JPS6211617B2 - - Google Patents

Info

Publication number
JPS6211617B2
JPS6211617B2 JP54130263A JP13026379A JPS6211617B2 JP S6211617 B2 JPS6211617 B2 JP S6211617B2 JP 54130263 A JP54130263 A JP 54130263A JP 13026379 A JP13026379 A JP 13026379A JP S6211617 B2 JPS6211617 B2 JP S6211617B2
Authority
JP
Japan
Prior art keywords
exhaust gas
dust
catalyst
electrostatic precipitator
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54130263A
Other languages
Japanese (ja)
Other versions
JPS5653749A (en
Inventor
Shigeo Yokoyama
Toshikuni Sera
Shigeaki Mitsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13026379A priority Critical patent/JPS5653749A/en
Publication of JPS5653749A publication Critical patent/JPS5653749A/en
Publication of JPS6211617B2 publication Critical patent/JPS6211617B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はNOx、SOx、フライアツシユ等を含む
ボイラ排ガス中のNOxを除去すると同時に、フ
ライアツシユ等のダストを効率良く除塵するため
の排ガス処理用触媒に関し、特にフライアツシユ
等のダストの集塵性能を改善するための該排ガス
の処理触媒に関するものである。排ガス中の
NOxを除去する方法としては現在NH3を還元剤と
する選択的接触還元法が主流となつている。 従つて、石炭焚ボイラ排ガス等のように
NOx、SOx及びフライアツシユ等のダストを含む
排ガスの処理方法としては、上記方法による
NOx除去装置と、フライアツシユ等のダスト除
去のための電気集塵装置との組み合せプロセスが
用いられる方向にある。現在実施化されつつある
石炭焚ボイラ排ガスの処理プロセスとしては第1
図に示すようなものがある。 すなわち、石炭焚ボイラ1から出た排ガスは、
電気集塵装置5内に入り、電気集塵装置5で排ガ
ス中のフライアツシユが除去され、電気集塵装置
5から出た排ガス中にNH3注入手段2からNH3
注入した後、脱硝装置3内に導き、排ガス中の
NOxを除去し、さらにその後、排ガスを熱交換
器4内に導入して熱交換を行い、排ガスの温度を
下げて、後流の脱硫装置あるいは煙突に送つてい
る。 この処理プロセスによれば、電気集塵装置5を
熱交換器4の上流部に配置しているので、電気抵
抗の高いフライアツシユを集塵する場合、排ガス
温度の低下により発生していた逆電離現象を防止
している利点はあるが、しかしながら該処理プロ
セスには次のような欠点がある。 (1) 石炭焚ボイラ1内での石炭中のS分が酸化さ
れてSO2が発生し、その一部が更に転化してき
たSO3が熱交換器4内で、脱硝装置3内から漏
洩したNH3及び排ガス中の水分と反応し、酸性
硫酸アンモニウム(NH4HSO4)を生成するた
め、この酸性硫酸アンモニウムが溶融付着して
熱交換器4が目詰りを起す。 (2) SO3とNH3及び排ガス中の水分の反応によつ
て生成された硫酸アンモニウム(NH42SO4
の反応生成物が熱交換器4出口では排ガス温度
が下るため微細なダストとなり、例えば
10ppmのSO3から約50mg/Nm3のダスト生成す
るため、排ガス中のダストが増加する。 そこで先に、上記欠点のない石炭焚ボイラの排
ガス処理方法を提供することを目的として第2〜
4図のフローに示すような方法を提案した(特願
昭52―81144号、特開昭54―16737号公報参照)。
第2〜4図中、第1図と同一符号は第1図と同一
機器であり、6は機械式集塵装置である。 しかしながら、上記方法においては、本発明者
等のその後の検討により次のような欠点があるこ
とが判つた。すなわち、電気集塵装置5は熱交換
器4の後流に設置されているため、電気集塵装置
5に入る排ガス温度は通常100〜160℃まで下げら
れ、そのために排ガス中のダストの性質によつて
は、その電気抵抗がいわゆる逆電離開始抵抗値を
超え、電気集塵装置5内で逆電離現象が発生して
電気集塵装置5の集塵性能を大幅に低下すること
がある。例えば第5図の曲線1に示すように、第
1図のフローに示す従来のプロセスで低硫黄石炭
を燃焼した時は電気集塵装置5の運転温度範囲が
aとかなり高い範囲であるため、ダストの電気抵
抗は正常な電気集塵抵抗範囲〔A〕内にあるか、
第2〜3図のフローに示す上記方法では電気集塵
装置5の運転温度範囲がbとかなり低い範囲とな
つてしまうため、ダストの電気抵抗は逆電離発生
抵抗範囲〔B〕に入り、集塵性能が大幅に低下す
る。 この性能低下現象は、石炭焚ボイラにおいて第
5図中曲線1に示すように低硫黄石炭を燃焼した
時に顕著に発生する(なお、第5図中曲線2は高
硫黄石炭を燃焼した場合を示す)。その理由は、
フライアツシユの電気抵抗をこの温度範囲で主と
して司どる表面伝導に関与するSO3及びSO3によ
り生成するH2SO4の量が、上記低硫黄石炭の燃焼
では十分でないことに起因する。 一般に、石炭焚ボイラ1においては、SO3量は
排ガス中の全SOx量のほぼ1%と考えられ、SOx
量は石炭中の可燃硫黄分に比例する。 一方、現在主流と考えられている前記の選択的
接触還元法に用いられる触媒には、NH3存在下で
のNOxの還元作用(4NO+4NH3+O2→4N2
6H2O)の他、SO2の酸化作用(2SO2+O2
2SO3)を促進するようなものがある。 ただし、従来は、このような触媒を用いてSO3
を多量に発生させると前記(1)、(2)で述べたような
欠点が生起してしまうという理由により、該触媒
の使用を忌避する方向にあつた。 しかるに、電気集塵装置に前置される脱硝装置
においてむしろ適当なSO2→SO3転化作用を付与
することにより電気集塵装置の集塵性能の向上を
図ると共に二次公害を引き起こすような過度の
SO2→SO3転化及び高硫黄石炭燃焼時の過剰な
SO3発生を防ぎつつ上記集塵性能の向上に必要な
量のSO3を発生させることを目的としてなされた
発明がすでに出願されている。(特願昭53―3308
号、特公昭58―3730号公報参照)。 すなわち、(特願53―3308の発明は排ガスを接
触還元法のための脱硝装置と、熱交換器を介して
その後流に設置された電気集塵器とにより処理す
る装置において、前記脱硝装置にNOxの還元反
応用触媒とSO2のSO3への転化作用とを有する触
媒とを充填して、前記脱硝装置にてSO3を発生さ
せるようにしたことを特徴とする排ガス処理装置
である。 かかる装置を遂行するためには、従来のNH3
還元剤とする窒素酸化物の還元反応用触媒と同時
に排ガスに共存するSO2をSO3に転化する(2SO2
+O2→2SO3)を高効率で促進する触媒が必要であ
る。 本発明の触媒は高い脱硝反応の外にSO2のSO3
への転化作用を財与せしたため、極めて集塵性の
悪いダストの発生する石炭燃焼においても、必要
に応じたSO3の調整が可能となり、これは集塵効
果の向上、すなわち電気集塵器のコンパクト化に
よる効果的排ガス処理に貢献するものである。 また、第2図から第4図の如き高ダスト系の排
ガスを対象にしたプロセスの場合、脱硝装置3で
SO3を増加させてもフライアツシユのブラツシン
グ効果により酸性硫黄アンモニウムが熱交換器4
に付着することなく使用できることをふまえた発
明である。 以下本発明の触媒性能について実施例により詳
細に説明する。 実施例 本発明の触媒性能を計測するためのガス組成を
表―1に、試験条件を表―2に示した。
The present invention relates to an exhaust gas treatment catalyst for removing NOx in boiler exhaust gas containing NOx, SOx, fly ash, etc. and at the same time efficiently removing dust from fly ash, etc., and particularly improves the dust collection performance of fly ash, etc. dust. The present invention relates to a catalyst for treating exhaust gas. in exhaust gas
Selective catalytic reduction using NH 3 as a reducing agent is currently the mainstream method for removing NOx. Therefore, such as coal-fired boiler exhaust gas, etc.
The above method is used to treat exhaust gas containing dust such as NOx, SOx and fly ash.
There is a trend toward using a process that combines a NOx removal device and an electrostatic precipitator for removing dust such as fly ash. This is the first treatment process for coal-fired boiler exhaust gas that is currently being implemented.
There is something like the one shown in the figure. In other words, the exhaust gas emitted from the coal-fired boiler 1 is
After entering the electrostatic precipitator 5, the fly ash in the exhaust gas is removed by the electrostatic precipitator 5, and NH 3 is injected from the NH 3 injection means 2 into the exhaust gas exiting from the electrostatic precipitator 5. into the exhaust gas.
After removing NOx, the exhaust gas is introduced into the heat exchanger 4 for heat exchange, the temperature of the exhaust gas is lowered, and the exhaust gas is sent to a downstream desulfurization device or a chimney. According to this treatment process, since the electrostatic precipitator 5 is placed upstream of the heat exchanger 4, when collecting flyash with high electrical resistance, reverse ionization occurs due to a decrease in exhaust gas temperature. However, the treatment process has the following drawbacks. (1) The S content in the coal was oxidized in the coal-fired boiler 1 and SO 2 was generated, and some of the SO 3 was further converted and leaked from the denitrification device 3 in the heat exchanger 4. Since it reacts with NH 3 and moisture in the exhaust gas to generate acidic ammonium sulfate (NH 4 HSO 4 ), this acidic ammonium sulfate melts and adheres, causing clogging of the heat exchanger 4. (2) The reaction product of ammonium sulfate (NH 4 ) 2 SO 4 produced by the reaction of SO 3 with NH 3 and moisture in the exhaust gas becomes fine dust at the outlet of the heat exchanger 4 as the exhaust gas temperature decreases. ,for example
Approximately 50 mg/Nm 3 of dust is generated from 10 ppm of SO 3 , which increases the amount of dust in the exhaust gas. Therefore, with the aim of providing an exhaust gas treatment method for coal-fired boilers that does not have the above-mentioned drawbacks,
We proposed a method as shown in the flowchart in Figure 4 (see Japanese Patent Application No. 52-81144 and Japanese Unexamined Patent Publication No. 16737-1983).
In FIGS. 2 to 4, the same symbols as in FIG. 1 are the same devices as in FIG. 1, and 6 is a mechanical dust collector. However, the above method has been found to have the following drawbacks through subsequent studies by the present inventors. That is, since the electrostatic precipitator 5 is installed downstream of the heat exchanger 4, the temperature of the exhaust gas entering the electrostatic precipitator 5 is usually lowered to 100 to 160°C, which changes the properties of the dust in the exhaust gas. As a result, the electrical resistance exceeds a so-called reverse ionization starting resistance value, and a reverse ionization phenomenon occurs within the electrostatic precipitator 5, which may significantly reduce the dust collection performance of the electrostatic precipitator 5. For example, as shown in curve 1 in FIG. 5, when low sulfur coal is burned in the conventional process shown in the flowchart in FIG. 1, the operating temperature range of the electrostatic precipitator 5 is a quite high range, Is the electrical resistance of the dust within the normal electrostatic collection resistance range [A]?
In the above method shown in the flowcharts of Figs. 2 and 3, the operating temperature range of the electrostatic precipitator 5 is quite low (b), so the electrical resistance of the dust falls within the reverse ionization resistance range [B] and the dust is collected. Dust performance is significantly reduced. This performance degradation phenomenon occurs noticeably when low-sulfur coal is burned in a coal-fired boiler, as shown in curve 1 in Figure 5 (curve 2 in Figure 5 shows the case when high-sulfur coal is burned). ). The reason is,
This is due to the fact that the amount of SO 3 and H 2 SO 4 generated by SO 3 , which are involved in surface conduction which mainly controls the electrical resistance of the fly ash in this temperature range, is not sufficient in the combustion of the above-mentioned low sulfur coal. Generally, in coal-fired boiler 1, the amount of SO3 is considered to be approximately 1% of the total amount of SOx in the exhaust gas, and SOx
The amount is proportional to the combustible sulfur content in the coal. On the other hand, the catalyst used in the above-mentioned selective catalytic reduction method, which is currently considered to be mainstream, has a NOx reduction effect in the presence of NH 3 (4NO + 4NH 3 + O 2 → 4N 2 +
6H 2 O), as well as the oxidizing effect of SO 2 (2SO 2 + O 2
2SO 3 ). However, conventionally, such catalysts have been used to reduce SO 3
There has been a tendency to avoid the use of such catalysts because the generation of large amounts of these catalysts causes the drawbacks mentioned in (1) and (2) above. However, it is possible to improve the dust collection performance of the electrostatic precipitator by providing an appropriate SO 2 → SO 3 conversion effect in the denitrification device installed in front of the electrostatic precipitator, as well as to avoid excesses that may cause secondary pollution. of
Excess during SO 2 → SO 3 conversion and high sulfur coal combustion
An application has already been filed for an invention aimed at generating an amount of SO 3 necessary for improving the above-mentioned dust collection performance while preventing SO 3 generation. (Special application 1973-3308
(Refer to Special Publication No. 58-3730). That is, (the invention of Patent Application No. 53-3308 is an apparatus for treating exhaust gas using a denitrification device for catalytic reduction method and an electrostatic precipitator installed downstream of the denitrification device via a heat exchanger, This exhaust gas treatment device is characterized in that the denitrification device generates SO 3 by being filled with a catalyst for the reduction reaction of NOx and a catalyst having an action of converting SO 2 into SO 3 . In order to carry out such a device, it is necessary to use a conventional catalyst for the reduction reaction of nitrogen oxides using NH 3 as a reducing agent and simultaneously convert SO 2 coexisting in the exhaust gas into SO 3 (2SO 2
There is a need for a catalyst that promotes +O 2 →2SO 3 ) with high efficiency. In addition to the high denitrification reaction, the catalyst of the present invention also reduces SO 2 to SO 3
This makes it possible to adjust SO 3 as necessary even in coal combustion, which produces dust with extremely poor collection properties. This contributes to effective exhaust gas treatment by making it more compact. In addition, in the case of a process that targets high-dust exhaust gas as shown in Figures 2 to 4, the denitration equipment 3
Even if SO 3 is increased, acidic sulfur ammonium will be absorbed into the heat exchanger 4 due to the brushing effect of the fly ash.
This invention is based on the fact that it can be used without adhering to the surface. The catalyst performance of the present invention will be explained in detail below using Examples. Examples Gas compositions for measuring the catalyst performance of the present invention are shown in Table 1, and test conditions are shown in Table 2.

【表】【table】

【表】 脱硝触媒としてV2O5が有効であることは米国
特許3279884(1964)などにより、公知である。
担体としてはアルミナ(Al1O3)が知られている
が、本実施例の如くSOxを処理する場合、硫酸ア
ルミナ(Al2SO4)に転化して失活性となる。 発明者らは、耐SOx性のあるチタニア
(TiO2)の担体を指向したが造粒性が困難であつ
た。造粒性に富み、高活性を保ちかつ成形したチ
タニア担体を探索して、特公昭53―44431の担体
が優れていることを見出した。 この担体(粒径4〜6mm)にV2O5を1、5、
7、9、13(重量)%を添加した触媒を調製し、
表1、2の条件で評価した性能を第6図に示す。
脱硝性能におよぼすTiO2上のV2O5の量は7重量
%程度あれば充分である。 V2O5量が多くなるとSO2→SO3への反応を促進
するが、脱硝性能の低下があることから、10%以
上にするメリツトがない。又V2O5量が極端に少
ないとSO2→SO3への反応がわずかしかなく脱硝
性能も低いのでV2O5量は3〜10重量%好ましく
は5〜8重量%であるといえる。 次にこれらの触媒のうちV2O5が7(重量)%
添加したものに対してCuSO4を1、3、5、
7、(重量)% 添加した場合の脱硝性能とSO2→SO3の反応率
を表―1、2の条件で評価した結果を第7図に示
した。この試験からわかることは従来の硫酸触媒
に使用されているV2O5単独でもSO2→SO3への反
応を促進するが、CuSO4を添加することにより
著しい効果が認められる。しかしCuSO4の添加
量を増加させても5重量%以上ではその効果は小
さくなり、脱硝性能の低下が生じている。この脱
硝性能の低下については原因を解明中であるが、
おそらく反応温度380℃に於てはNOxの還元剤で
あるNH3が燃焼していると考えられ好ましい現象
ではない。 又CuSO4の添加量が少なくなればSO2→SO3
反応率が減少するので本発明の目的からして、
CuSO5添加量は1〜5重量%望ましくは3〜5
重量%となる。しかしこれら触媒成分の添加量は
種々のプロセスにおける所要脱硝性能とSO2
SO3反応率によつて決められるものであり、処理
条件の選定によつても最適量は異なつてくる。 参考例 次に市販のK―V系触媒(日本触媒化学工業株
式会社製5S)を4〜6メツシユに破砕して表―
1、2に示した条件で評価し、SO2のSO3への転
化率は25%あつたが、脱硝率としては10%を示し
た。 このことから同じV系であつても本発明の触媒
は従来の脱硝触媒や硫酸触媒とは全く異なつた作
用をもつ新規な触媒であることがわかる。
[Table] It is known from US Pat. No. 3,279,884 (1964) that V 2 O 5 is effective as a denitrification catalyst.
Alumina (Al 1 O 3 ) is known as a carrier, but when SOx is treated as in this example, it is converted to alumina sulfate (Al 2 SO 4 ) and becomes deactivated. The inventors aimed at a titania (TiO 2 ) carrier having SOx resistance, but found it difficult to granulate it. We searched for a molded titania carrier that has excellent granulation properties, maintains high activity, and found that the carrier manufactured by Japanese Patent Publication No. 1983-44431 is superior. V 2 O 5 was added to this carrier (particle size 4 to 6 mm) at 1, 5,
Prepare catalysts with 7, 9, and 13% (by weight) added,
The performance evaluated under the conditions shown in Tables 1 and 2 is shown in FIG.
It is sufficient that the amount of V 2 O 5 on TiO 2 that affects the denitrification performance is about 7% by weight. If the amount of V 2 O 5 increases, the reaction from SO 2 to SO 3 will be promoted, but there is no merit in increasing the amount to 10% or more because the denitrification performance will decrease. Furthermore, if the amount of V 2 O 5 is extremely small, the reaction from SO 2 to SO 3 will be slight and the denitrification performance will be low, so the amount of V 2 O 5 can be said to be 3 to 10% by weight, preferably 5 to 8% by weight. . Next, of these catalysts, V 2 O 5 is 7% (by weight)
Added CuSO 4 to 1, 3, 5,
Figure 7 shows the results of evaluating the denitrification performance and the reaction rate of SO 2 → SO 3 when 7. (weight)% was added under the conditions shown in Tables 1 and 2. This test shows that although V 2 O 5 alone, which is used in conventional sulfuric acid catalysts, promotes the reaction from SO 2 to SO 3 , the addition of CuSO 4 has a significant effect. However, even if the amount of CuSO 4 added is increased to 5% by weight or more, the effect becomes small and the denitrification performance decreases. The cause of this decline in denitrification performance is currently being determined, but
It is thought that NH 3 , which is a NOx reducing agent, is being burned at the reaction temperature of 380°C, which is not a desirable phenomenon. Also, if the amount of CuSO 4 added decreases, the reaction rate of SO 2 → SO 3 will decrease, so from the purpose of the present invention,
The amount of CuSO5 added is 1 to 5% by weight, preferably 3 to 5%.
% by weight. However, the amount of these catalyst components added depends on the required denitrification performance and SO 2
It is determined by the SO 3 reaction rate, and the optimum amount also varies depending on the selection of processing conditions. Reference example Next, a commercially available K-V catalyst (5S manufactured by Nippon Shokubai Kagaku Kogyo Co., Ltd.) was crushed into 4 to 6 meshes.
Evaluation was made under the conditions shown in 1 and 2, and the conversion rate of SO 2 to SO 3 was 25%, but the denitrification rate was 10%. From this, it can be seen that the catalyst of the present invention is a novel catalyst having an action completely different from that of conventional denitrification catalysts and sulfuric acid catalysts, even though they are of the same V type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は従来の石炭焚ボイラ排ガス処理方
法を示すフロー図、第5図は電気集塵装置の運転
温度とダストの電気抵抗との関係を示す図表、第
6〜7図は本発明の触媒特性を示すためのグラフ
である。 1……ボイラ、2……アンモニア注入手段、3
……脱硝装置、4……熱交換器、5……電気集塵
装置、6……機械式集塵装置。
Figures 1 to 4 are flowcharts showing a conventional coal-fired boiler exhaust gas treatment method, Figure 5 is a chart showing the relationship between the operating temperature of an electrostatic precipitator and the electrical resistance of dust, and Figures 6 to 7 are diagrams of the present invention. 1 is a graph showing the catalyst characteristics of . 1...Boiler, 2...Ammonia injection means, 3
... Denitrification device, 4 ... Heat exchanger, 5 ... Electrostatic precipitator, 6 ... Mechanical dust collector.

Claims (1)

【特許請求の範囲】[Claims] 1 排ガス処理に於いて、アンモニアを還元剤と
する脱硝反応を行なうと同時に共存するSO2
SO3への転化を促進することを特徴とするTiO2
V2O5−CuSO4からなる触媒。
1 In exhaust gas treatment, denitrification reaction using ammonia as a reducing agent is carried out, and at the same time, the coexisting SO 2 is removed.
TiO 2 − characterized by promoting its conversion to SO 3
Catalyst consisting of V 2 O 5 −CuSO 4 .
JP13026379A 1979-10-09 1979-10-09 Exhaust gas treating catalyst Granted JPS5653749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13026379A JPS5653749A (en) 1979-10-09 1979-10-09 Exhaust gas treating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13026379A JPS5653749A (en) 1979-10-09 1979-10-09 Exhaust gas treating catalyst

Publications (2)

Publication Number Publication Date
JPS5653749A JPS5653749A (en) 1981-05-13
JPS6211617B2 true JPS6211617B2 (en) 1987-03-13

Family

ID=15030084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13026379A Granted JPS5653749A (en) 1979-10-09 1979-10-09 Exhaust gas treating catalyst

Country Status (1)

Country Link
JP (1) JPS5653749A (en)

Also Published As

Publication number Publication date
JPS5653749A (en) 1981-05-13

Similar Documents

Publication Publication Date Title
JP5051977B2 (en) Device for removing trace harmful substances in exhaust gas and operation method thereof
KR100235854B1 (en) Flue-gas treatment system
KR101298305B1 (en) Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
JP2000507491A (en) Regeneration of catalyst / absorber
JP2007530256A (en) Bromine addition to improve mercury removal from flue gas
JP2008241061A (en) Flue gas treatment facility
CN108144443A (en) A kind of powdered activated coke combined desulfurization and the system and method for denitration
JPH01184311A (en) Coal fired boiler device with denitration device
US6106791A (en) Exhaust gas treating systems
CN111054209B (en) Low-temperature SCR denitration process based on ethylene reducing agent
US6814948B1 (en) Exhaust gas treating systems
JPS6211617B2 (en)
JP6400379B2 (en) Denitration method for combustion exhaust gas
JP2008030017A (en) Removal apparatus of trace harmful substance in exhaust gas and its operation method
JP2655725B2 (en) Exhaust gas treatment method for pulverized coal combustion boiler
JP2004255342A (en) Exhaust gas treatment system and method
JP2638067B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPS583730B2 (en) Exhaust gas treatment method
JP3785296B2 (en) Catalyst regeneration method
JP5709438B2 (en) Exhaust gas treatment equipment
JPH0741143B2 (en) Exhaust gas treatment method
US10773204B2 (en) Systems and processes for removal and reduction of NOx and CO gases from flue/exhaust gas streams
JPH08257363A (en) Exhaust gas treatment method
JPH10118446A (en) Apparatus for treatment highly concentrated so2 gas containing exhaust gas
JP2019534782A (en) Method for reducing nitrogen oxide compounds