を容易に
得ることができる。
In addition, although the case of hot press sintering was described in the examples, the product of the present invention can be easily obtained not only by this method but also by normal pressure sintering, atmosphere pressure sintering, FT IP sintering, etc. I can do it.

石炭と水とを混合したスラリ(cwM)を火力発電用燃
料として用いる新しい技術が開発中である。第2図はこ
の燃料スラリを噴霧状にするバーナノズルチップ部を示
す。この部分には次の特性が要求される。
A new technology is under development that uses a slurry of coal and water (cwM) as a fuel for thermal power generation. FIG. 2 shows a burner nozzle tip section that atomizes this fuel slurry. This part requires the following characteristics:

■ 点火時あるいは燃料遮断時に対する耐熱衝撃性のあ
ること。(室温及び高温強度が大きい程良好) ■ 燃料を噴震するために圧力媒体を用いるが、この圧
力に対する耐クリープ性のあること。
■ Must be resistant to thermal shock during ignition or fuel cutoff. (The higher the strength at room temperature and high temperature, the better) ■ A pressure medium is used to inject the fuel, but it must have creep resistance against this pressure.

■ 石炭に対する耐摩耗性のあること。■ Must have abrasion resistance against coal.

■ 耐酸化性のあること。■ Must be oxidation resistant.

従来の金属材料では、上記特性を満足するものはなく、
ノズルチップ部のセラミクス化が検討されている。本発
明の窒化珪素系焼結体は、室温及び高温強度が大きく、
その他の特性も満たすことから、CWM用バーナチップ
として好適である。
No conventional metal material satisfies the above characteristics.
The use of ceramics for the nozzle tip is being considered. The silicon nitride-based sintered body of the present invention has high room temperature and high temperature strength,
Since it also satisfies other characteristics, it is suitable as a CWM burner chip.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、室温ならびに高温強度
に優れた窒化珪素焼結体を得ることができるので、信頼
性の高いガスタービン部品等の高温構造材料を容易に製
造できる。
As described above, according to the present invention, a silicon nitride sintered body having excellent room temperature and high temperature strength can be obtained, so that highly reliable high temperature structural materials such as gas turbine parts can be easily manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ErzOs添加した焼結材のX線回折図形を
示す図、第2図は火力発電用ボイラーのバーナノズルチ
ップの略図である。 1・・・燃料供給路、2・・・圧力供給路、3・・・噴
出口。
FIG. 1 is a diagram showing an X-ray diffraction pattern of a sintered material added with ErzOs, and FIG. 2 is a schematic diagram of a burner nozzle chip of a boiler for thermal power generation. 1...Fuel supply path, 2...Pressure supply path, 3...Ejection port.

Claims (1)

【特許請求の範囲】 1、β′−窒化珪素(Si_6_−_zAl_zO_z
N_8_−_z、0<Z<4.2)と結晶粒界とから構
成される、窒化珪素を主成分とする窒化珪素系焼結体に
おいて、結晶粒界にY_1_0Al_2Si_3O_1
_3N_4(5Y_2O_3・Si_3N_4・Al_
2O_3)結晶が存在していることを特徴とする窒化珪
素系焼結体。 2、窒化珪素80〜95重量%、酸化イットリウム3〜
10重量%、酸化アルミニウム4〜10重量%、窒化ア
ルミニウム0.1〜3重量%を含有してなる組成粉末に
対して、希土類酸化物を3〜20モル%添加し焼結した
ことを特徴とする特許請求の範囲第一項の窒化珪素系焼
結体。 3、特許請求の範囲第2項において、希土類酸化物は、
酸化ホルミニウム、酸化エルビウム、酸化ツリウム、酸
化イッテルビウムのうち少なくとも1つであることを特
徴とする窒化珪素系焼結体。 4、特許請求の範囲第2項において、窒化アルミニウム
の代りに21RAlNポリタイプを1.0〜5.0重量
%含有することを特徴とする窒化珪素系焼結体。
[Claims] 1. β'-silicon nitride (Si_6_-_zAl_zO_z
In a silicon nitride-based sintered body mainly composed of silicon nitride, which is composed of N_8_-_z, 0<Z<4.2) and grain boundaries, Y_1_0Al_2Si_3O_1 is present at the grain boundaries.
_3N_4(5Y_2O_3・Si_3N_4・Al_
2O_3) A silicon nitride-based sintered body characterized by the presence of crystals. 2. Silicon nitride 80~95% by weight, yttrium oxide 3~
10% by weight of aluminum oxide, 4-10% by weight of aluminum nitride, and 0.1-3% by weight of aluminum nitride, and sintered with 3-20% of rare earth oxide added. A silicon nitride-based sintered body according to claim 1. 3. In claim 2, the rare earth oxide is
A silicon nitride-based sintered body comprising at least one of forminium oxide, erbium oxide, thulium oxide, and ytterbium oxide. 4. A silicon nitride-based sintered body according to claim 2, characterized in that it contains 1.0 to 5.0% by weight of 21RAIN polytype instead of aluminum nitride.
JP60254784A 1985-11-15 1985-11-15 Silicon nitride base sintered body Pending JPS62119165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60254784A JPS62119165A (en) 1985-11-15 1985-11-15 Silicon nitride base sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60254784A JPS62119165A (en) 1985-11-15 1985-11-15 Silicon nitride base sintered body

Publications (1)

Publication Number Publication Date
JPS62119165A true JPS62119165A (en) 1987-05-30

Family

ID=17269831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60254784A Pending JPS62119165A (en) 1985-11-15 1985-11-15 Silicon nitride base sintered body

Country Status (1)

Country Link
JP (1) JPS62119165A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124774A (en) * 1988-07-01 1990-05-14 Sumitomo Electric Ind Ltd High-strength silicon nitride-type sintered compact
CN103396798A (en) * 2013-07-24 2013-11-20 江苏博睿光电有限公司 Nitrogen oxide fluorescent powder for near ultraviolet excitation and preparation method thereof
WO2015097856A1 (en) * 2013-12-27 2015-07-02 日本特殊陶業株式会社 Sintered sialon object and cutting insert

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124774A (en) * 1988-07-01 1990-05-14 Sumitomo Electric Ind Ltd High-strength silicon nitride-type sintered compact
CN103396798A (en) * 2013-07-24 2013-11-20 江苏博睿光电有限公司 Nitrogen oxide fluorescent powder for near ultraviolet excitation and preparation method thereof
CN103396798B (en) * 2013-07-24 2015-10-07 江苏博睿光电有限公司 A kind of near ultraviolet excitated nitric oxide fluorescent powder and preparation method thereof
WO2015097856A1 (en) * 2013-12-27 2015-07-02 日本特殊陶業株式会社 Sintered sialon object and cutting insert
US9695087B2 (en) 2013-12-27 2017-07-04 Ngk Spark Plug Co., Ltd. Sialon sintered body and cutting insert

Similar Documents

Publication Publication Date Title
JPS6230667A (en) Manufacture of silicon nitride sintered body
JPS62246865A (en) Silicon nitride sintered body and manufacture
KR100766621B1 (en) Aluminum nitride powder, and method for producing a sintered aluminum nitride
JPS62119165A (en) Silicon nitride base sintered body
JPS5855375A (en) Silicon nitride composite sintered body and manufacture
JPS62256768A (en) Silicon nitride sintered body
JPS6256374A (en) Silicon nitride base sintered body
JPS6241764A (en) Silicon nitride sintered body
JP2002513374A (en) Gas pressure sintered silicon nitride with high strength and stress rupture resistance
JPS5891072A (en) Manufacture of silicon nitride sintered body
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JPS60260472A (en) Alpha-sialon sintered body and manufacture
JPS61101465A (en) Manufacture of silicon nitride bonded silicon carbide sintered body
JPS58204875A (en) Ceramic material and manufacture
JPH01239068A (en) Sintered material of titanium boride base and production thereof
JPS6343346B2 (en)
JPS63252967A (en) Manufacture of silicon nitride base sintered body
JPH1059773A (en) Silicon nitride sintered compact and its production
JPS63151682A (en) Silicon nitride sintered body and manufacture
JP2613402B2 (en) Silicon carbide whisker reinforced silicon nitride sintered body and method for producing the same
JPS60155576A (en) Manufacture of silicon nitride sintered body
JPS61270260A (en) Manufacture of silicon nitride base ceramic
JPS61158868A (en) Manufacture of ceramic sintered body
JPS6110071A (en) High heat conductivity aluminum nitride sintered body
JPH0416565A (en) Conductive sialon sintered body and production thereof