JPS62118227A - Optical fiber temperature sensor - Google Patents

Optical fiber temperature sensor

Info

Publication number
JPS62118227A
JPS62118227A JP25916985A JP25916985A JPS62118227A JP S62118227 A JPS62118227 A JP S62118227A JP 25916985 A JP25916985 A JP 25916985A JP 25916985 A JP25916985 A JP 25916985A JP S62118227 A JPS62118227 A JP S62118227A
Authority
JP
Japan
Prior art keywords
light
phosphor
temperature
optical fiber
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25916985A
Other languages
Japanese (ja)
Inventor
Masao Hirano
平野 正夫
Motoaki Takaoka
高岡 元章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP25916985A priority Critical patent/JPS62118227A/en
Publication of JPS62118227A publication Critical patent/JPS62118227A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure exactly a temperature by a simple constitution, by exciting optically a phosphor whose light emitting intensity is varied by a temperature through an optical fiber, receiving a reflected light from the phosphor, and an excited light emitting light, and bringing a projector to a negative feedback control by a reflected light receiving output. CONSTITUTION:The light of a projector 5 is propagated through optical fibers 2, 4, and the phosphor 1 whose light emitting intensity is varied by a temperature is excited optically. Also, through the optical fibers 4, 3, a reflected light from the phosphor 1, and an excited light emitting light of the phosphor 1 are received by light receivers 10, 9, respectively. The output of this photodetector 10 is supplied through a negative feedback circuit 8 and the projector 5 is controlled, and the influences of a loss, a variation, etc., of an optical transmission line are prevented. In this way, a temperature is measured exactly by a light receiver 6 by a simple constitution, by which it is unnecessary to calculate, etc., a two wavelength output ratio.

Description

【発明の詳細な説明】 〈発明の技術分野〉 この発明は、ある雰囲気内の温度や物体表面の温度など
を検出するのに使用される光ファイバ温度センサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an optical fiber temperature sensor used to detect the temperature in a certain atmosphere, the temperature of the surface of an object, etc.

〈発明の概要〉 この発明では、励起により螢光体が発する光を検出する
ための受光器の他に、螢光体で反射された励起光を検出
するための第2の受光器を設けて、この第2の受光器の
受光量を投光器へ負帰還するようにしてあり、これによ
り、光伝送路の伝送効率が変動しても温度測定値に影響
を受けず、しかも構成簡易にして複雑な演算を全く必要
としない光ファイバ温度センサを提供するものである。
<Summary of the Invention> In this invention, in addition to the light receiver for detecting the light emitted by the phosphor due to excitation, a second light receiver is provided for detecting the excitation light reflected by the phosphor. , the amount of light received by this second receiver is negatively fed back to the emitter, so that even if the transmission efficiency of the optical transmission line fluctuates, it will not be affected by the temperature measurement value, and the configuration can be simplified and complicated. The present invention provides an optical fiber temperature sensor that does not require any complicated calculations.

〈発明の背景〉 例えば燐光を発する燐光体や螢光を発する螢光体く以下
、「燐螢光体」と総称する)は、これに励起光を当てる
と、励起により燐螢光体は燐螢光を9発するが、この燐
螢光強度は、それが置かれた周囲環境の温度に応じて変
化するものである。従って、この温度による燐螢光強度
の変化を利用して、周囲温度の測定が可能であり、従来
この種の温度測定装置として、光ファイバを励起光や燐
螢光の伝播用に用いた光ファイバ温度センサが使用され
ていた。ところがこの光温度センサでは、例えば光ファ
イバを規定値以上に曲げたり、応力をかけたりすると、
前記励起光や燐螢光の伝送路の損失が増加して伝送効率
が変化し、正確な温度計測が困難となるという欠点があ
った。
<Background of the Invention> For example, when a phosphor that emits phosphorescence or a phosphor that emits fluorescence (hereinafter collectively referred to as "phosphor phosphor") is irradiated with excitation light, the phosphor becomes phosphor due to the excitation. It emits nine fluorescent lights, and the intensity of this phosphorescent light changes depending on the temperature of the surrounding environment in which it is placed. Therefore, it is possible to measure the ambient temperature by utilizing changes in the intensity of phosphor light due to temperature. Conventionally, this type of temperature measurement device uses optical fibers to propagate excitation light and phosphor light. A fiber temperature sensor was used. However, with this optical temperature sensor, for example, if the optical fiber is bent or stressed beyond a specified value,
There is a drawback that the loss in the transmission path of the excitation light and phosphorescent light increases and the transmission efficiency changes, making accurate temperature measurement difficult.

そこで伝送効率が変化しても、温度計測値が影響されな
いような方法として、2種類の異なる波長の光を利用し
て温度計測する2波長計測法が提案されている。
Therefore, as a method that does not affect the temperature measurement value even if the transmission efficiency changes, a two-wavelength measurement method has been proposed in which temperature is measured using light of two different wavelengths.

第5図はその一方式を示す。図示の装置例は、投光器2
1で発生させた紫外線を光ファイバ22を介して螢光体
23へ照射して、励起により螢光体23から2種類の異
なる波長の螢光を発生させる方式のもので、それぞれ螢
光を別個の受光器24.25で受光し、信号処理部26
にてそれぞれの受光量の比を求めた後に、第8図に示す
ような特性曲線lを利用して温度の算出を行うものであ
る。なお図中、27〜29はハーフミラ−である。
FIG. 5 shows one method. The illustrated device example is a floodlight 2
This is a method in which the ultraviolet rays generated in step 1 are irradiated to the phosphor 23 via an optical fiber 22, and the phosphor 23 generates two types of fluorescent light with different wavelengths by excitation, and each fluorescent light is generated separately. The light is received by the light receivers 24 and 25, and the signal processing unit 26
After determining the ratio of the respective amounts of received light, the temperature is calculated using a characteristic curve l as shown in FIG. In the figure, 27 to 29 are half mirrors.

第6図は、他の方式を示す。図示の装置例は、温度計測
に関与するある特定波長の励起光を発する第1の投光器
30と、伝送効率の変動をモニタするための他の波長の
参照光を発する第2の投光器31とを用いて構成され、
各投光器30.31からの光を交互に光ファイバ32〜
35を介して螢光体36へ照射し、励起により螢光体3
6から発せられたそれぞれ光を光ファイバ37.38を
介して受光器39で受光する方式である。そして励起光
についての受光量と参照光についての受光量との比を除
算器40にて算出した後、前記同様の特性曲線を用いて
温度の算出を行うものである。なお図中、41は結合器
、42.43は光コネクタであり、また44.45はサ
ンプル・ホールド回路である。
FIG. 6 shows another method. The illustrated device example includes a first light projector 30 that emits excitation light of a certain specific wavelength involved in temperature measurement, and a second light projector 31 that emits reference light of another wavelength for monitoring fluctuations in transmission efficiency. configured using
The light from each floodlight 30, 31 is alternately connected to the optical fiber 32~
The phosphor 36 is irradiated through the phosphor 35 and the phosphor 36 is excited.
In this method, the light emitted from each of the optical fibers 6 and 6 is received by a light receiver 39 via optical fibers 37 and 38. After calculating the ratio between the amount of received excitation light and the amount of received reference light using the divider 40, the temperature is calculated using the same characteristic curve as described above. In the figure, 41 is a coupler, 42.43 is an optical connector, and 44.45 is a sample/hold circuit.

第7図は、さらに他の方式を示す。図示例の装置例は、
投光器46で発生させた励起光を光ファイバ47.48
を介して螢光体49へ照射して、励起により螢光体49
が発する螢光(残光を含む)と励起光の螢光体49から
の反射光とを、それぞれ受光器50.51で受光する方
式のものであり、つぎの信号処理部52にてそれぞれの
受光量の比を求めた後に、前記同様の特性曲線を利用し
て温度の算出を行うものである。なお図中、53.54
はフィルタである。
FIG. 7 shows yet another method. The illustrated example of the device is
The excitation light generated by the projector 46 is transmitted through optical fibers 47 and 48.
The phosphor 49 is irradiated through the phosphor 49 through excitation.
The fluorescent light (including afterglow) emitted by the phosphor 49 and the reflected light from the phosphor 49 of the excitation light are each received by the light receivers 50 and 51. After determining the ratio of the amount of received light, the temperature is calculated using the same characteristic curve as described above. In addition, in the figure, 53.54
is a filter.

上記の各方式例においては、伝送路の損失が変動しても
、温度計測値は影響されないようになっているが、以下
、その理由を、第7図の方式を例にとって、第9図を参
照して説明する。
In each of the above method examples, the temperature measurement value is not affected even if the loss in the transmission path fluctuates.The reason for this will be explained below, using the method shown in Figure 7 as an example, and Figure 9. Refer to and explain.

第9図(1)は、光ファイバ48を曲げることにより、
伝送損失αが生じた状態を示し、また第9図(2)は、
この状態の光回路を電気回路と同様の等価回路55で表
したものである。
FIG. 9(1) shows that by bending the optical fiber 48,
FIG. 9 (2) shows a state where transmission loss α has occurred, and FIG.
The optical circuit in this state is represented by an equivalent circuit 55 similar to an electric circuit.

全励起光の発光量をEXとすると、この励起光が螢光体
49表面に到達したときの光量は、(1−α)EXとな
る。またこの螢光体49の吸光度をa (ただしa<<
l)とすると、螢光体49の発光に寄与する励起光はa
  (1−α)Ex、また螢光体49で反射される励起
光は(1a)(111M) Exとなる。なおl−a>
>aである。
When the total amount of excitation light is expressed as EX, the amount of light when this excitation light reaches the surface of the phosphor 49 is (1-α)EX. Also, the absorbance of this phosphor 49 is a (where a<<
l), the excitation light contributing to the light emission of the phosphor 49 is a
(1-α)Ex, and the excitation light reflected by the phosphor 49 becomes (1a)(111M)Ex. Furthermore, l-a>
>a.

吸光した螢光体49は、さらに一定の発光効率ηで発光
するもので、その発光量をElとすると、次式で与えら
れる。
The phosphor 49 that has absorbed light emits light with a constant luminous efficiency η, and if the amount of light emitted is El, it is given by the following equation.

EII=η・a・ (1−α)EX 螢光体49での反射光は、復路においてさらに損失αを
受けるので、受光器51にて受光される光量は、(1a
)(1−α)” Exとなる。
EII=η・a・(1−α)EX The light reflected by the phosphor 49 further suffers a loss α on the return trip, so the amount of light received by the light receiver 51 is (1a
)(1-α)” Ex.

また螢光体49で発せられた螢光も、復路において同様
の損失αを受けるもので、受光器50にて受光される光
量は、η・a・ (1−α)2Exとなる。従って前記
光ファイバ48の曲げで生じた損失αによって、η・a
・ (1−α)を倍だけ螢光受光量が変動して、この受
光量から温度に変換する際の誤差になる。
Further, the fluorescent light emitted by the fluorescent body 49 also suffers a similar loss α on the return trip, and the amount of light received by the light receiver 50 is η·a·(1−α)2Ex. Therefore, due to the loss α caused by bending the optical fiber 48, η・a
- The amount of received fluorescent light fluctuates by twice (1-α), resulting in an error when converting this amount of received light into temperature.

かくして受光器51にて受光される反射光の光N (1
a)(1−α)” Exと、受光器50にて受光される
螢光の光量η・a・ (1−α)2EXとの比をとると
、次式のように伝送損失αに関係のないかつ温度に依存
した値となる。
In this way, the reflected light N (1
a) (1-α)” Ex and the amount of fluorescent light η・a・(1-α)2EX received by the optical receiver 50, it is related to the transmission loss α as shown in the following equation. The value is temperature-dependent.

(1−a)(1−α)”Ex   1−a   1η−
a−C1−α)”Ex  77・a  1・aところが
上記において、発光効率ηは、0〜2次の関数となり、
かかる次数演算、さらにはその除算の演算は著しく複雑
な処理となるという問題があり、しかも第6図の方式例
の場合は、2個の投光器30.31が必要であるため、
その分回路構成も複雑となるなどの欠点がある。
(1-a) (1-α)”Ex 1-a 1η-
a-C1-α)”Ex 77・a 1・a However, in the above, the luminous efficiency η is a function of 0 to 2nd order,
There is a problem that such order calculations and furthermore, calculations of division thereof are extremely complicated processes, and moreover, in the case of the method example shown in FIG. 6, two projectors 30 and 31 are required.
This has drawbacks such as the circuit configuration becoming more complicated.

〈発明の目的〉 この発明は、上記問題を解消するためのものであって、
光伝送路の伝送効率が変動しても温度測定値に影響を受
けない構成簡易にして複雑な演算を全く必要としない光
ファイバ温度センサを提供することを目的とする。
<Object of the invention> This invention is intended to solve the above problems,
It is an object of the present invention to provide an optical fiber temperature sensor that has a simple configuration that is not affected by temperature measurement values even if the transmission efficiency of an optical transmission line changes, and does not require any complicated calculations.

〈発明の構成および効果〉 上記目的を達成するため、この発明の光ファイバ温度セ
ンサでは、温度に応じて発光強度が変化する特性をもつ
螢光体と、この螢光体へ励起光を照射するための投光器
と、励起により螢光体が発する光を検出するための第1
の受光器と、螢光体で反射された励起光を検出するため
の第2の受光器と、投光器と螢光体との間および螢光体
と両受光器との間に設けられた光を伝播するための光フ
ァイバと、第2の受光器の受光量を投光器へ負帰還する
ための負帰還回路とを具備させることにした。
<Configuration and Effects of the Invention> In order to achieve the above object, the optical fiber temperature sensor of the present invention includes a phosphor whose emission intensity changes depending on the temperature, and irradiation of excitation light to this phosphor. and a first light source for detecting the light emitted by the phosphor upon excitation.
a second light receiver for detecting the excitation light reflected by the phosphor, and a light provided between the emitter and the phosphor and between the phosphor and both receivers. It was decided to provide an optical fiber for propagating the light, and a negative feedback circuit for feeding back the amount of light received by the second light receiver to the projector.

この発明によれば、螢光体で反射された励起光の増減に
応じて投光器の発光量を負帰還するようにしたから、伝
送路の損失の変動に影響されず、螢光体に照射する励起
光量を一定に保つことができ、正確な温度測定が可能で
ある。また第1の受光器の出力(1波長出力)から温度
を求めるから、従来例のような2波長出力の比を求める
などの演算が不要であり、演算処理が大幅に簡略化され
、さらに投光器は1個で済むから、回路の複雑化を防止
できるなど、発明目的を達成した顕著な効果を奏する。
According to this invention, since the amount of light emitted by the projector is negatively fed back according to the increase or decrease of the excitation light reflected by the phosphor, the phosphor can be irradiated without being affected by fluctuations in loss in the transmission path. The amount of excitation light can be kept constant, allowing accurate temperature measurement. In addition, since the temperature is determined from the output of the first light receiver (one wavelength output), there is no need for calculations such as calculating the ratio of two wavelength outputs as in the conventional example, which greatly simplifies the calculation process. Since only one is required, it is possible to prevent the circuit from becoming complicated, and has a remarkable effect of achieving the purpose of the invention.

〈実施例の説明〉 第1図は、この発明にかかる光ファイバ温度センサの一
実施例を示す。
<Description of an Embodiment> FIG. 1 shows an embodiment of an optical fiber temperature sensor according to the present invention.

図示例のものは、温度測定すべき雰囲気内や物体表面(
図中、破線で示す)などに置かれる螢光体1と、先端に
前記螢光体1が取り付は固定され基端部には2本の分岐
部2.3が形成された略Y字形状の光ファイバ4と、こ
の光ファイバ4の一方分岐部2の基端面に投光面を対向
させて配置される発光ダイオードより成る投光器5と、
光ファイバ4の他方分岐部3の基端面に受光面を対句さ
せて配置されるフォトダイオードより成る第1および第
2の受光器6.7と、第、2の受光器7の受光量を投光
器5へ負帰還するための負帰還回路8とから構成され、
前記光ファイバ4を介して投光器5と螢光体1との間お
よび、螢光体lと両受光器6.7との間で光が伝播され
るようになっている。
The illustrated example shows the temperature inside the atmosphere or on the surface of the object (
In the figure, the phosphor 1 is placed at a point (indicated by a broken line), and the phosphor 1 is fixedly attached to the distal end, and two branch parts 2.3 are formed at the proximal end in a roughly Y shape. a shaped optical fiber 4, and a light projector 5 comprising a light emitting diode disposed with its light projecting surface facing the proximal end surface of one branch 2 of the optical fiber 4;
The amount of light received by the first and second light receivers 6.7 consisting of photodiodes arranged with their light receiving surfaces on the proximal end surface of the other branch 3 of the optical fiber 4, and the second light receiver 7 is determined by the projector. 5, and a negative feedback circuit 8 for providing negative feedback to the
Light is propagated through the optical fiber 4 between the light emitter 5 and the phosphor 1, and between the phosphor 1 and both light receivers 6.7.

前記螢光体1は、温度に応じて発光強度が変化する特性
を有するものであって、その種類を問わず種々のものを
用いることができる。例えば紫外光励起では、Y、O□
S:Euなどの希土類金属オキシサルファイド、ZnS
 : Ln(Lnは希土類元素の総称)、SrS:Ln
などの硫化物螢光体が、また赤外光励起では、LnFz
  :  (Yb、Er) 、LnOF :  (Yb
The phosphor 1 has a characteristic that the luminescence intensity changes depending on the temperature, and various types can be used regardless of the type. For example, in ultraviolet light excitation, Y, O□
S: Rare earth metal oxysulfide such as Eu, ZnS
: Ln (Ln is a general term for rare earth elements), SrS:Ln
For infrared light excitation, LnFz
: (Yb, Er), LnOF : (Yb
.

’F3. r ) 、L i N d P a O+ 
z : Y bなどが使用される。
'F3. r ) , L i N d P a O+
z: Yb, etc. are used.

投光器5は、この螢光体1に対し励起光を照射するため
のもので、例えばGaAs:Siのような発光ダイオー
ドが用いである。
The light projector 5 is for irradiating the fluorescent body 1 with excitation light, and is, for example, a light emitting diode such as GaAs:Si.

第1の受光器6は、励起により螢光体1が発する螢光(
残光を含む)を検出し、また第2の受光器7は、螢光体
1で反射された励起光を検出するためのもので、それぞ
れ受光器6,7の受光面には、フィルタ9,10が配備
されている。第1の受光器7の受光信号はコンピュータ
回路などの信号処理部(図示せず)へ送られ、そこで受
光強度一温度特性曲線が参照されて温度の換算が行われ
、その結果が表示部などへ出力される。また第2の受光
器7の受光信号は負帰還回路8へ送出され、そこでその
受光信号の変動に応じて投光器5の発光量に負帰還がか
けられて、伝送路の損失が補償される。
The first photoreceiver 6 receives fluorescent light (
The second light receiver 7 is for detecting the excitation light reflected by the phosphor 1, and the light receiving surface of each of the light receivers 6 and 7 is provided with a filter 9. , 10 are deployed. The light reception signal from the first light receiver 7 is sent to a signal processing unit (not shown) such as a computer circuit, where the received light intensity-temperature characteristic curve is referred to and temperature conversion is performed, and the result is displayed on a display unit, etc. Output to. The light reception signal from the second light receiver 7 is sent to a negative feedback circuit 8, where negative feedback is applied to the amount of light emitted from the light projector 5 in accordance with fluctuations in the light reception signal, thereby compensating for losses in the transmission line.

第2図は、負帰還回路8の一実施例を示す。FIG. 2 shows one embodiment of the negative feedback circuit 8.

図示例の回路は、第2の受光器7の受光信号を増幅する
増幅器11と、増幅出力をサンプル・ホールドするサン
プル・ホールド回路12と、サンプル・ホールドされた
出力値からモニタ電圧■、を生成する可変抵抗13と、
定電圧V0を生成する可変抵抗14と、モニタ電圧Vm
と定電圧v0とから次式により帰還電圧VFIを生成す
る加算器15と、この帰還電圧VFRと基準電圧V R
EFとを比較してその偏差を求める比較器16とを含む
ものである。
The illustrated example circuit includes an amplifier 11 that amplifies the light reception signal of the second photoreceiver 7, a sample-and-hold circuit 12 that samples and holds the amplified output, and generates a monitor voltage ■ from the sampled and held output value. a variable resistor 13,
A variable resistor 14 that generates a constant voltage V0 and a monitor voltage Vm
and a constant voltage v0, an adder 15 generates a feedback voltage VFI from the following equation, and this feedback voltage VFR and a reference voltage V R
It includes a comparator 16 that compares the EF and determines the deviation.

■1.=α■6+βv0 (ただしα、β〈1.α+β=1) 前記比較器16で求められた偏差は、電圧−電流変換回
路17に入力され、この電圧−電流変換回路17は前記
偏差がゼロとなるよう投光器5の駆動回路18を制御す
る。この実施例によれば、負帰還回路8による投光器5
の自己発熱の影響を小さくできる効果があり、さらにサ
ンプル・ホールド回路12のコンデンサ19の容量を調
節することによって、さらにこの効果を高めることがで
きる。なお図中、CPU(Central Proce
ssing  Unit)  20は、サンプル・ホー
ルド回路12に対しサンプリングパルスを、また駆動回
路18に対し投光器5の駆動パルスを与えるなど、負帰
還回路8の動作を制御する。
■1. =α■6+βv0 (However, α, β<1.α+β=1) The deviation determined by the comparator 16 is input to the voltage-current conversion circuit 17, and this voltage-current conversion circuit 17 determines that the deviation is zero. The drive circuit 18 of the light projector 5 is controlled so that this occurs. According to this embodiment, the light emitter 5 by the negative feedback circuit 8
This has the effect of reducing the effect of self-heating, and this effect can be further enhanced by adjusting the capacitance of the capacitor 19 of the sample-and-hold circuit 12. In addition, in the figure, CPU (Central Process
The sampling unit 20 controls the operation of the negative feedback circuit 8 by providing a sampling pulse to the sample/hold circuit 12 and a drive pulse for the light projector 5 to the drive circuit 18 .

第3図は、上記負帰還回路8のタイミングチャートであ
り、図中、(1)は励起光の波形、(2)は励起光の反
射光の波形、(3)は反射光のサンプル位置、(4)は
螢光(減衰部分は残光を示す)の波形、(5)は螢光の
サンプルを、それぞれ示す。なお前記反射光のサンプル
位置は、任意に設定し得るが、第2の受光器7が螢光に
感度をもつときは、図中、  t2よりもtlの位置が
望ましく、投光器5の自己発熱量が大きいときは、t2
よりもt2の位置が望ましい。
FIG. 3 is a timing chart of the negative feedback circuit 8, in which (1) is the waveform of the excitation light, (2) is the waveform of the reflected light of the excitation light, (3) is the sample position of the reflected light, (4) shows a waveform of fluorescent light (the attenuated portion indicates afterglow), and (5) shows a sample of fluorescent light. Note that the sample position of the reflected light can be set arbitrarily, but when the second light receiver 7 is sensitive to fluorescent light, the position tl in the figure is more desirable than t2, and the self-heating amount of the projector 5 is When is large, t2
The position of t2 is more desirable.

しかして投光器5がパルス駆動され、励起光(第3図(
1)参照)が光ファイバ4を通って螢光体1に照射され
ると、この螢光体1は励起されて螢光(第3図(4)参
照)を発し、さらにこの螢光および、螢光体1で反射し
た励起光(第3図(2)参照)は光ファイバ4を通って
受光器6.7で受光される。この場合に、光伝送路の損
失があって第2の受光器7の受光量が変動するとき、負
帰還回路8において、サンプル・ホールドされた値に基
づき、変動に応じた負帰還量が投光器5に与えられるた
め、前記の損失分が補償されることになる。これにより
第1の受光器6は、損失分に影響されず、温度にのみ依
存した量の螢光を受光するもので、例えばその受光信号
の残光骨を所定時間幅(第3図(5)参照)にわたり 
′積分して残存積分光量を求めた後、これを予め設定さ
れた残存積分光量の温度特性(第4図に示す)と比較す
ることにより、螢光体1が置がれた雰囲気などの温度を
算出するものである。
The light projector 5 is then pulse-driven, and the excitation light (see Fig. 3) is activated.
When the phosphor 1 is irradiated with light (see 1) through the optical fiber 4, the phosphor 1 is excited and emits fluorescent light (see FIG. 3 (4)), and further this fluorescent light and The excitation light reflected by the phosphor 1 (see FIG. 3 (2)) passes through the optical fiber 4 and is received by the light receiver 6.7. In this case, when there is a loss in the optical transmission path and the amount of light received by the second optical receiver 7 fluctuates, the negative feedback circuit 8 adjusts the amount of negative feedback corresponding to the fluctuation to the emitter based on the sampled and held value. 5, the above-mentioned loss is compensated. As a result, the first photoreceiver 6 receives an amount of fluorescent light that depends only on temperature without being affected by loss. ) over)
' After calculating the residual integrated light amount by integrating, by comparing this with the preset temperature characteristics of the remaining integrated light amount (shown in Figure 4), the temperature of the atmosphere in which the phosphor 1 is placed can be determined. is calculated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例にかかる光ファイバ温度セ
ンサの構成を示す図、第2図は負帰還回路の回路構成例
を示すブロック図、第3図は第2図の回路のタイミング
チャート、第4図は温度計測に用いられる特性図、第5
図〜第7図は従来例の構成を示す図、第8図は第5図の
従来例について温度計測に用いられる特性図、第9図は
光伝送路の損失補償を説明するための図である。 1・・・・螢光体     4・・・・光ファイバ5・
・・・投光器     6,7・・・・受光器8・・・
・負帰還回路 寺 許 出 願人  立石電機株式会社ニアt′ l 
 図    先フ、イ/、−=J、Aヤツ、7ネ鼻入j
SΔう士 2ry2*帰遣口絡t+ m+胴トフ・ロー
v2図骨3図 うす21Bの )コSる1の9イミン2゛す叩−ト7t
’ 71’B   ja14#I*&、+Kin骨8図
 特+1@
FIG. 1 is a diagram showing the configuration of an optical fiber temperature sensor according to an embodiment of the present invention, FIG. 2 is a block diagram showing an example of the circuit configuration of a negative feedback circuit, and FIG. 3 is a timing chart of the circuit in FIG. 2. , Figure 4 is a characteristic diagram used for temperature measurement, and Figure 5 is a characteristic diagram used for temperature measurement.
Figures 7 to 7 are diagrams showing the configuration of the conventional example, Figure 8 is a characteristic diagram used for temperature measurement for the conventional example shown in Figure 5, and Figure 9 is a diagram for explaining loss compensation in the optical transmission line. be. 1... Fluorescent material 4... Optical fiber 5.
...Emitter 6,7...Receiver 8...
・Negative feedback circuit Applicant: Tateishi Electric Co., Ltd.
Figure: F, I/, -=J, A guy, 7 nose entry j
SΔUshi 2ry2*Return exit connection t+m+torso tofu low v2 figure bone 3 figure thin 21B)ko Sru19imin2゛shit7t
'71'B ja14#I*&, +Kin bone 8 figure special +1@

Claims (1)

【特許請求の範囲】  温度に応じて発光強度が変化する特性をもつ螢光体と
、 この螢光体へ励起光を照射するための投光器と、 励起により螢光体が発する光を検出するための第1の受
光器と、 螢光体で反射された励起光を検出するための第2の受光
器と、 投光器と螢光体との間および螢光体と両受光器との間に
設けられた光を伝播するための光ファイバと、 第2の受光器の受光量を投光器へ負帰還するための負帰
還回路とを具備して成る光ファイバ温度センサ。
[Scope of Claims] A phosphor whose emission intensity changes depending on temperature; a floodlight for irradiating the phosphor with excitation light; and a device for detecting light emitted by the phosphor upon excitation. a first light receiver, a second light receiver for detecting the excitation light reflected by the phosphor, and a second light receiver provided between the emitter and the phosphor and between the phosphor and both light receivers. An optical fiber temperature sensor comprising: an optical fiber for propagating the received light; and a negative feedback circuit for negatively feeding back the amount of light received by a second light receiver to a light emitter.
JP25916985A 1985-11-18 1985-11-18 Optical fiber temperature sensor Pending JPS62118227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25916985A JPS62118227A (en) 1985-11-18 1985-11-18 Optical fiber temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25916985A JPS62118227A (en) 1985-11-18 1985-11-18 Optical fiber temperature sensor

Publications (1)

Publication Number Publication Date
JPS62118227A true JPS62118227A (en) 1987-05-29

Family

ID=17330312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25916985A Pending JPS62118227A (en) 1985-11-18 1985-11-18 Optical fiber temperature sensor

Country Status (1)

Country Link
JP (1) JPS62118227A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192699A (en) * 2006-01-20 2007-08-02 Nec Corp Temperature sensor and temperature sensor system
KR20160014534A (en) 2014-07-29 2016-02-11 도쿄엘렉트론가부시키가이샤 Optical temperature sensor, and controlling method thereof
JP2016217969A (en) * 2015-05-25 2016-12-22 株式会社ジェイテクト Temperature measurement device using induced fluorescence method, and temperature measurement method using induced fluorescence method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192699A (en) * 2006-01-20 2007-08-02 Nec Corp Temperature sensor and temperature sensor system
KR20160014534A (en) 2014-07-29 2016-02-11 도쿄엘렉트론가부시키가이샤 Optical temperature sensor, and controlling method thereof
JP2016031290A (en) * 2014-07-29 2016-03-07 東京エレクトロン株式会社 Optical temperature sensor and method for controlling optical temperature sensor
US9885612B2 (en) 2014-07-29 2018-02-06 Tokyo Electron Limited Optical temperature sensor and method of controlling same
JP2016217969A (en) * 2015-05-25 2016-12-22 株式会社ジェイテクト Temperature measurement device using induced fluorescence method, and temperature measurement method using induced fluorescence method

Similar Documents

Publication Publication Date Title
JPH11508352A (en) Modular measurement system for high-speed digital signal processing of luminescence
US4459044A (en) Optical system for an instrument to detect the temperature of an optical fiber phosphor probe
JPH0638060B2 (en) Optical temperature measuring device using fiber
US5470155A (en) Apparatus and method for measuring temperatures at a plurality of locations using luminescent-type temperature sensors which are excited in a time sequence
EP0029653B1 (en) Optical systems for sensing and measuring physical quantities
US10451746B2 (en) Detector and method of operation
CN101523197B (en) System and method of compensating for system delay in analyte analyzation
US5260566A (en) Self-powered fiber optic microbend sensors
JPS6061634A (en) Temperature measuring apparatus
JPS62118227A (en) Optical fiber temperature sensor
JP2635732B2 (en) Optical fiber sensing method
JPS60164227A (en) Temperature detecting method
US7683358B2 (en) Radiation image read-out apparatus
US5168164A (en) Optical waveform measuring device
JP3591275B2 (en) Radiation intensity measurement device
JPH09178575A (en) Fiber thermometer
JP5515199B2 (en) Optical pulse test apparatus and adjustment method thereof
JPH04248423A (en) Apparatus for measuring luminescence
JP2857296B2 (en) Glass dosimeter
JP2949131B2 (en) Fluorescent glass dosimeter reader
JPH0131580B2 (en)
JPS58180922A (en) Temperature measuring device
JPS62116214A (en) Optical fiber sensor
JP7186192B2 (en) Fiber optic radiation monitor and method of use
JPS6035234A (en) Pressure measuring device