JPS62116214A - Optical fiber sensor - Google Patents

Optical fiber sensor

Info

Publication number
JPS62116214A
JPS62116214A JP25745385A JP25745385A JPS62116214A JP S62116214 A JPS62116214 A JP S62116214A JP 25745385 A JP25745385 A JP 25745385A JP 25745385 A JP25745385 A JP 25745385A JP S62116214 A JPS62116214 A JP S62116214A
Authority
JP
Japan
Prior art keywords
light
optical fiber
afterglow
receiver
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25745385A
Other languages
Japanese (ja)
Inventor
Motoaki Takaoka
高岡 元章
Masao Hirano
平野 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP25745385A priority Critical patent/JPS62116214A/en
Publication of JPS62116214A publication Critical patent/JPS62116214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To realize the reduction of the number of parts and the simplification of a manufacturing work process, by constituting a sensor of a single light emitter-receiver and one optical fiber other than a transducer. CONSTITUTION:A control apparatus 6 applies a timing pulse with a predetermined cycle Ta to a drive circuit 5 to allow a light emitter-receiver 4 to perform light emitting operation. Next, the exciting light from the light emitter- receiver 4 passes through an optical fiber 3 to irradiate a phosphor 2. The fluorecences LA, LS emitted from the phosphor 2 excited by said exciting light go back through the optical fiber 3 but, because the light emitting diode constituting the light emitter-receiver 4 is reversely biased corresponding to a time width Tb, only afterglow during this time is received. Next, this afterglow signal is amplified by a detection circuit 7 and subsequently integrated over the time width Tb to calculated the integral quantity of afterglow. This integral quantity of afterglow is compared with the temp. characteristic of the integral value of the quantity of afterglow preset by an operation circuit 8 to calculate the temp. of an atmosphere in which the phosphor 2 was placed and the calculated result is displayed on a display device 9.

Description

【発明の詳細な説明】 〈発明の技術分野〉 この発明は、温度などの周囲環境の物理量を検出するの
に使用される光ファイバセンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an optical fiber sensor used to detect physical quantities of the surrounding environment, such as temperature.

〈発明の概要〉 この発明は、トランスデユーサの他に、単一の投受光器
と単線の光ファイバとで光ファイバセンサを構成したも
のであり、これにより部品点数の減少と作業工程の簡易
化とを実現している。
<Summary of the Invention> This invention comprises an optical fiber sensor consisting of a single light emitter/receiver and a single optical fiber in addition to a transducer, which reduces the number of parts and simplifies the work process. We have realized the following.

〈発明の背景〉 例えば燐光を発する燐光体や螢光を発する螢光体(以下
、「燐量光体」と総称する)は、これに励起光を当てる
と、励起により燐量光体は燐量光を発するが、この燐量
光強度は、それが置かれた周囲環境の温度に応じて変化
するものである。従って、この温度による燐量光強度の
変化を利用して、周囲温度の測定が可能であり、その−
例として、従来、第6図に示すような構成を備えた温度
測定装置が提案されている。
<Background of the Invention> For example, when a phosphor that emits phosphorescence or a phosphor that emits fluorescence (hereinafter collectively referred to as a "phosphor") is exposed to excitation light, the phosphor emits phosphorescence due to the excitation. It emits a certain amount of light, and the intensity of this phosphorous light changes depending on the temperature of the surrounding environment in which it is placed. Therefore, it is possible to measure the ambient temperature by using the change in phosphorous light intensity due to temperature, and the -
As an example, a temperature measuring device having a configuration as shown in FIG. 6 has been proposed.

同図のものは、燐量光体11を温度を測定すべき雰囲気
内に配置し、発光器12から光ファイバ13、分岐管1
4、光ファイバ15を通して励起光を燐量光体11へ照
射すると共に、励起により燐量光体11から発光された
燐量光を光ファイバ15、分岐管14、光ファイバ16
を通して受光器17で受光する構成であり、この受光器
17で検出された燐螢光強度を、予め求めである燐螢光
強度の温度特性と比較することにより、前記雰囲気内の
温度を検出するものである。ところがかかる構成によれ
ば、燐量光体11の他に、発光器12と受光器17.3
本の光ファイバ13.15,16、分岐管14などの各
構成要素が必要であり、部品点数が著しく増加するばか
りでなく、前記分岐管14の使用によって光結合損が発
生するという問題がある。またそれぞれ光ファイバ13
.16に対し、発光器12および受光器17の各光軸合
わせが必要であるため、調整作業や製造工程が複♀1を
化し、これが製品コストを増大させる要因となっている
In the figure, a phosphorescent body 11 is placed in an atmosphere where the temperature is to be measured, and a light emitter 12 is connected to an optical fiber 13 and a branch pipe 1 is connected.
4. The excitation light is irradiated to the phosphorescent light body 11 through the optical fiber 15, and the phosphorous light emitted from the phosphorescent light body 11 due to the excitation is transmitted to the optical fiber 15, the branch pipe 14, and the optical fiber 16.
The temperature in the atmosphere is detected by comparing the phosphor fluorescence intensity detected by the light receiver 17 with the temperature characteristic of the phosphor fluorescence intensity determined in advance. It is something. However, according to such a configuration, in addition to the phosphorescent light body 11, there are also a light emitter 12 and a light receiver 17.3.
Each component such as the optical fibers 13, 15, 16 and the branch pipe 14 is required, which not only significantly increases the number of parts, but also causes the problem that optical coupling loss occurs due to the use of the branch pipe 14. . Also, each optical fiber 13
.. 16, it is necessary to align the optical axes of the light emitter 12 and the light receiver 17, which complicates the adjustment work and manufacturing process, which causes an increase in product cost.

〈発明の目的〉 この発明は、−J−記問題を解消するためのものであっ
て、部品点数の減少や製造作業工程の簡易化を実現する
新規な光ファイバセンサを提供することを目的とする。
<Purpose of the Invention> This invention is intended to solve the problem described in -J-, and its purpose is to provide a new optical fiber sensor that reduces the number of parts and simplifies the manufacturing process. do.

〈発明の構成および効果〉 上記目的を達成するため、この発明の光ファイバセンサ
では、温度などの物理−の変化に応じて変化する残光特
性をもつ部材より成るトランスデユーサと、このトラン
スデユーサに対し励起光を当てると共に励起によりトラ
ンスデユーサが発する光のうら残光を検出するための単
体の投受光器と、トランスデユーサと投受光器との間に
設けられた光を往復伝播するための単線の光ファイバと
を具備させている。
<Structure and Effects of the Invention> In order to achieve the above object, the optical fiber sensor of the present invention includes a transducer made of a member having an afterglow characteristic that changes according to physical changes such as temperature, and this transducer. A single light emitter/receiver is provided to illuminate the user with excitation light and detect the afterglow of the light emitted by the transducer due to excitation, and a light transmitter/receiver is provided between the transducer and the light emitter/receiver for reciprocal propagation of light. It is equipped with a single optical fiber for this purpose.

この発明によれば、トランスデユーサの他に、単一の投
受光器と1本の光ファイバとで光ファイバセンサを構成
できるから、従来例に比較して、部品点数を大幅に減少
し得、しかも前記分岐管を用いないから、光結合損の発
生を防止できる。また光ファイバに対する光軸合わせは
1回で済むから、発光器および受光器の両方につき光軸
合わせが必要であった従来例と比較して、調整作業や製
造工程が簡易化され、これによる製品のコストアンプを
防止できるなど、発明目的を達成した顕著な効果を奏す
る。
According to this invention, an optical fiber sensor can be configured with a single light emitter/receiver and one optical fiber in addition to a transducer, so the number of parts can be significantly reduced compared to the conventional example. Moreover, since the branch pipe is not used, the occurrence of optical coupling loss can be prevented. In addition, because the optical axis alignment for the optical fiber only needs to be done once, the adjustment work and manufacturing process are simplified compared to the conventional method, which required alignment of the optical axis for both the emitter and the receiver. This invention has a remarkable effect of achieving the purpose of the invention, such as being able to prevent the cost increase.

〈実施例の説明〉 第1図は、この発明の一実施例にかかる光ファイバセン
サ1を用いた温度測定装置の構成例を示す。
<Description of Embodiments> FIG. 1 shows a configuration example of a temperature measuring device using an optical fiber sensor 1 according to an embodiment of the present invention.

図示例の光ファイバセンサ1は、温度測定すべき雰囲気
内や物体表面(図中、破線で示す)などに置かれる螢光
体2と、この螢光体2を先端に取り付は固定した単線の
光ファイバ3と、この光ファイバ3の基端面に投受光面
を対向させて配置される投受光器4とから構成され、前
記光ファイバ3を介して螢光体2と投受光器4との間で
光が往復伝播されるようになっている。
The illustrated optical fiber sensor 1 includes a phosphor 2 placed in an atmosphere or on the surface of an object (indicated by a broken line in the figure) whose temperature is to be measured, and a single wire with the phosphor 2 attached to the tip and fixed. It is composed of an optical fiber 3 and a light emitter/receiver 4 arranged with its light emitter/receiver surface facing the proximal end surface of the optical fiber 3. Light is propagated back and forth between the two.

前記螢光体2は、その残光特性が温度依存性をもつもの
であれば、その種類を問わず種々のものを用いることが
できるが、好ましくは、残光時間が10−b〜1 (1
−3sec程度の螢光体を使用する。例えば紫外光励起
では、Y 202 S :Euなどの希土類金属オキシ
サルファイド、ZnS : Ln (Lnは希土類元素
のkB称)、SrS:Lnなどの硫化物螢光体が、また
赤外光励起では、LnF3 :  (Yb、Er)、L
nOF :  (Yb、Er) 、L iNd P40
+z:Ybなどが使用される。
The phosphor 2 can be of any kind as long as its afterglow characteristic is temperature dependent, but preferably the afterglow time is 10-b to 1 ( 1
-Use a phosphor of about 3 seconds. For example, for ultraviolet light excitation, rare earth metal oxysulfides such as Y202S:Eu, sulfide phosphors such as ZnS:Ln (Ln is the kB name of rare earth element), and SrS:Ln are used, and for infrared light excitation, LnF3: (Yb, Er), L
nOF: (Yb, Er), LiNd P40
+z: Yb or the like is used.

つぎに投受光器4は、この螢光体2に対し励起光を照射
すると共に、その励起により螢光体2が発する光のうち
残光を検出するためのもので、この実施例では、GaA
s:Stのような励起用の発光ダイオードをフォトダイ
オードとして兼用して用いている。すなわちこの実施例
の場合、発光ダイオードのような半導体素子を逆バイア
スすると、第2図に示す如く、発光ダイオート°の発光
スペクトルlの短波長側領域に受光感度スペクトルnを
もつフォトダイオードとして機能させることができる点
に着目したもので、この発光ダイオードを駆動回路5に
よりパルス駆動して、励起光を出力させると共に、螢光
体2が残光を発する間、発光ダイオードをフォトダイオ
ードとして機能させて、その受光信号を時系列的に得る
ようにしている。
Next, the light emitter/receiver 4 is used to irradiate the phosphor 2 with excitation light and to detect the afterglow of the light emitted by the phosphor 2 due to the excitation.
A light emitting diode for excitation such as s:St is also used as a photodiode. That is, in the case of this embodiment, when a semiconductor element such as a light emitting diode is reverse biased, it functions as a photodiode having a light receiving sensitivity spectrum n in the short wavelength region of the light emission spectrum l of the light emitting diode, as shown in FIG. This light-emitting diode is pulse-driven by a drive circuit 5 to output excitation light, and while the phosphor 2 emits afterglow, the light-emitting diode functions as a photodiode. , the received light signals are obtained in time series.

なお第2図は、GaAs:Si発光ダイオードの発光ス
ペクトルlと、この発光ダイオードをフォトダイオード
として使用した場合の受光感度スペクトルnと、螢光体
2としての希土類フッ化物(YF3  : YbXEr
)の発光スペクトルmとを示すもので、この発光ダイオ
ードは、フォトダイオードとして、図中、斜線部で示す
領域の光を受光し得る特性を有している。
Note that FIG. 2 shows the emission spectrum l of a GaAs:Si light emitting diode, the light receiving sensitivity spectrum n when this light emitting diode is used as a photodiode, and the rare earth fluoride (YF3: YbXEr) as the phosphor 2.
), and this light emitting diode, as a photodiode, has the characteristic of being able to receive light in the shaded area in the figure.

第3図は、より広い受光特性をもつ他の投受光素子の特
性を例示したものである。図中、lはこの投受光素子の
発光スペクトル、nはその受光感度スペクトル、mは螢
光体の発光スペクトルであって、この投受光素子は、斜
線部で示す領域の光を受光し得る特性を有す。
FIG. 3 illustrates the characteristics of another light emitting/receiving element having wider light receiving characteristics. In the figure, l is the emission spectrum of this light emitting/receiving element, n is its light receiving sensitivity spectrum, and m is the emission spectrum of the phosphor. has.

つぎに第4図は、第1図の光ファイバセンヅlのタイミ
ングチャートを示しており、このうち第4図(1)は、
投受光器4が出力するパルス状の励起光の波形を、また
第4図(2)は、この励起光により励起された螢光体2
から発せられる光の波形を、さらに第4図(3)は、投
受光器4において受光される残光の波形を、それぞれ示
している。この第4図(2)において、励起されている
間に発光される光が螢光LAであり、また励起が停止し
た時点を以降に発光して時間経過とともに減衰する光が
残光l1.である。また図中、破線が温度゛F1におり
る波形、実線が温度′I″2(ただしT+<’r”g)
におりる波形であるが、一般に、残光輝度は温度が低い
程高くなる傾向がある。
Next, FIG. 4 shows a timing chart of the optical fiber cable shown in FIG.
FIG. 4(2) shows the waveform of the pulsed excitation light output by the light emitter/receiver 4, and the phosphor 2 excited by this excitation light.
Furthermore, FIG. 4(3) shows the waveform of the afterglow received by the light emitter/receiver 4. In FIG. 4(2), the light emitted during excitation is fluorescent light LA, and the light emitted after the point at which excitation stops and which attenuates over time is afterglow l1. It is. Also, in the figure, the broken line is the waveform that reaches temperature 'F1, and the solid line is the waveform at temperature 'I''2 (however, T+<'r'g)
However, in general, the lower the temperature, the higher the afterglow brightness tends to be.

第1図に戻っζ、制御装置6は、所定周期T a  (
第4 r、1H1l参It<0のタイミングパルスを駆
動回路5に与えて、投受光器4を発光動作させる。前記
周期Taは、測定範囲内のすべての温度において、螢光
体2から発光された残光が完全に消失するのに十分な時
間に設定される。このタイミングパルスにより駆動回路
5が投受光器4を駆動すると、この投受光器4より励起
光が出力され、光ファイバ3を通って螢光体2に照射さ
れる。この励起により螢光体2から発光された前記螢光
L1および残光Lllは光ファイバを逆行するが、投受
光器2を構成する発光ダイオードは時間幅Tb(第4図
(3)参照)に対応じて逆バイアスされるため、この間
の前記残光のみが受光されることになる。
Returning to FIG. 1, ζ, the control device 6 controls the predetermined period T a (
4th r, 1H1l A timing pulse of It<0 is given to the drive circuit 5 to cause the light emitter/receiver 4 to emit light. The period Ta is set to a time sufficient for the afterglow emitted from the phosphor 2 to completely disappear at all temperatures within the measurement range. When the drive circuit 5 drives the light emitter/receiver 4 using this timing pulse, excitation light is output from the light emitter/receiver 4 and is irradiated onto the phosphor 2 through the optical fiber 3 . The fluorescent light L1 and the afterglow Lll emitted from the fluorescent body 2 due to this excitation travel backward through the optical fiber, but the light emitting diode constituting the light emitter/receiver 2 has a time width Tb (see FIG. 4 (3)). Since the light is reversely biased depending on the pair, only the afterglow during this period is received.

この投受光器4で受光された残光信号は、検出回路7に
入力されて増幅された後、前記時間幅Tbにわたって積
分され、残光積分光量が求められる。この積分手段とし
ては、残光信号をアナログ的に直接積分する回路構成の
他、残光信号を適当な時間間隔でサンプリングして得ら
れたデータをメモリに記憶しておき、記憶されたサンプ
リング・データを加算するような回路構成であってもよ
い。
The afterglow signal received by the light emitter/receiver 4 is input to the detection circuit 7 and amplified, and then integrated over the time width Tb to obtain the integrated afterglow light amount. In addition to a circuit configuration that directly integrates the afterglow signal in an analog manner, this integration means also has a circuit configuration that samples the afterglow signal at appropriate time intervals and stores the obtained data in a memory. A circuit configuration that adds data may also be used.

検出回路7で求められた残光積分光量は、演算回路8に
入力され、ここで螢光体2に応じて予め設定された残光
光−の積分値の温度特性と比較されて、螢光体2が置か
れた雰囲気などの温度が算出され、その算出結果が表示
器9に表示される。
The integrated amount of afterglow obtained by the detection circuit 7 is input to the arithmetic circuit 8, where it is compared with the temperature characteristic of the integrated value of the afterglow set in advance according to the phosphor 2, and the amount of afterglow is determined. The temperature of the atmosphere in which the body 2 is placed is calculated, and the calculation result is displayed on the display 9.

第5図は、残光光量の積分値の温度特性を示している。FIG. 5 shows the temperature characteristics of the integral value of the amount of afterglow light.

使用される螢光体について、種々の温度Tに対してその
積分値があらかしめ測定され、既知関係として第5図に
示すような特性があらかじめ設定されている。この特性
データは、温度関数テーブル10としてメモリに格納さ
れ、測定された残光積分光量が、このテーブルを参照さ
れて比較されることにより、温度が求められるものであ
る。
The integral values of the fluorescent material used are preliminarily measured at various temperatures T, and the characteristics shown in FIG. 5 are set in advance as known relationships. This characteristic data is stored in the memory as a temperature function table 10, and the measured afterglow integrated light amount is compared with reference to this table to determine the temperature.

なお第1図中の制御装置6は、コンピュータ回路で構成
されており、各種演算や処理を実行すると共に、上記各
構成回路の動作を一連に制御している。
The control device 6 in FIG. 1 is composed of a computer circuit, and executes various calculations and processes, as well as sequentially controls the operations of each of the above-mentioned constituent circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の光ファイバセンサが用いられた温度
測定装置の構成を示す図、第2図および第3図は投受光
器および螢光体の特性を示す図、第4図は第1図の装置
のタイミングチャート、第5図は残光積分光量の温度特
性を示す図、第6図は従来例の構成を示す図である。 1・・・・光ファイバセンサ 2・・・・螢光体 3・・・・光ファイバ 4・・・・投受光器 特許 出 願人  立石電機株式会社 /  九フ1イノぐL7プ 1F、(穴に)
FIG. 1 is a diagram showing the configuration of a temperature measuring device using the optical fiber sensor of the present invention, FIGS. 2 and 3 are diagrams showing the characteristics of the light emitter/receiver and the fluorescent body, and FIG. FIG. 5 is a diagram showing the temperature characteristics of the integrated amount of afterglow light, and FIG. 6 is a diagram showing the configuration of a conventional example. 1... Optical fiber sensor 2... Fluorescent body 3... Optical fiber 4... Emitter/receiver patent Applicant: Tateishi Electric Co., Ltd./Kufu 1 Inogu L7 1F, ( into the hole)

Claims (3)

【特許請求の範囲】[Claims] (1)周囲環境の物理量を検出するためのセンサであっ
て、 前記物理量に応じて変化する残光特性をもつ部材より成
るトランスデューサと、 このトランスデューサに対し励起光を当てると共に、励
起によりトランスデューサが発する光のうち残光を検出
するための投受光器と、トランスデューサと投受光器と
の間に設けられた光を往復伝播するための単線の光ファ
イバとを具備して成る光ファイバセンサ。
(1) A sensor for detecting a physical quantity in the surrounding environment, comprising a transducer made of a member having an afterglow characteristic that changes according to the physical quantity, and an excitation light applied to the transducer, which causes the transducer to emit light due to the excitation. An optical fiber sensor comprising: a light emitter/receiver for detecting afterglow of light; and a single optical fiber for reciprocating light propagation provided between the transducer and the light emitter/receiver.
(2)前記トランスデューサは、温度に応じて変化する
残光特性をもつ螢光体である特許請求の範囲第1項記載
の光ファイバセンサ。
(2) The optical fiber sensor according to claim 1, wherein the transducer is a phosphor having an afterglow characteristic that changes depending on temperature.
(3)前記投受光器は、逆バイアスにより所定の波長領
域に受光感度をもつフォトダイオードと機能する発光ダ
イオードである特許請求の範囲第1項記載の光ファイバ
センサ。
(3) The optical fiber sensor according to claim 1, wherein the light projector/receiver is a light emitting diode that functions as a photodiode that has light receiving sensitivity in a predetermined wavelength region by reverse bias.
JP25745385A 1985-11-15 1985-11-15 Optical fiber sensor Pending JPS62116214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25745385A JPS62116214A (en) 1985-11-15 1985-11-15 Optical fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25745385A JPS62116214A (en) 1985-11-15 1985-11-15 Optical fiber sensor

Publications (1)

Publication Number Publication Date
JPS62116214A true JPS62116214A (en) 1987-05-27

Family

ID=17306549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25745385A Pending JPS62116214A (en) 1985-11-15 1985-11-15 Optical fiber sensor

Country Status (1)

Country Link
JP (1) JPS62116214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244150A (en) * 2008-03-31 2009-10-22 Yamatake Corp Fluorescent temperature sensor
JP2015219399A (en) * 2014-05-19 2015-12-07 日本電信電話株式会社 Semiconductor mz optical modulator and method using semiconductor mz optical modulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244150A (en) * 2008-03-31 2009-10-22 Yamatake Corp Fluorescent temperature sensor
JP2015219399A (en) * 2014-05-19 2015-12-07 日本電信電話株式会社 Semiconductor mz optical modulator and method using semiconductor mz optical modulator

Similar Documents

Publication Publication Date Title
US4789992A (en) Optical temperature measurement techniques
US4652143A (en) Optical temperature measurement techniques
US4223226A (en) Fiber optic temperature sensor
US4710033A (en) Temperature measurement system
US5600147A (en) Temperature measuring system having improved signal processing and multiple optical sensors
EP0897692A3 (en) Fast-turnoff photodiodes with switched-gain preamplifiers in photoplethysmographic measurement instruments
US4562348A (en) Fiber optical luminescence measuring system for measuring physical quantities with time- or frequency-divided signal information
JP2013518270A (en) In particular, a measuring device and a measuring method for measuring blood glucose
US4679157A (en) Temperature measuring apparatus
JPS62116214A (en) Optical fiber sensor
EP0329297A2 (en) Method and apparatus for measuring partial pressure of oxygen in a fluid
JPS60164227A (en) Temperature detecting method
EP0363219A1 (en) Oxygen sensor using phase shift
JPS58137723A (en) Apparatus for measuring temperature
JP3591275B2 (en) Radiation intensity measurement device
JPS62118227A (en) Optical fiber temperature sensor
JPS58180922A (en) Temperature measuring device
US20040037494A1 (en) Optical pulse generator and optical pulse testing instrument and method
JPS587530A (en) Optical temperature measuring device
JPS6244643A (en) Optical-fiber measuring device
JP2972973B2 (en) Optical pulse tester
Grattan et al. A Miniaturized Fluorescence Referenced Glass Absorption Thermometer
JPH034051Y2 (en)
JPS6035230A (en) Temperature measuring device
JPS59226840A (en) Temperature measuring device