JPS62118628A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62118628A
JPS62118628A JP25892685A JP25892685A JPS62118628A JP S62118628 A JPS62118628 A JP S62118628A JP 25892685 A JP25892685 A JP 25892685A JP 25892685 A JP25892685 A JP 25892685A JP S62118628 A JPS62118628 A JP S62118628A
Authority
JP
Japan
Prior art keywords
external lead
fet
fets
lead terminal
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25892685A
Other languages
Japanese (ja)
Inventor
Shutaro Nanbu
修太郎 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25892685A priority Critical patent/JPS62118628A/en
Publication of JPS62118628A publication Critical patent/JPS62118628A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the performance excellent in those all such as insertion loss, maximum gain control quantity and broad band by forming the titled device by three FETs sealed in a package and plural external lead terminals. CONSTITUTION:The drain electrode of the FET 5 is connected to the drain electrode of the FET 6, the connecting point 15 is connected to the external lead terminal 8 and the source electrode of the FET 6 is connected to the external lead terminal 9. Further, the drain electrode of the FET 7 is connected to the external lead terminal 10, the source electrodes of the FETs 5, 7 are connected to the external lead terminal 11, the gate electrodes of the FETs 5, 7 are connected together, its connecting point 16 is connected to the external lead terminal 12 via a resistor 17 and the gate electrode of the FET 6 is connected to the external lead terminal 13 via a resistor 18. A capacitor 19 is mounted externally between the external lead terminals 9 and 10, the external lead terminal 9 is connected to common together with the external lead terminal 11 via an externally mounted choke coil 20 and the external lead terminals 10 and 8 are used respectively as input and output terminals.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気信号特に高周波電気信号の可変アテネータ
半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a variable attenuator semiconductor device for electrical signals, particularly high frequency electrical signals.

従来の技術 高周波可変アテネータは、ブースターや、CAT”/コ
ンバータ等、特に低歪が要求される広帯域アンプに、A
C,Cをかけるだめに多用されている。
Conventional technologyHigh frequency variable attenuators are used in wideband amplifiers that require particularly low distortion, such as boosters and CAT''/converters.
It is often used to multiply C and C.

従来、このために、Siを用いるPiNダイオードを第
5図乙のように接続して可変アテネータを構成していた
。これは、  PiNダイオードの順方向抵抗が、印加
電圧により変化することを利用するもので1第5図aの
高周波等価回路は、第6図すのように表わされるが、こ
のときの抵抗1.2の抵抗値R1,R2を、それぞれ第
4図に示すように変化させれば、所望の減衰量が得られ
るものである。PiNダイオードは低容量であると共に
、ON時の抵抗を7Ωと小さく、OFF時の抵抗を1に
Ωと大きくできるため、1dB程度の低挿入損失で、2
0〜5odB という大きな減衰量が60〜10010
0Oという高周波かつ広帯域で得られるため、従来、こ
のような目的にはほとんどとのPiNダイオードを用い
るアテネータが使用されていた。
Conventionally, for this purpose, a variable attenuator was constructed by connecting PiN diodes using Si as shown in FIG. 5B. This takes advantage of the fact that the forward resistance of a PiN diode changes depending on the applied voltage.1 The high frequency equivalent circuit of FIG. 5a is expressed as shown in FIG. 6. By changing the resistance values R1 and R2 of 2 as shown in FIG. 4, a desired amount of attenuation can be obtained. PiN diodes have low capacitance, and the resistance when ON is as low as 7Ω, and the resistance when OFF can be increased to 1Ω, so it has a low insertion loss of about 1dB and
A large attenuation of 0 to 5 odB is 60 to 10010
Conventionally, most attenuators using PiN diodes have been used for this purpose because they can be obtained at a high frequency of 0O over a wide band.

発明が解決しようとする問題点 しかし、このようなアテネータでは、PiNダイオード
に順方向に電流を流すため、10mA程度と消費電流が
大きいという問題点があった。また部品点数も多くなシ
、小形実装を目ざすためには不利であった。
Problems to be Solved by the Invention However, such an attenuator has a problem in that current consumption is large, about 10 mA, because current flows in the forward direction through the PiN diode. Furthermore, the number of parts was large, which was disadvantageous for aiming at compact packaging.

問題点を解決するだめの手段 前記問題点を解決するため、本発明は、パッケージ内に
封入した3個のFETと複数個の外部導出端子とよりな
り、第1のFETのドレイン電極を第2のFETのドレ
イン電極に接続し、第2のFETのソース電極を第3の
FETのドレイン電極に接続し、かつ前記2個の接続点
、前記第1と第3のFETのソース電極及び前記3個の
FETのゲート電極を夫々別個の外部導出端子に接続し
た事を特徴とする半導体装置を提供する。
Means for Solving the Problems In order to solve the above problems, the present invention comprises three FETs sealed in a package and a plurality of external lead-out terminals, and the drain electrode of the first FET is connected to the second FET. The source electrode of the second FET is connected to the drain electrode of the third FET, and the two connection points, the source electrodes of the first and third FETs, and the third Provided is a semiconductor device characterized in that gate electrodes of individual FETs are connected to separate external lead-out terminals.

作用 本構成により、GaAsFETのチャンネルを単に抵抗
体として使用し、ゲートバイアスを変化することにより
、5〜10にΩ程度の可変範囲を容易に得ることができ
る。このとき、バイアス電流は殆んど流す必要が々いた
め、低消費電力化も可能である。
Effect With this configuration, by simply using the channel of the GaAsFET as a resistor and changing the gate bias, a variable range of about 5 to 10 Ω can be easily obtained. At this time, since almost no bias current needs to flow, it is possible to reduce power consumption.

実施例 本発明を第1図に示す実施例をもとに説明する。Example The present invention will be explained based on the embodiment shown in FIG.

第1図に示すように3個のGaAsF1!:TaN2と
6個の外部導出端子8〜13と2個の抵抗17゜18と
をパッケージ内に封入し、FET6のドレイン電極をF
ET6のドレイン電極に接続し、其の接続点16を外部
導出端子8に接続し、FET6のソース電極を外部導出
端子9に接続し、FET7のドレイン電極を外部導出端
子1oに接続し、FET5と7とのソース電極を外部導
出端子11に接続し、FET6及び7のゲート電極を相
互に接続し1其の接続点16を抵抗17を介して外部導
出端子12に接続し、FETeのゲート電極を抵抗18
を介して外部導出端子13に接続する。
As shown in FIG. 1, three GaAsF1! : TaN2, six external lead-out terminals 8 to 13, and two resistors 17°18 are sealed in a package, and the drain electrode of FET6 is connected to FET6.
It is connected to the drain electrode of ET6, its connection point 16 is connected to external lead-out terminal 8, the source electrode of FET6 is connected to external lead-out terminal 9, the drain electrode of FET7 is connected to external lead-out terminal 1o, and FET5 and The source electrode of FET 7 is connected to the external lead terminal 11, the gate electrodes of FET 6 and 7 are connected to each other, the connection point 16 of 1 is connected to the external lead terminal 12 via the resistor 17, and the gate electrode of FET 7 is connected to the external lead terminal 11. resistance 18
It is connected to the external lead-out terminal 13 via.

外部導出端子9,10間にコンデンサ19を外付けし、
外部導出端子9を外付はチョークコイル2oを介して、
外部導出端子11と共に接地し、外部導出端子10及び
8を夫々入力端子、出力端子として使用する事により、
第6図すに示す高周波等価回路が形成される。
A capacitor 19 is externally connected between external lead-out terminals 9 and 10,
The external lead-out terminal 9 is connected externally via the choke coil 2o.
By grounding together with external lead terminal 11 and using external lead terminals 10 and 8 as input terminal and output terminal, respectively,
A high frequency equivalent circuit shown in FIG. 6 is formed.

FET6のチャンネル抵抗が抵抗1(R1)に、FET
6およびFET7のチャンネル抵抗が抵抗2(R2)に
対応する。FETの各チャンネル抵抗はゲート電極に接
続された外部導出端子13゜12とソース電極に接続さ
れた接地点との間に印加する逆バイアスvG+”G2 
 によって第4図に示す値になるようにコントロールさ
れる。前記の構成によυ、FETeのソースとFET:
T7のドレインは直流的に切り離して、バイアスを印加
するため、夫々別個の外部導出端子9,10に接続し両
列部導出端子9,1oはコンデンサC1で交流的にのみ
接続するようにしである。チョークコイル20は、FE
Teのソースを直流的にOvにするためのものである。
The channel resistance of FET6 is set to resistor 1 (R1), and the FET
The channel resistances of FET 6 and FET 7 correspond to resistance 2 (R2). Each channel resistance of the FET is determined by the reverse bias vG+''G2 applied between the external lead terminal 13゜12 connected to the gate electrode and the ground point connected to the source electrode.
is controlled so that the value shown in FIG. 4 is obtained. According to the above configuration, υ, the source of FETe and the FET:
The drain of T7 is separated from DC and connected to separate external lead-out terminals 9 and 10 in order to apply a bias, and both row lead-out terminals 9 and 1o are connected only to AC through capacitor C1. . The choke coil 20 is FE
This is to make the Te source Ov in a direct current manner.

しかし、減衰量6dB以上で使用する時にはFET6の
ゲートに接続した外部導出端子13に負バイアスを印加
するときは、第4図より、FETyのチャンネル抵抗が
300Ω以下の抵抗値になっているため第2図に示すよ
うに、第1図のコンデンサ19.チョークコイル2oを
省略し、FETaのソース端子とFET7のドレイン端
子とを接続し、其の接続点21を外部導出端子22に接
続し、この端子を入力端子として使用する簡略化した回
路構成が可能である。
However, when using it with an attenuation of 6 dB or more, when applying a negative bias to the external lead-out terminal 13 connected to the gate of FET 6, as shown in Figure 4, the channel resistance of FET y has a resistance value of 300 Ω or less. As shown in FIG. 2, capacitor 19. of FIG. A simplified circuit configuration is possible in which the choke coil 2o is omitted, the source terminal of FETa is connected to the drain terminal of FET 7, the connection point 21 is connected to the external lead-out terminal 22, and this terminal is used as an input terminal. It is.

又第1図、第2図の点線内を次の様な方法でモノリシッ
クIC化する事も可能である。FET6のON時のチャ
ンネル抵抗を6ΩにFET7および6のON時のチャン
ネル抵抗を8oΩにするために、FET6のゲート寸法
をlX1000μmに、FET7及び6のゲート寸法を
1×60μmに設計した。ソース電極とゲート電極間及
びゲート電極とドレイン電極間の間隔は両方共1μmと
した。チップサイズは0.5 X O,8mmである。
Furthermore, it is also possible to form a monolithic IC within the dotted lines in FIGS. 1 and 2 by the following method. In order to make the channel resistance of FET 6 ON to 6Ω and the channel resistance of FETs 7 and 6 to 8OΩ, the gate dimensions of FET 6 were designed to be 1×1000 μm, and the gate dimensions of FETs 7 and 6 were designed to be 1×60 μm. The spacing between the source electrode and the gate electrode and between the gate electrode and the drain electrode were both 1 μm. The chip size is 0.5×O, 8mm.

ゲート電極はT i /P +/ムU、オーミックはム
uGe/Mi/Au  、配線はTi/Auの多層構造
に形成した。各FETは、半絶縁性基板にSiイオンを
注入して、活性層およびn+層を形成した。更に第1図
及び第2図の外部導出端子をポンディングパッドに置き
換え、このパッド8,9.10(22)、11 。
The gate electrode was formed in a multilayer structure of T i /P + /muU, the ohmic layer was formed in muGe/Mi/Au, and the wiring was formed in a Ti/Au multilayer structure. Each FET had an active layer and an n+ layer formed by implanting Si ions into a semi-insulating substrate. Furthermore, the external lead-out terminals in FIGS. 1 and 2 are replaced with bonding pads 8, 9, 10 (22), and 11.

12.13を夫々第 図に示すパッケージの外部端子2
3,24,25,28,27.28にワイヤボンドして
封入した。このようにして、試作したGaAs I C
アテネータは挿入損失は0.6 dB 。
12. External terminal 2 of the package shown in Figure 13 respectively.
3, 24, 25, 28, 27.28 were wire bonded and sealed. In this way, the prototype GaAs IC
The insertion loss of the attenuator is 0.6 dB.

最大利得制御量40dBが60〜100100Oという
高周波帯域で得られた。
A maximum gain control amount of 40 dB was obtained in the high frequency band of 60 to 100,100 O.

尚以上の説明ではGaAsFETを例にとって説明した
が、5iFIETを用いても、その原理から明らかなよ
うに、本発明が実現可能である。
Although the above description has been made using a GaAsFET as an example, the present invention can also be implemented using a 5iFIET, as is clear from its principle.

発明の効果 以上述べたごとく、本発明によれば、従来のPiNダイ
オードを用いる方式のアテネータに比べて、挿入損失、
最大利得制御量、広帯域性等すべてにすぐれた性能が得
られる。これはGaAsFETのソース、ドレイン内容
量が極めて小さいためである。
Effects of the Invention As described above, according to the present invention, insertion loss and
Excellent performance can be obtained in terms of maximum gain control amount, wideband performance, etc. This is because the internal capacity of the source and drain of the GaAsFET is extremely small.

また、以上の説明から分るように、FETのチャンネル
には直流電流が一切流れないため、消費電力の点でも従
来の方式に比べ飛躍的に有利でちる。
Furthermore, as can be seen from the above explanation, since no direct current flows through the FET channel, this method is significantly more advantageous than the conventional method in terms of power consumption.

まだ、 GaAsの特長としてIC化が有利であり極め
て小形に形成可能である。
However, GaAs has the advantage of being integrated into ICs and can be made extremely small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の一実施例を示す回路図、第3
図は第1図、第2図に示す回路構成を有するモノリシッ
クICチップをパッケージに実装した装置の外観略図、
第4図は第6図すに示す回路の抵抗値と減衰量の関係を
示す特性図、第6図aは従来のPiNダイオードを用い
たアテネータ回路図、第5図すはその高周波等価回路図
である。 1〜4.17.18,32.33・・印・抵抗、6〜7
・・・・・・FET、8〜13.22・川・・外部導出
端子、14・・・・・・パッケージ、15,16.21
・・・・・・接続点、19.34〜37・・・・・・コ
ンデンサ、2o。 38・・・・・・チョークコイル、23・川・・出力端
子、24・・・・・・FETのソース端子、26・川・
・入力端子、26・・・・・・接地端子、27・・・・
・・FET7,5のゲートバイアス端子、28・・・・
・・yx’rsのゲートバイアス端子、29〜31・・
・・・・PiNダイオード。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名5+
7−・fE7 Il、 If−−一糧暁、ミ イア、1J−−−セ私J九 19−一一コプYノf なr−−−4,、ゴ4Iし @2図    2f−葎縫河 22−外軒審出堝ト 幻−・−出カ、ハ1) X /I t Arrtttal 第 5 図        29−3l−PIN I”
(□−1゜32.33−一一玖抗 洛37−−−1−tデ′ンT イヘ4−−−オU:友、
Figures 1 and 2 are circuit diagrams showing one embodiment of the present invention, and Figure 3 is a circuit diagram showing an embodiment of the present invention.
The figure is a schematic external view of a device in which a monolithic IC chip having the circuit configuration shown in FIGS. 1 and 2 is mounted in a package.
Fig. 4 is a characteristic diagram showing the relationship between resistance value and attenuation of the circuit shown in Fig. 6, Fig. 6a is a circuit diagram of an attenuator using a conventional PiN diode, and Fig. 5 is its high frequency equivalent circuit diagram. It is. 1~4.17.18,32.33...mark/resistance, 6~7
・・・・・・FET, 8~13.22・River・・External lead-out terminal, 14・・・・Package, 15, 16.21
...Connection point, 19.34-37... Capacitor, 2o. 38...Choke coil, 23...Output terminal, 24...FET source terminal, 26...River...
・Input terminal, 26... Ground terminal, 27...
・・Gate bias terminal of FET7, 5, 28・・・・
...yx'rs gate bias terminal, 29-31...
...PiN diode. Name of agent: Patent attorney Toshio Nakao and 1 other person 5+
7-・fE7 Il, If--Ichiryo Akatsuki, Miia, 1J---Se I J919-11 cop Y no f na r---4,,Go4Ishi@2Figure 2f-Nuikawa 22-Output phantom--output, c1)
(□-1゜32.33-11㎖洛 37--1-t de'n T Ihe 4--U: Friend,

Claims (3)

【特許請求の範囲】[Claims] (1)パッケージ内に封入した3個のFETと複数個の
外部導出端子とよりなり、第1のFETのドレイン電極
を第2のFETのドレイン電極に接続し、前記第2のF
ETのソース電極を第3のFETのドレイン電極に接続
し、かつ前記2個の接続点、前記第1と第3のFETの
ソース電極及び前記3個のFETのゲート電極を夫々別
個の外部導出端子に接続した事を特徴とする半導体装置
(1) Consisting of three FETs sealed in a package and a plurality of external lead-out terminals, the drain electrode of the first FET is connected to the drain electrode of the second FET, and the second FET is connected to the drain electrode of the second FET.
The source electrode of the ET is connected to the drain electrode of the third FET, and the two connection points, the source electrodes of the first and third FETs, and the gate electrodes of the three FETs are each separately led out. A semiconductor device characterized by being connected to a terminal.
(2)第2のFETのソース電極と第3のドレイン電極
との接続を除去し、前記両電極を、第1と前記第2のF
ETのドレイン電極間の接続点、前記第1と第3のFE
Tのソース電極及び3個のFETのゲート電極に夫々接
続した外部導出端子以外の、夫々別個の外部導出端子に
接続した特許請求の範囲第1項記載の半導体装置。
(2) The connection between the source electrode and the third drain electrode of the second FET is removed, and the two electrodes are connected to the first and second FET.
a connection point between the drain electrodes of the ET, the first and third FE;
The semiconductor device according to claim 1, wherein the semiconductor device is connected to separate external lead-out terminals other than the external lead-out terminals respectively connected to the source electrode of the transistor T and the gate electrodes of the three FETs.
(3)第1、第3のFETのゲート電極と外部導出端子
との接続を除去し、前記両ゲート電極を相互に接続し、
この接続点を第2と前記第1のFETのドレイン電極間
の接続点、前記第1と第3のソース電極及び3個のFE
Tのゲート電極に夫々接続した外部導出端子以外の、夫
々別個の外部導出端子に直接もしくは抵抗を介して接続
した特許請求の範囲第1項または第2項記載の半導体装
置。
(3) removing the connection between the gate electrodes of the first and third FETs and the external lead-out terminals, and connecting both the gate electrodes to each other;
This connection point is connected to the connection point between the drain electrodes of the second and first FETs, the connection point between the first and third source electrodes, and the three FETs.
3. The semiconductor device according to claim 1, wherein the semiconductor device is connected directly or via a resistor to separate external lead-out terminals other than the external lead-out terminals respectively connected to the gate electrodes of T.
JP25892685A 1985-11-19 1985-11-19 Semiconductor device Pending JPS62118628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25892685A JPS62118628A (en) 1985-11-19 1985-11-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25892685A JPS62118628A (en) 1985-11-19 1985-11-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62118628A true JPS62118628A (en) 1987-05-30

Family

ID=17326956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25892685A Pending JPS62118628A (en) 1985-11-19 1985-11-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62118628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534724U (en) * 1991-10-04 1993-05-07 アルプス電気株式会社 Variable attenuator
US5502421A (en) * 1994-07-27 1996-03-26 Mitsubishi Denki Kabushiki Kaisha Variable attenuation microwave attenuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534724U (en) * 1991-10-04 1993-05-07 アルプス電気株式会社 Variable attenuator
US5502421A (en) * 1994-07-27 1996-03-26 Mitsubishi Denki Kabushiki Kaisha Variable attenuation microwave attenuator

Similar Documents

Publication Publication Date Title
US4843440A (en) Microwave field effect transistor
US4486719A (en) Distributed amplifier
JP2643662B2 (en) High power field effect transistor amplifier
JPH05251963A (en) High-gain monolithic microwave integrated circuit amplifier
US5049764A (en) Active bypass for inhibiting high-frequency supply voltage variations in integrated circuits
JPS62118628A (en) Semiconductor device
US4908531A (en) Monolithic active isolator
EP0836276A3 (en) Magnetostatic-wave device
CA1200017A (en) Microwave field effect transistor
JPH0964191A (en) Semiconductor integrated circuit device
US4646125A (en) Semiconductor device including Darlington connections
JPS61172376A (en) Semiconductor device
JPH0553321B2 (en)
JPH05183161A (en) Semiconductor device
JPH07321130A (en) Semiconductor device
US6670674B2 (en) Transistor and power amplifier with improved bandwidth
JP3499394B2 (en) Microwave integrated circuit
JP4256952B2 (en) High frequency amplifier
JPH0526769Y2 (en)
Huang Microwave field effect transistor
JPS6224667A (en) Photoelectronic integrated circuit element
JPS62111475A (en) Semiconductor device
JP3954799B2 (en) Compound semiconductor switch circuit device
JPS6276743A (en) Semiconductor device
JPH07142626A (en) Semiconductor device