JPS62115340A - Loss measuring method for optical fiber - Google Patents

Loss measuring method for optical fiber

Info

Publication number
JPS62115340A
JPS62115340A JP25378585A JP25378585A JPS62115340A JP S62115340 A JPS62115340 A JP S62115340A JP 25378585 A JP25378585 A JP 25378585A JP 25378585 A JP25378585 A JP 25378585A JP S62115340 A JPS62115340 A JP S62115340A
Authority
JP
Japan
Prior art keywords
wavelength
optical fiber
light
photodetector
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25378585A
Other languages
Japanese (ja)
Inventor
Kazuhiro Noguchi
一博 野口
Sunao Uesugi
上杉 直
Kazunobu Suzuki
和宣 鈴木
Chihaya Tanaka
田中 千速
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25378585A priority Critical patent/JPS62115340A/en
Publication of JPS62115340A publication Critical patent/JPS62115340A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/333Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using modulated input signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To speed up and simplify measuring operation while reducing the influence of an error due to temperature variation by shortening the time of each wavelength sweep by employing a multi-sampling system which uses a fast wavelength sweep type spectroscope. CONSTITUTION:Light having a continuous wavelength spectrum is projected from a continuous wavelength light source 8. This light is wavelength-swept by the fast wavelength sweep type spectroscope 9 at a high speed, light passed through the spectroscope 9 is coupled with one end of an optical fiber 10 to be measured, and light projected from the other end of the optical fiber 10 is coupled with a photodetector 11. A sampling device 13 begins to operate on the basis of a wavelength sweep start signal sent by the spectroscope 9, which sends out a wavelength marker signal to the device 13 the moment indicated wavelength coincides with wavelength to be measured. An electric signal obtained from a photodetector 11 is sampled at a high speed in a synchronism with the marker signal and electric signal outputs at respective sampling points are read in by an integral processor 14 and integrated to measure the loss of the optical fiber.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ファイバの損失波長特性を高速、かつ簡便
に測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for quickly and easily measuring loss wavelength characteristics of an optical fiber.

(従来の技術) 従来、光ファイバの損失波長特性の測定には、第3図に
示すような測定装置が用いられている。
(Prior Art) Conventionally, a measuring device as shown in FIG. 3 has been used to measure the loss wavelength characteristics of an optical fiber.

第3図において、1は測定波長領域において一様な分光
強度を有する光源、2は光8!1の光を分光、単色化す
るための分光器、3は分光器2からの出力光を一定周波
数で断続するための光チョッパ、4は被測定光ファイバ
、5は光ファイバの出力光を検出する光検出器、6は光
検出器の信号中でチョッパ3の周波数に等しい周波数成
分の信号のみを選択的に増幅するロックイン増幅器、7
は分光器2の出力光波長を制御し、増幅器6の信号を読
み取って被測定ファイバ4の損失波長特性を計算する制
御装置である。
In Fig. 3, 1 is a light source with uniform spectral intensity in the measurement wavelength region, 2 is a spectrometer for dispersing and monochromating light 8!1, and 3 is a constant output light from spectrometer 2. 4 is an optical fiber to be measured; 5 is a photodetector for detecting the output light of the optical fiber; 6 is only a signal of a frequency component equal to the frequency of chopper 3 among the signals of the photodetector; A lock-in amplifier that selectively amplifies the
is a control device that controls the wavelength of the output light from the spectrometer 2, reads the signal from the amplifier 6, and calculates the loss wavelength characteristics of the fiber under test 4.

従来の測定方法では、測定すべき波長範囲内の一つの波
長に分光器2からの射出光波長を設定し、この場合の増
幅器6の出力を読み取るという手順を、分光器2の設定
波長を一定間隔で順次変化させて実行することによって
、被測定光ファイバ4からの射出光強度の波長特性を求
める。
In the conventional measurement method, the wavelength of the light emitted from the spectrometer 2 is set to one wavelength within the wavelength range to be measured, and the output of the amplifier 6 in this case is read. The wavelength characteristics of the intensity of the emitted light from the optical fiber 4 to be measured are determined by executing the measurement while changing the wavelength characteristics sequentially at intervals.

一方、通常の光ファイバにおいて重要な波長1〜2μm
の損失測定においては、光源1として一般にハロゲンラ
ンプが用いられるが、この場合、被測定光ファイバ4を
介して光検出器5に達する光強度が微弱であるので、光
チョッパ3およびロックイン増幅器6を用いて、測定に
おけるSN比の向上を図る必要がある。しかし、このよ
うなロックイン増幅法を用いた測定方法では、−波長当
りの測定に数秒の時間を要するので、測定全体では数分
以上の時間が必要となるという欠点があった。また測定
に時間を要するので、周囲温度の変化に起因する光源の
強度の変動や光検出器の感度の変動による測定誤差を生
じ易いという欠点があった。
On the other hand, the important wavelength in normal optical fiber is 1 to 2 μm.
In loss measurement, a halogen lamp is generally used as the light source 1, but in this case, the light intensity reaching the photodetector 5 via the optical fiber 4 to be measured is weak, so the optical chopper 3 and the lock-in amplifier 6 are used. It is necessary to improve the signal-to-noise ratio in measurements by using However, the measurement method using such a lock-in amplification method has the disadvantage that several seconds are required to measure each wavelength, so the entire measurement requires several minutes or more. Furthermore, since measurement takes time, measurement errors are likely to occur due to fluctuations in the intensity of the light source and fluctuations in the sensitivity of the photodetector due to changes in ambient temperature.

(発明が解決しようとする問題点) 本発明は測定に要する時間を短縮し、測定中の温度変動
による誤差の影響を低減した簡便な光ファイバの損失測
定方法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a simple optical fiber loss measurement method that shortens the time required for measurement and reduces the influence of errors due to temperature fluctuations during measurement.

(問題点を解決するための手段) 本発明は、ロックイン増幅法を用いず、光源から発した
連続的な波長スペクトルを有する光を、分光器で高速に
波長掃引を行い、かつ各瞬間における指示波長に同調し
たマーカ信号を発し、該分光器および被測定光ファイバ
を経て光検出器から得られる電気信号を、サンプリング
装置で該分光器から発するマーカ信号に同期させて高速
サンプリングを行い積分処理装置で、各サンプリング点
における電気信号出力を読み取り、積分処理して光ファ
イバの損失を測定する。
(Means for Solving the Problems) The present invention does not use a lock-in amplification method, but sweeps the wavelength of light having a continuous wavelength spectrum emitted from a light source at high speed using a spectrometer, and A marker signal tuned to the indicated wavelength is emitted, and the electrical signal obtained from the photodetector via the spectrometer and the optical fiber to be measured is synchronized with the marker signal emitted from the spectrometer using a sampling device to perform high-speed sampling and integration processing. The device reads the electrical signal output at each sampling point and performs an integral process to measure the loss in the optical fiber.

第1図は本発明の一実施例図であって、8は連続波長光
源、9はおおむね数秒以内に測定波長範囲全域を掃引す
ることが可能な高速波長掃引形弁光器、10は被測定光
ファイバ、11は光検出器、12は光検出器の信号を増
幅するための直流増幅器、13は分光器9の波長マーカ
信号に同期して光検出器信号のサンプリングを行うサン
プリング装置、14は各サンプリング点における電気信
号出力を読み取り、積分処理する積分処理装置である。
FIG. 1 is a diagram showing an embodiment of the present invention, in which 8 is a continuous wavelength light source, 9 is a high-speed wavelength sweep valve that can sweep the entire measurement wavelength range within approximately a few seconds, and 10 is an object to be measured. 11 is a photodetector; 12 is a DC amplifier for amplifying the photodetector signal; 13 is a sampling device that samples the photodetector signal in synchronization with the wavelength marker signal of the spectrometer 9; 14 is an optical fiber; This is an integral processing device that reads the electrical signal output at each sampling point and performs integral processing.

第2図は本発明による測定のタイミングチャートである
。(A)は1回の波長掃引における分光器の波長掃引開
始信号と波長マーカ信号との関係を示す図、<8)は(
A>を時間領域で拡大し、波長マーカ信号とサンプリン
グ信号との関係を示す図であって、aは光検出器の出力
信号波形、bは分光器の波長掃引開始信号、Cは分光器
の波長マーカ信号、dはサンプリング装置のサンプリン
グ信号を表わす。
FIG. 2 is a timing chart of measurements according to the present invention. (A) is a diagram showing the relationship between the wavelength sweep start signal of the spectrometer and the wavelength marker signal in one wavelength sweep, and <8) is (
A> is enlarged in the time domain and shows the relationship between the wavelength marker signal and the sampling signal, where a is the output signal waveform of the photodetector, b is the wavelength sweep start signal of the spectrometer, and C is the wavelength sweep start signal of the spectrometer. The wavelength marker signal, d, represents the sampling signal of the sampling device.

第1図および第2図から明らかなように、本発明の測定
方法では、まず分光器9から波長掃引開始信号すがサン
プリング装置13に発せられ、これに基づいてサンプリ
ング装置13が動作を開始する。
As is clear from FIGS. 1 and 2, in the measurement method of the present invention, the spectrometer 9 first issues a wavelength sweep start signal to the sampling device 13, and based on this, the sampling device 13 starts operating. .

その債、分光器9の指示波長が測定すべき波長に一致し
た瞬間、分光器9からサンプリング装置13に波長マー
カ信号Cが送出される。
At the moment when the wavelength indicated by the spectrometer 9 matches the wavelength to be measured, the wavelength marker signal C is sent from the spectrometer 9 to the sampling device 13.

通常、この波長マーカ信号Cは、波長に対して等間隔に
、数nmの波長間隔で送出される。波長マーカ信号Cを
受信したサンプリング装置13は、その接、直らにサン
プリング信号dを発して検出器信号のサンプリングを開
始する。このサンプリング動作は、サンプリング回路に
次の波長マーカ信号が送信される直前まで持続され、そ
の間にサンプリングされた検出器出力を平均化すること
によって、その波長における検出器出力を求める。この
ような平均化方式を採用することによって、検出器の出
力信号の雑音成分を低減することができる。また分光器
の掃引を2回以上行い、測定結果を平均化することによ
り、雑音成分をざらに低減させることも可能である。
Normally, this wavelength marker signal C is sent out at equal intervals with respect to the wavelength, at wavelength intervals of several nm. Upon receiving the wavelength marker signal C, the sampling device 13 immediately emits a sampling signal d and starts sampling the detector signal. This sampling operation is continued until just before the next wavelength marker signal is transmitted to the sampling circuit, and the detector output at that wavelength is determined by averaging the detector outputs sampled during that time. By employing such an averaging method, it is possible to reduce the noise component of the output signal of the detector. It is also possible to roughly reduce the noise component by sweeping the spectrometer twice or more and averaging the measurement results.

本発明の測定方法においては、測定波長域内の掃引に要
する時間が数秒以内となり、従来法に比較して画期的に
短縮することが可能となる。このため、測定系の周囲温
度の変動による測定誤差を極めて小さくすることが可能
となる。
In the measurement method of the present invention, the time required to sweep within the measurement wavelength range is within several seconds, making it possible to dramatically shorten the time compared to conventional methods. Therefore, it is possible to extremely reduce measurement errors due to fluctuations in the ambient temperature of the measurement system.

本発明の測定方法において波長掃引を2回以上行って測
定精度の向上を図る場合には、測定に要する時間が1回
より増やした回数分だけ長くなるので、前述のような温
度変動に起因する誤差が発生するおそれがあるが、掃引
1回の間の変動が非常に小ざいので、このような誤差は
波長依存性を持たないこととなる。
In the measurement method of the present invention, when wavelength sweep is performed two or more times to improve measurement accuracy, the time required for measurement increases by the number of times the measurement is performed. Although errors may occur, the fluctuations during one sweep are very small, so such errors do not have wavelength dependence.

なお一般に光ファイバの損失波長特性の測定結果を評価
する場合、このような波長依存性のない誤差を補正する
のが通例であるので、このような波長依存性のない誤差
は実用上問題となるものではない。
Generally, when evaluating the measurement results of the loss wavelength characteristics of optical fibers, it is customary to correct errors that are not wavelength-dependent, so errors that are not wavelength-dependent pose a practical problem. It's not a thing.

(発明の効果) 以上説明したように、本発明の測定方法は、従来用いら
れていたロックイン増幅に代えて、高速波長掃引形弁光
器を用いたマルチサンプリング方式を採用することによ
り、測定の際の1回当りの波長掃引時間を短縮し、測定
中の温度変動による誤差の影響を低減するとともに、測
定の高速化、簡便化を達成することができる利点がある
(Effects of the Invention) As explained above, the measurement method of the present invention employs a multi-sampling method using a high-speed wavelength sweep type bulb instead of the conventionally used lock-in amplification. This has the advantage of shortening the wavelength sweep time per time during measurement, reducing the influence of errors due to temperature fluctuations during measurement, and achieving faster and simpler measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例図、 第2図は本発明による測定のタイミングチャートで、(
A>は1回の波長掃引における分光器の波長掃引開始信
号と波長マーカ信号との関係を示す図、(B)は(A)
を時間領域で拡大し、波長マーカ信号とサンプリング信
号との関係を示す図、第3図は従来の光フアイバ損失測
定装置の構成側図である。 1・・・連続波長光源   2・・・分光器3・・・光
ヂョッパ    4・・・被測定光ファイバ5・・・光
検出器      6・・・ロックイン増幅器7・・・
制御装置     8・・・連続波長光源9・・・高速
波長掃引形弁光器 10・・・被測定光ファイバ 11・・・光検出器12
・・・直流増幅器    13・・・サンプリング装置
14・・・積分処理装置 a・・・光検出器の出力信号波形 b・・・分光器の波長掃引開始信号 C・・・分光器の波長マーカ信号 d・・・サンプリング装置のサンプリング信号第2図 (A) 時間 時間
FIG. 1 is an embodiment of the present invention, and FIG. 2 is a timing chart of measurement according to the present invention.
A> is a diagram showing the relationship between the wavelength sweep start signal of the spectrometer and the wavelength marker signal in one wavelength sweep, (B) is a diagram showing the relationship between the wavelength marker signal and (A)
FIG. 3 is a diagram showing the relationship between the wavelength marker signal and the sampling signal when expanded in the time domain. FIG. 3 is a side view of the configuration of a conventional optical fiber loss measuring device. 1... Continuous wavelength light source 2... Spectroscope 3... Optical chopper 4... Optical fiber to be measured 5... Photodetector 6... Lock-in amplifier 7...
Control device 8... Continuous wavelength light source 9... High speed wavelength sweep valve light device 10... Optical fiber to be measured 11... Photodetector 12
... DC amplifier 13 ... Sampling device 14 ... Integral processing device a ... Output signal waveform of photodetector b ... Spectrometer wavelength sweep start signal C ... Spectrometer wavelength marker signal d... Sampling signal of sampling device Fig. 2 (A) Time Time

Claims (1)

【特許請求の範囲】[Claims] 1、光源から連続的な波長スペクトルを有する光を射出
し、該光を分光器で高速に波長掃引を行い、かつ各瞬間
における指示波長に同調したマーカ信号を発し、該分光
器を通過した光を被測定光ファイバの一端に結合し、該
光ファイバの他端から射出する光を光検出器に結合させ
、該光検出器から得られる電気信号を、サンプリング装
置で該分光器から発するマーカ信号に同期させて高速サ
ンプリングを行い、積分処理装置で各サンプリング点に
おける電気信号出力を読み取り、積分処理して光ファイ
バの損失を測定することを特徴とする光ファイバの損失
測定方法。
1. Emit light with a continuous wavelength spectrum from a light source, sweep the wavelength of the light at high speed with a spectrometer, emit a marker signal tuned to the indicated wavelength at each moment, and emit light that passes through the spectrometer. is coupled to one end of the optical fiber to be measured, the light emitted from the other end of the optical fiber is coupled to a photodetector, and the electrical signal obtained from the photodetector is converted into a marker signal emitted from the spectrometer using a sampling device. A method for measuring loss in an optical fiber, characterized by performing high-speed sampling in synchronization with , reading the electrical signal output at each sampling point with an integral processing device, and performing integral processing to measure the loss in the optical fiber.
JP25378585A 1985-11-14 1985-11-14 Loss measuring method for optical fiber Pending JPS62115340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25378585A JPS62115340A (en) 1985-11-14 1985-11-14 Loss measuring method for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25378585A JPS62115340A (en) 1985-11-14 1985-11-14 Loss measuring method for optical fiber

Publications (1)

Publication Number Publication Date
JPS62115340A true JPS62115340A (en) 1987-05-27

Family

ID=17256114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25378585A Pending JPS62115340A (en) 1985-11-14 1985-11-14 Loss measuring method for optical fiber

Country Status (1)

Country Link
JP (1) JPS62115340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859477A2 (en) * 1997-02-14 1998-08-19 Jds Fitel Inc. Apparatus and method for testing of optical devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859477A2 (en) * 1997-02-14 1998-08-19 Jds Fitel Inc. Apparatus and method for testing of optical devices
EP0859477A3 (en) * 1997-02-14 2003-12-03 Jds Fitel Inc. Apparatus and method for testing of optical devices
JP2007086086A (en) * 1997-02-14 2007-04-05 Jds Fitel Inc System and method for testing optical components
JP4567653B2 (en) * 1997-02-14 2010-10-20 ジェイディーエス ファイテル インコーポレイテッド System and method for testing optical components

Similar Documents

Publication Publication Date Title
JP5250736B2 (en) Criteria for beat spectrum of optical frequency comb
JP3991497B2 (en) Wavelength tracking method of optical spectrum analyzer and tunable light source
US7619742B2 (en) High-speed spectrographic sensor for internal combustion engines
CN106706124B (en) A kind of method for measuring light source relative intensity noise power spectral density
JP3695360B2 (en) Fourier transform infrared spectrophotometer
JP2001255354A (en) Inspection apparatus for semiconductor integrated circuit by pulse-shaped laser beam
US8891085B2 (en) Gas analyzer
JP4414341B2 (en) Optical spectrum analyzer using Brillouin scattering and measurement method related thereto
JP2000074826A (en) Single-beam type spectrometer and operation method for single beam type spectrometer
CN210071661U (en) Laser gas analyzer
JPS62115340A (en) Loss measuring method for optical fiber
JP2004020539A (en) Infrared circular dichroism measuring instrument and infrared circular dichroism measuring method
JP2000023947A (en) Biological light measuring method
US7023535B1 (en) Apparatus for synchronizing high-speed optical measurements made over a range of wavelengths
CN108489609A (en) A kind of FTIR measures the wide range bearing calibration of photodetector response
EP3739310B1 (en) Spectrometry device and spectrometry method
CN113176229A (en) Expiration detection method
JP4206618B2 (en) Fourier transform infrared spectrophotometer
JP3267869B2 (en) Test method of light receiving device
JPH02102425A (en) Optical path difference zero point detecting device and optical interference signal averaging processor using same
JP2970709B2 (en) Background removal time-resolved Fourier spectroscopy
KR102314842B1 (en) Method for measuring thickness of sample using terahertz signal
JP7332650B2 (en) Optical spectrum analyzer and pulse modulated light measurement method
JP2004045096A (en) Apparatus for determining bio-component
JPS5915089Y2 (en) Laser output monitoring device