JPS60164227A - Temperature detecting method - Google Patents

Temperature detecting method

Info

Publication number
JPS60164227A
JPS60164227A JP1960684A JP1960684A JPS60164227A JP S60164227 A JPS60164227 A JP S60164227A JP 1960684 A JP1960684 A JP 1960684A JP 1960684 A JP1960684 A JP 1960684A JP S60164227 A JPS60164227 A JP S60164227A
Authority
JP
Japan
Prior art keywords
fluorescent
temperature
light
life
fluorescent light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1960684A
Other languages
Japanese (ja)
Inventor
Yukio Morishige
幸雄 森重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP1960684A priority Critical patent/JPS60164227A/en
Publication of JPS60164227A publication Critical patent/JPS60164227A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • G01K11/3213Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering using changes in luminescence, e.g. at the distal end of the fibres

Abstract

PURPOSE:To make the restriction on a fluorescent material generous and to make it possible to use a long optical fiber, by exciting the fluorescent material in a pulsating mode, determining the life of the fluorescent light from the fluorescent material based on the time waveform of the generated fluorescent light, and measuring temperature from the temperature dependence of the life of the fluorescent light. CONSTITUTION:A light pulse, which has the pulse width equivalent to the life of the fluorescent light from a fluorescent material 1, is outputted from an excited light source 6. The fluorescent material 1 is excited through a lens 3 and an optical fiber 2. The fluorescent light, which is generated by the excitation, is inputted to a light detector through the fiber 2 and the lens 3. The output of the light detector 9 is inputted to a measuring unit 13 for the life of the fluorescent light. The life of the fluorescent light is determined by a least square method based on the waveform of an attenuation curve of the fluorescent light. Temperature is obtained based on the temperature dependence of the life of the fluorescent light by a temperature converting circuit 14.

Description

【発明の詳細な説明】 (技術分野) 本発明は、悪環境条件下でも正確に温度を測定できる、
光ファイバを用いた温度検知方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention provides a method for accurately measuring temperature even under adverse environmental conditions.
This invention relates to a temperature detection method using an optical fiber.

(従来技術とその問題点) 近年、光ファイバの無誘導性、フレキシビリティ、耐環
境性を用いて、他の方法では測定困難であった悪環境条
件下で遠隔的に測定可能な温度測定法が提案されている
。第4図は、螢光物質の放射強度の温度依存性から温度
を測定するファイバを用いた従来法の構成図である。第
1図において、螢光物質1は、第16ビームスブリツタ
ー4.レンズ3.光ファイバ2を介して励起光源6がら
の励起光によ)励起される。励起によシ生じた螢光は、
光ファイバ2を逆に戻シ、第1のビームスピリツタ−4
によシ励起光源6の光路から分離されて、第2のビーム
スピリツタ−5に入射される。
(Prior art and its problems) In recent years, temperature measurement methods have been developed that make use of the non-inductive nature, flexibility, and environmental resistance of optical fibers to enable remote measurement under adverse environmental conditions that would be difficult to measure using other methods. is proposed. FIG. 4 is a block diagram of a conventional method using a fiber for measuring temperature from the temperature dependence of the radiation intensity of a fluorescent substance. In FIG. 1, the fluorescent substance 1 is connected to the sixteenth beam splitter 4. Lens 3. It is excited by the excitation light from the excitation light source 6 via the optical fiber 2. The fluorescence generated by excitation is
Return the optical fiber 2 in the opposite direction, and turn the optical fiber 2 back to the first beam spiriter 4.
The light is then separated from the optical path of the excitation light source 6 and is incident on the second beam spiriter 5.

螢光は第2のビームスピリツタ−5によりさらに2つに
分岐され、放射強度の温度依存性の少い螢光成分と温度
依存性の顕著な螢光成分の2つが各々、第1及び第2の
干渉フィルター7及び8によシ選択されて、第1及び第
2の光検出器によシ受光される。第1及び第2の光検出
器9及び10の出力の強度比をめる割算回路11の出力
を、温度換算回路12によ多温度を示す値に変換するこ
とによシ、螢光物質1の温度が測定できる。この方法で
は前記放射強度の温度依存性の異なる2つの螢光成分の
強度比を測定することによシ、励起光の強度変動、光フ
ァイバ2の曲げ損失、光フアイバー結合部の損失変動に
よる誤差を抑えだ温度測定が可能となる利点があるが、
以下に示すような重大な欠点もある。
The fluorescent light is further branched into two by the second beam spiriter 5, and the fluorescent light component whose radiation intensity is less temperature-dependent and the fluorescent light component whose radiation intensity is significantly temperature-dependent are divided into the first and second fluorescent light components, respectively. The light is selected by the two interference filters 7 and 8 and received by the first and second photodetectors. The fluorescent substance 1 temperature can be measured. In this method, by measuring the intensity ratio of two fluorescent components whose radiation intensity differs in temperature dependence, errors due to fluctuations in the intensity of the excitation light, bending loss of the optical fiber 2, and loss fluctuations at the optical fiber coupling part are detected. It has the advantage of being able to measure temperature while suppressing
There are also significant drawbacks, as listed below.

第1に放射強度の温度依存性の異なる2つの螢光成分が
必要であるため、使用できる螢光物質1がきわめて限ら
れる。従来、この螢光物質1としては(Gdal19 
Euo、o+ )20z Sのみが報告されている。
First, since two fluorescent components with different temperature dependencies of radiation intensity are required, the fluorescent substances 1 that can be used are extremely limited. Conventionally, as this fluorescent substance 1, (Gdal19
Euo, o+ )20z S only has been reported.

この螢光物質1は紫外域に励起帯を持ち、螢光は可視域
に発生する。しかしこの波長域では、光フアイバ中の損
失が大きく長尺ファイバの使用が困難である、検出する
2つの螢光波長での光ファイバ2の損失が異なるため、
光ファイバ長によ9螢光の強度比と温度の関係が変化す
るなどの欠点を生じていた。
This fluorescent substance 1 has an excitation band in the ultraviolet region, and fluorescent light is generated in the visible region. However, in this wavelength range, the loss in the optical fiber is large and it is difficult to use a long fiber.The loss of the optical fiber 2 at the two fluorescence wavelengths to be detected is different.
This method has disadvantages such as the relationship between the intensity ratio of the fluorescent light and the temperature changes depending on the length of the optical fiber.

第2に、2つの螢光波長を分離するためには、干渉フィ
ルター7.8などの狭帯域フィルターが、不可決である
ため、これらのフィルターの損失により光検出器9,1
00受光効率が低下し、高い8/N比を得ることが困難
であること、また干渉フィルター7.8の経時変化によ
シフイルター中心波長がシフトし、測定温度に誤差を生
じ易いなどの欠点も生じていた。
Secondly, in order to separate the two fluorescent wavelengths, narrow band filters such as interference filters 7.8 are ineffective, and losses in these filters cause the photodetectors 9,1 to
00 light receiving efficiency is reduced, making it difficult to obtain a high 8/N ratio, and the shift filter center wavelength shifts due to changes in the interference filter 7.8 over time, which tends to cause errors in the measured temperature. was also occurring.

(発明の目的) 本発′明の目的は、上記欠点を解消し、使用可能な螢光
物質1の制限が緩く、長尺ファイバも使用可能で、経時
変化が少く、高い8/N比で螢光を受光できる温度検知
方法を提供することである。
(Objective of the Invention) The object of the present invention is to eliminate the above-mentioned drawbacks, to ease the restrictions on the usable fluorescent substance 1, to allow the use of long fibers, to reduce changes over time, and to achieve a high 8/N ratio. An object of the present invention is to provide a temperature detection method that can receive fluorescent light.

(発明の構成) 本発明の温度検知方法は螢光物質をパルス的に光励起し
、前記螢光物質から発せられる螢光の時間波形を検出し
て、前記螢光の時間波形より前記螢光物質の螢光寿命を
め、前記螢光寿命の温度依存性から、前記螢光物質の近
傍の温度を遠隔的に検知することを特徴とする。
(Structure of the Invention) The temperature detection method of the present invention optically excites a fluorescent substance in a pulsed manner, detects the time waveform of fluorescence emitted from the fluorescent substance, and detects the time waveform of the fluorescent light from the time waveform of the fluorescent substance. The present invention is characterized in that the temperature in the vicinity of the fluorescent substance is remotely detected based on the temperature dependence of the fluorescent life.

(発明の作用効果) 次に本発明の温度検知方法による実施例を図面を用いて
詳細に説明する。第2図は、励起用光ファイバと検出用
光ファイバを同一の光ファイバとした場合の本発明によ
る一実施例の構成図であり、以下の点を除いて構成、名
称は第1図と同一である。第2図において、光検出器9
の出力は螢光寿命測定ユニット13に接続され、温度換
算回路14によシ、螢光寿命の温度依存性から温度がめ
られる。一方励起光源6は、螢光物質1の螢光寿命と同
程度のパルス幅の光パルスを出力する。
(Operations and Effects of the Invention) Next, embodiments of the temperature detection method of the present invention will be described in detail with reference to the drawings. FIG. 2 is a configuration diagram of an embodiment according to the present invention in which the excitation optical fiber and the detection optical fiber are the same optical fiber, and the configuration and names are the same as in FIG. 1 except for the following points. It is. In FIG. 2, the photodetector 9
The output is connected to a fluorescence life measuring unit 13, and a temperature conversion circuit 14 calculates the temperature from the temperature dependence of the fluorescence life. On the other hand, the excitation light source 6 outputs a light pulse having a pulse width comparable to the fluorescence lifetime of the fluorescent substance 1.

第3図は、励起パルスと螢光強度の時間変化を示す図で
アシ、第3図人が励起パルス波形、第3図Bが螢光の時
間波形である。螢光は、励起光の始まシと共に立ち上が
シ、励起パルスが終了した後は、指数関数的に減少する
。螢光寿命をτで表わした時の螢光の減衰曲線は(1)
式で表すことができる・ −1 A = AOe 1ニー(1) (1)式においてAは螢光強度、tは時間であり 、A
Oは定数である。螢光寿命τの測定は、最も簡単には時
刻t1での螢光強度A富とΔを時間経過後の螢光強度A
、との比をめることによシ知ることができ。
FIG. 3 is a diagram showing temporal changes in the excitation pulse and fluorescence intensity. Figure 3 shows the excitation pulse waveform, and Figure 3B shows the fluorescence time waveform. The fluorescence rises at the beginning of the excitation light and decreases exponentially after the excitation pulse ends. The decay curve of fluorescence when the fluorescence lifetime is expressed as τ is (1)
It can be expressed by the formula -1 A = AOe 1 (1) In the formula (1), A is the fluorescence intensity, t is the time, and A
O is a constant. The simplest way to measure the fluorescence lifetime τ is to calculate the fluorescence intensity A at time t1 and Δ from the fluorescence intensity A after the elapse of time.
You can find out by comparing the .

る。またさらに高精度の測定を行う場合には螢光減衰曲
線の波形記憶を行い、その波形もしくはその波形を対数
変換した波形から最小2乗法で螢光寿命をめるとともで
きる。
Ru. In addition, for even more precise measurements, it is possible to memorize the waveform of the fluorescence attenuation curve and calculate the fluorescence lifetime using the least squares method from that waveform or a logarithmically transformed waveform of the waveform.

求めた螢光寿命は第4図に示す如く温度依存性があるた
め、この螢光寿命から螢光物質周囲の温度がわかる。
Since the determined fluorescence lifetime is temperature dependent as shown in FIG. 4, the temperature around the fluorescent substance can be determined from this fluorescence lifetime.

次に螢光寿命の温度依存性について詳しく説明する。第
4図は最近波長可変固体レーザとして実用化されつつあ
るアレキサンドライト(BeAl*Oa: Cr”+)
の螢光寿命の温度依存性を示している。
Next, the temperature dependence of the fluorescence lifetime will be explained in detail. Figure 4 shows alexandrite (BeAl*Oa: Cr”+), which has recently been put into practical use as a wavelength tunable solid-state laser.
shows the temperature dependence of the fluorescence lifetime.

固体レーザ物質は通常、高融点で硬度が高く高い熱伝導
性を有し、化学的にも安定なことから温度検知材料とし
て必要な特性を満たしている。さらにその螢光寿命は数
100〜数msと長く螢光寿命の測定が容易である利点
がある。しかしながら螢光寿命の温度依存性に関しては
、その変化が常温付近ではレーザ発振特性に大きな影響
を及ぼさないためにアレキサンドライト出現以前にはあ
まり関心を持たれていなかった。アレキサンドライトは
高温になるほどレーザとしての増幅率が増加するという
特徴を有しておシ、第4図に示すような広い温度範囲に
渡る螢光の温度依存性が測定されている。
Solid-state laser materials usually have a high melting point, high hardness, high thermal conductivity, and are chemically stable, so they satisfy the characteristics necessary as a temperature sensing material. Furthermore, it has the advantage that the fluorescence lifetime is long, ranging from several hundred to several milliseconds, and the fluorescence lifetime can be easily measured. However, there was not much interest in the temperature dependence of the fluorescence lifetime before the appearance of alexandrite because its changes do not have a large effect on the laser oscillation characteristics near room temperature. Alexandrite has a characteristic that the amplification factor as a laser increases as the temperature increases, and the temperature dependence of fluorescence over a wide temperature range as shown in FIG. 4 has been measured.

図よj5.150に付近から500に付近まで螢光寿命
が温度と共に指数関数的に減少していること、即ち、螢
光寿命を測定すれば一意的に精度良く温度を決めうろこ
とがわかる。螢光寿命は、螢光の発光準位におけるフォ
ノンとの相互作用による非発光過程と螢光の放出過程と
の2つのエネルギー散逸過程によって決まる。このうち
螢光の放出過程は温度依存性が少いが、7オノンとの相
互作用による非発光過程の確率は、熱的に励起される7
オノンの数に比例するため近似的にe1〒で表わされる
温度依存性を含む。
The figure shows that the fluorescence lifetime decreases exponentially with temperature from around 150 to around 500. In other words, it can be seen that by measuring the fluorescence lifetime, the temperature can be determined uniquely and accurately. The lifetime of fluorescence is determined by two energy dissipation processes: a non-emission process due to interaction with phonons at the emission level of the fluorescence, and a fluorescence emission process. Of these, the fluorescence emission process has little temperature dependence, but the probability of a non-emission process due to interaction with the 7-onone is higher than that of the thermally excited 7-onone.
Since it is proportional to the number of onons, it includes temperature dependence approximately expressed as e1〒.

Eはフォノンのエネルギー、kはポルツマン定数、Tは
絶対温度である。この依存性はアレキサンドライトの場
合によくあてはまっており、他の螢光物質の場合にも本
質的に同じであり固体レーザ物質として知られている希
土類イオンを含む結晶やガラス材料も本発明に使用する
螢光物質として利用できる。これらの螢光物質は螢光の
発光準位のエネルギーが各々異るので、これらの螢光物
質を組み合わせれば、広い温度範囲をカバーする温度検
知が可能と々る。
E is the phonon energy, k is the Portzmann constant, and T is the absolute temperature. This dependence is well applicable in the case of alexandrite, and is essentially the same in the case of other fluorescent materials. Crystals and glass materials containing rare earth ions, known as solid-state laser materials, are also used in the present invention. Can be used as a fluorescent material. These fluorescent substances have different energies at their emission levels, so by combining these fluorescent substances, it is possible to detect temperature over a wide temperature range.

以上では固体レーザ物質を用いる例を説明しだが、螢光
寿命の温度依存性を更に大きくシ、特性、を改善するた
めには、螢光イオンの濃度を増加させること、螢光を消
光させ為働きを持つイオンを付加することなどがある。
The above example uses a solid-state laser material, but in order to further improve the temperature dependence of the fluorescence lifetime and improve the characteristics, it is possible to increase the concentration of fluorescent ions and quench the fluorescence. In some cases, ions with functions may be added.

螢光寿命の温度依存性を大きくすれば、一層高い温度精
度を得ることが可能となる。
By increasing the temperature dependence of the fluorescence lifetime, it is possible to obtain even higher temperature accuracy.

螢光寿命測定ユニット13は励起パルス終了後の時刻t
、と1.+Δtでの螢光強度A1及びA、をA/D変換
によシサンプリングしてマイクロコンピュータに入力し
、Δt・In−’ (Al /A )の演算を行い結果
を出力する。上式は式(1)よ請求められる螢光寿命τ
を示している。温度換算回路14はマイクロコンピュー
タで構成され、その動作は以下の通 。
The fluorescence lifetime measuring unit 13 measures the time t after the end of the excitation pulse.
, and 1. The fluorescence intensities A1 and A at +Δt are sampled by A/D conversion and input into a microcomputer, and Δt·In-' (Al /A ) is calculated and the result is output. The above equation is the fluorescence lifetime τ claimed by equation (1).
It shows. The temperature conversion circuit 14 is composed of a microcomputer, and its operation is as follows.

シである。あらかじめ記憶されている螢光寿命と温度の
関係に従い、螢光寿命測定ユニツ)13の出力に対応す
る温度をめ出力する。
It is shi. The temperature corresponding to the output of the fluorescent life measuring unit 13 is determined and output according to the pre-stored relationship between the fluorescent life and temperature.

本発明によるひとつの利点は種々の螢光物質が使用可能
であることである。例えば長尺ファイバを用いる場合で
もNdイオンを含む結晶を螢光物質1とすれば励起波長
を0.8μm1螢光波長を1μmに選べるので光フアイ
バ中の伝送損失を少くできる。
One advantage of the present invention is that a variety of fluorophores can be used. For example, even when using a long fiber, if a crystal containing Nd ions is used as the fluorescent material 1, the excitation wavelength can be set to 0.8 μm and the fluorescence wavelength to 1 μm, thereby reducing transmission loss in the optical fiber.

またその場合励起光源6として光源寿命が長く、励起光
強度を増やしうるGaAlAs半導体レーザを用いるこ
とができるので、検出時の87N比を高くとれる利点が
ある。また従来法で温度精度の劣化原因となった干渉フ
ィルター7.8が不要となシ、同時に励起光源6の強度
変、動や光ファイバの曲げ損失、光学系のミスアライン
メントによる強度変動等に基づく誤差が入らない利点も
ある。
Further, in this case, a GaAlAs semiconductor laser having a long light source life and capable of increasing the excitation light intensity can be used as the excitation light source 6, so there is an advantage that a high 87N ratio can be obtained at the time of detection. In addition, the interference filters 7 and 8, which caused temperature accuracy deterioration in the conventional method, are not required, and at the same time, the interference filters 7 and 8, which caused temperature accuracy deterioration in the conventional method, are not required. There is also the advantage that there are no errors.

本発明による他の利点として1回の温度測定時間が螢光
物質1の螢光寿命程度の短い時間で行いうろことが挙げ
られる。これは検知部に熱伝導率が高く、化学的に安定
な螢光物質を用いることにより、従来の方法でははぶく
ことの困難であった防護管などを除外し、被測温体と螢
光物質の間の熱抵抗を少くすることによシ可能となる。
Another advantage of the present invention is that one temperature measurement can be carried out in a short time comparable to the fluorescence lifetime of the fluorescent substance 1. By using a chemically stable fluorescent material with high thermal conductivity in the detection part, this method eliminates protective tubes and other materials that are difficult to wipe off with conventional methods, and allows the temperature to be measured between the object and the fluorescent material. This is possible by reducing the thermal resistance between

特に流速の大きい流体などの温度変動を知りたい場合ガ
どにも有用である。
This is especially useful when you want to know the temperature fluctuations of fluids with high flow rates.

本発明による他の実施例として、光ファイバ2の先端部
に希土類イオンなどの螢光イオンをドープすることによ
り、光ファイバ2と検知部を一体化すれば、構造的に頑
丈で構成が単純となる結果、故障が少い温度検知法を提
供することが可能となる。
As another embodiment of the present invention, if the optical fiber 2 and the detection section are integrated by doping the tip of the optical fiber 2 with fluorescent ions such as rare earth ions, the structure is strong and simple. As a result, it is possible to provide a temperature detection method with fewer failures.

本発明による他の実施例として、励起用光ファイバと、
検出用ファイバを分離することが考えられる。この場合
検出用光ファイバのNAを大きくすれば、螢光を高効率
に光検出器10に導くととが可能となシ、さらに高い温
度精度を得ることが可能となる。
As another embodiment according to the present invention, a pumping optical fiber;
It is conceivable to separate the detection fiber. In this case, by increasing the NA of the detection optical fiber, it becomes possible to guide the fluorescent light to the photodetector 10 with high efficiency, and it becomes possible to obtain even higher temperature accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来法の一例を示す構成図であり、第2図は
本発明による一実施例の構成図であり、第3図A、Bは
第2図に示す構成での動作のタイミングを示す図である
。第3図Aは励起光強度、Bは螢光強度の時間変化を示
している。第4図はアレキサンドライトの螢光寿命の温
度依存性を示す図である。 図において、1は螢光物質、2は光ファイバ、3はレン
ズ、4は第1のビームスプリッタ−15は第2のビーム
スプリッタ−16は励起光源、7及び8は各々第1及び
第2の干渉フィルター、9及び10は各々、第1及び第
2の光検出器、11は割算回路、12は温度換算回路、
13は螢光寿命測定ユニットであシ、14は温度換算回
路である。 代理人弁理士 内原 電 ′;Ivt 図 72 図 図画のl’jI;J) (内容に変更なし)第3図 時間 時間(1) オ 4 図 温 度 (K) 手続補正書(方式) 1、事件の表示 昭和59年 特許 願第19606号
2、発明の名称 温度検知方法 3、補正をする者 事件との関係 出 願 人 東京都港区芝五丁目33番1号 (423) 日本電気株式会社 代表者 関本忠弘 4、代理人 電話 東京(03)456−3111(大代表)(連絡
先 日本電気株式会社特許部) 5、補正命令の日付 昭和59年4月24日(発送日)
6、補正の対象 図面 7、補正の内容 本願添付図面の第3図を別紙図面のように補正する。 代理人 弁理士 内 原 音
FIG. 1 is a configuration diagram showing an example of a conventional method, FIG. 2 is a configuration diagram of an embodiment according to the present invention, and FIGS. 3A and 3B are timing diagrams of operations in the configuration shown in FIG. 2. FIG. FIG. 3A shows the excitation light intensity, and B shows the fluorescence intensity over time. FIG. 4 is a diagram showing the temperature dependence of the fluorescent life of alexandrite. In the figure, 1 is a fluorescent material, 2 is an optical fiber, 3 is a lens, 4 is a first beam splitter, 15 is a second beam splitter, 16 is an excitation light source, 7 and 8 are first and second beam splitters, respectively. an interference filter; 9 and 10 are first and second photodetectors, respectively; 11 is a division circuit; 12 is a temperature conversion circuit;
13 is a fluorescent life measuring unit, and 14 is a temperature conversion circuit. Representative Patent Attorney Uchihara Den';Ivt Figure 72 Figure l'jI;J) (No change in content) Figure 3 Time Time (1) O 4 Figure Temperature (K) Procedural Amendment (Method) 1. Indication of the case 1982 Patent Application No. 19606 2, Title of the invention Temperature detection method 3, Person making the amendment Relationship to the case Applicant 5-33-1 Shiba, Minato-ku, Tokyo (423) NEC Corporation Representative: Tadahiro Sekimoto 4, Agent telephone: Tokyo (03) 456-3111 (main representative) (Contact information: NEC Corporation Patent Department) 5. Date of amendment order: April 24, 1980 (shipment date)
6. Drawing to be amended 7. Contents of the amendment Figure 3 of the drawings attached to this application will be amended as shown in the attached drawing. Agent Patent Attorney Oto Uchihara

Claims (1)

【特許請求の範囲】[Claims] 螢光物質をパルス的に光励起する工程と、前記螢光物質
から発せられる螢光の時間波形を検出する工程と、前記
螢光の時間波形ノ刃#に軽神質の壁光寿考1未−る工程
とを備えていることを特徴とする温度検知方法。
A process of photo-exciting a fluorescent substance in a pulsed manner, a process of detecting a temporal waveform of the fluorescent light emitted from the fluorescent substance, and a process of detecting the temporal waveform of the fluorescent light, and adding a light divine light to the temporal waveform of the fluorescent light. A temperature detection method characterized by comprising the steps of:
JP1960684A 1984-02-06 1984-02-06 Temperature detecting method Pending JPS60164227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1960684A JPS60164227A (en) 1984-02-06 1984-02-06 Temperature detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1960684A JPS60164227A (en) 1984-02-06 1984-02-06 Temperature detecting method

Publications (1)

Publication Number Publication Date
JPS60164227A true JPS60164227A (en) 1985-08-27

Family

ID=12003853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1960684A Pending JPS60164227A (en) 1984-02-06 1984-02-06 Temperature detecting method

Country Status (1)

Country Link
JP (1) JPS60164227A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351268A (en) * 1990-12-04 1994-09-27 Luxtron Corporation Modular luminescence-based measuring system using fast digital signal processing
JP2009145257A (en) * 2007-12-17 2009-07-02 Yamatake Corp Temperature sensor and measuring method of temperature
JP2009145258A (en) * 2007-12-17 2009-07-02 Yamatake Corp Temperature sensor and temperature measuring method
JP2011163982A (en) * 2010-02-10 2011-08-25 Yamatake Corp Pressure measuring system and pressure measuring method
JP2017003303A (en) * 2015-06-05 2017-01-05 国立研究開発法人 海上・港湾・航空技術研究所 Characteristic detection method of oil, and characteristic detection device of oil
CN106525281A (en) * 2016-12-17 2017-03-22 福州大学 Optical fiber temperature measuring equipment based on rare earth ion upconversion fluorescence and temperature measuring method thereof
CN106969854A (en) * 2017-04-18 2017-07-21 大连世有电力科技有限公司 Optical fiber temperature-measurement equipment pair fibre-optical probes
CN111397761A (en) * 2020-04-27 2020-07-10 西安和其光电科技股份有限公司 Fluorescence lifetime signal processing and demodulating method
CN114608807A (en) * 2022-02-25 2022-06-10 武汉睿芯特种光纤有限责任公司 Multi-wavelength fluorescence lifetime measuring device for gain optical fiber
KR20220157854A (en) * 2021-05-21 2022-11-29 광주과학기술원 Temperature measurement method based on the fluorescence characteristic of optical material and temperature sensor using the same
KR20220157855A (en) * 2021-05-21 2022-11-29 광주과학기술원 Temperature measurement method based on the optical transimission characteristic of optical material and temperature sensor using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351268A (en) * 1990-12-04 1994-09-27 Luxtron Corporation Modular luminescence-based measuring system using fast digital signal processing
JP2009145257A (en) * 2007-12-17 2009-07-02 Yamatake Corp Temperature sensor and measuring method of temperature
JP2009145258A (en) * 2007-12-17 2009-07-02 Yamatake Corp Temperature sensor and temperature measuring method
JP2011163982A (en) * 2010-02-10 2011-08-25 Yamatake Corp Pressure measuring system and pressure measuring method
JP2017003303A (en) * 2015-06-05 2017-01-05 国立研究開発法人 海上・港湾・航空技術研究所 Characteristic detection method of oil, and characteristic detection device of oil
CN106525281B (en) * 2016-12-17 2023-08-01 福州大学 Optical fiber temperature measuring device based on rare earth ion up-conversion fluorescence and temperature measuring method thereof
CN106525281A (en) * 2016-12-17 2017-03-22 福州大学 Optical fiber temperature measuring equipment based on rare earth ion upconversion fluorescence and temperature measuring method thereof
CN106969854A (en) * 2017-04-18 2017-07-21 大连世有电力科技有限公司 Optical fiber temperature-measurement equipment pair fibre-optical probes
CN111397761A (en) * 2020-04-27 2020-07-10 西安和其光电科技股份有限公司 Fluorescence lifetime signal processing and demodulating method
KR20220157854A (en) * 2021-05-21 2022-11-29 광주과학기술원 Temperature measurement method based on the fluorescence characteristic of optical material and temperature sensor using the same
KR20220157855A (en) * 2021-05-21 2022-11-29 광주과학기술원 Temperature measurement method based on the optical transimission characteristic of optical material and temperature sensor using the same
CN114608807A (en) * 2022-02-25 2022-06-10 武汉睿芯特种光纤有限责任公司 Multi-wavelength fluorescence lifetime measuring device for gain optical fiber
CN114608807B (en) * 2022-02-25 2024-03-29 武汉睿芯特种光纤有限责任公司 Multi-wavelength fluorescence lifetime measuring device for gain optical fiber

Similar Documents

Publication Publication Date Title
US5107445A (en) Modular luminescence-based measuring system using fast digital signal processing
US5560712A (en) Optical systems for sensing temperature and thermal infrared radiation
US5222810A (en) Fiber optic systems for sensing temperature and other physical variables
US5991479A (en) Distributed fiber optic sensors and systems
US5096277A (en) Remote measurement of physical variables with fiber optic systems
Grattan et al. Infrared fluorescence ‘‘decay‐time’’temperature sensor
CA1199197A (en) Fiber optical luminescence measuring system for measuring physical quantities with time-or frequency- divided signal information
GB2113837A (en) Fibre optic temperature sensor
EP0111853A2 (en) Temperature measuring apparatus
JPS60164227A (en) Temperature detecting method
US4763009A (en) Method and apparatus for remotely measuring the distribution of a physico-chemical parameter in a medium
US4459044A (en) Optical system for an instrument to detect the temperature of an optical fiber phosphor probe
US6333502B1 (en) Radiation detector, radiation measurement system and radiation measurement method
US5000540A (en) Sensing system using optical fibers
JPS60164225A (en) Temperature detecting device
Grattan et al. A Miniaturized Fluorescence Referenced Glass Absorption Thermometer
JPS587530A (en) Optical temperature measuring device
Seelert et al. Photocaloric spectroscopy of the excited state absorption and of the fluorescence quantum efficiency in fluorescent material
JPS6035230A (en) Temperature measuring device
JPS6035234A (en) Pressure measuring device
JPH05172657A (en) Optical fiber distributed temperature sensor
JPS6148850B2 (en)
Grattan et al. Fluorescence referencing for fiber‐optic thermometers using visible wavelengths
Grattan et al. Doped Glass Absorption Thermometer With Fluorescent Referencing
JPS62118227A (en) Optical fiber temperature sensor