JP2000023947A - Biological light measuring method - Google Patents
Biological light measuring methodInfo
- Publication number
- JP2000023947A JP2000023947A JP19835998A JP19835998A JP2000023947A JP 2000023947 A JP2000023947 A JP 2000023947A JP 19835998 A JP19835998 A JP 19835998A JP 19835998 A JP19835998 A JP 19835998A JP 2000023947 A JP2000023947 A JP 2000023947A
- Authority
- JP
- Japan
- Prior art keywords
- light
- frequency
- output
- oscillator
- living body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 11
- 238000006243 chemical reaction Methods 0.000 claims abstract description 24
- 238000010408 sweeping Methods 0.000 claims abstract 2
- 238000012545 processing Methods 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 claims description 8
- 230000001360 synchronised effect Effects 0.000 claims description 6
- 238000000295 emission spectrum Methods 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- -1 tungsten halogen Chemical class 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 239000005387 chalcogenide glass Substances 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims 7
- 238000000691 measurement method Methods 0.000 claims 6
- 230000004069 differentiation Effects 0.000 claims 2
- 238000005259 measurement Methods 0.000 abstract description 33
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 abstract description 11
- 239000008103 glucose Substances 0.000 abstract description 11
- 239000008280 blood Substances 0.000 abstract description 8
- 239000013307 optical fiber Substances 0.000 abstract description 8
- 230000008878 coupling Effects 0.000 abstract description 6
- 238000010168 coupling process Methods 0.000 abstract description 6
- 238000005859 coupling reaction Methods 0.000 abstract description 6
- 210000000624 ear auricle Anatomy 0.000 abstract description 2
- 238000001228 spectrum Methods 0.000 description 23
- 230000008033 biological extinction Effects 0.000 description 13
- 238000004611 spectroscopical analysis Methods 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000010349 pulsation Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 4
- 102000001554 Hemoglobins Human genes 0.000 description 3
- 108010054147 Hemoglobins Proteins 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 102100027340 Slit homolog 2 protein Human genes 0.000 description 1
- 101710133576 Slit homolog 2 protein Proteins 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、人体中の血液等の
体液や組織に含まれるグルコースやヘモグロビン,コレ
ステロールなどの化学物質の濃度を、体外から生体の所
定の部位に光を照射して、生体中を透過あるいは拡散し
て人体から放射された光を検出することにより無侵襲的
に計測する技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of irradiating a predetermined part of a living body with light from the outside of a body by measuring the concentration of a chemical substance such as glucose, hemoglobin or cholesterol contained in a body fluid such as blood or tissue in a human body. The present invention relates to a technique for non-invasively measuring by detecting light emitted from a human body by transmitting or diffusing through a living body.
【0002】[0002]
【従来の技術】ヒトの指に近赤外光を照射し、透過して
きた光のスペクトルを測定することにより、被験者の血
中グルコース濃度(血糖値)を無侵襲的に計測する装置
がクリニカル・ケミストリー38巻9号,1992年,
1618頁から1622頁に記載されている。上記従来
技術では、レンズ系あるいはファイバーで構成された光
学系を介して、タングステンハロゲンランプを光源とす
るフーリエ変換型分光器または回折格子を機械的に走査
する分散型分光器の出力を被験者の指に照射し、照射側
の反対側から透過光を集光して検出し、生体の近赤外ス
ペクトルを求める構成となっている。2. Description of the Related Art An apparatus for non-invasively measuring a subject's blood glucose concentration (blood glucose level) by irradiating a human finger with near-infrared light and measuring the spectrum of the transmitted light has been developed. Chemistry, Vol. 38, No. 9, 1992,
It is described on pages 1618 to 1622. In the above-mentioned prior art, the output of a Fourier transform spectroscope using a tungsten halogen lamp as a light source or a dispersion type spectroscope that mechanically scans a diffraction grating is output to a subject's finger through an optical system constituted by a lens system or a fiber. And the transmitted light is condensed and detected from the side opposite to the irradiation side to obtain the near-infrared spectrum of the living body.
【0003】[0003]
【発明が解決しようとする課題】上記従来技術では、フ
ーリエ分光方式,分散分光方式いずれにしても光学素子
の機械的走査が行われており、その結果、スペクトルを
1回測定するのにコンマ数秒以上の時間が不可欠であ
る。したがって異なる波長においての測定の同時性はあ
まり良くない。多波長計測によって生体のさまざまなゆ
らぎやスペクトルのベースライン変動を補正するには各
波長の同時性が重要である。In the prior art described above, the mechanical scanning of the optical element is performed in either the Fourier spectroscopy system or the dispersion spectroscopy system. As a result, it takes several seconds to measure the spectrum once. More time is essential. Therefore, the synchronization of the measurements at different wavelengths is not very good. Simultaneousness of each wavelength is important for correcting various fluctuations of a living body and baseline fluctuation of a spectrum by multi-wavelength measurement.
【0004】たとえば生体が少し動けば測定位置がず
れ、光路長が変化する。光路長の変動に対する補正は2
波長の減光度の比をとれば可能であるが、その2波長の
減光度の測定時刻が体動の前後であっては当然意味が失
われる。コンマ数秒の時間は人間にとって検知しうるオ
ーダーの時間であり、静止していられるとは限らない。
より高速なスペクトル取得が望まれる。For example, if the living body moves a little, the measurement position shifts and the optical path length changes. The correction for the variation of the optical path length is 2
It is possible to take the ratio of the dimming degree of the wavelength, but if the measurement time of the dimming degree of the two wavelengths is before and after the body movement, the meaning is naturally lost. The time of a few seconds is a time that can be detected by a human, and is not always stationary.
Faster spectrum acquisition is desired.
【0005】また、生体の分光計測を高精度化する方法
として脈波分光法が知られている。これは生体減光度の
うち、脈動に同期した微小な交流成分だけをとることに
より、皮膚表面での反射や測定装置のゆらぎ等を取り除
き、血液自身の減光度を高精度に求める手法である。[0005] Pulse wave spectroscopy is known as a method for improving the accuracy of spectroscopic measurement of a living body. This is a method of obtaining a highly accurate extinction degree of the blood itself by removing only a minute AC component synchronized with the pulsation from the extinction degree of the living body, thereby removing reflection on the skin surface, fluctuation of the measuring device, and the like.
【0006】現在、この原理を利用した装置ではLED
やLDを複数使用することにより多波長計測を行ってい
る。このような方法では各波長の同時性は極めてよい
が、波長選択の柔軟性、波長数の大幅増加に関して難点
がある。その結果、多波長化によって精度向上が期待で
きるにもかかわらず、現在の脈波同期分光法に基づく装
置は2〜3波長しか用いていない。At present, devices utilizing this principle use LEDs.
And multiple LDs are used to perform multi-wavelength measurement. In such a method, the synchronism of each wavelength is extremely good, but there is a problem in flexibility of wavelength selection and a large increase in the number of wavelengths. As a result, although the accuracy can be expected to be improved by increasing the number of wavelengths, the current apparatus based on pulse wave synchronization spectroscopy uses only a few wavelengths.
【0007】白熱電球光源を分光すれば波長とその数に
関する制限はほとんどなくなる。しかしながら、上で説
明したように、白熱電球分光方式を用いた生体計測の従
来技術ではスペクトルの測定レートが十分でない。[0007] If the incandescent light source is spectrally separated, there are almost no restrictions on the wavelength and the number thereof. However, as described above, the spectrum measurement rate is not sufficient in the conventional technique of living body measurement using the incandescent lamp spectroscopy.
【0008】ヒトの脈動周波数は安静時で約1.2Hz
であり、一つの波長の減光度についてこの周波数で変動
する成分を測定するには減光度のサンプリングレートは
理論的に最低1.2Hz の2倍以上である必要があり、
現実的には5倍以上にすることが望ましい。運動による
脈動周波数の上昇、個人差も考慮すると実用上は10倍
以上、つまり約10Hz以上が推奨される。The human pulsation frequency is about 1.2 Hz at rest.
In order to measure a component that fluctuates at this frequency for the extinction of one wavelength, the sampling rate of the extinction must theoretically be at least twice as high as 1.2 Hz,
In practice, it is desirable to make it five times or more. Considering the rise of the pulsation frequency due to exercise and individual differences, it is practically recommended to be 10 times or more, that is, about 10 Hz or more.
【0009】機械的走査の分光方式では、今日最高速の
機種で毎秒5回のスペクトル測定すなわち一つの固定し
た波長の減光度について5Hzの測定レートが限界であ
る。精度とのかねあいを考慮すると今後も機械的走査速
度の大幅な向上は期待できない。白熱電球分光方式を用
いた生体光計測では、機械的走査以外の方法でより高速
なスペクトル測定を実現する必要がある。[0009] In the mechanical scanning spectroscopy system, the highest speed model today has a limit of 5 spectral measurements per second, that is, a measurement rate of 5 Hz for the extinction of one fixed wavelength. Considering the balance with the accuracy, it is not expected that the mechanical scanning speed will be greatly improved in the future. In biological light measurement using the incandescent lamp spectroscopy, it is necessary to realize faster spectral measurement by a method other than mechanical scanning.
【0010】本発明の目的は、音響光学的な分光方式に
より、より高速な生体の多波長スペクトル測定を行い、
より高精度に生体中のグルコース,ヘモグロビン,ビリ
ルビン等の吸光物質の濃度を無侵襲的に測定することで
ある。An object of the present invention is to perform a multi-wavelength spectrum measurement of a living body at a higher speed by an acousto-optic spectroscopic method.
It is to non-invasively measure the concentration of a light absorbing substance such as glucose, hemoglobin, bilirubin and the like in a living body with higher accuracy.
【0011】[0011]
【課題を解決するための手段】上記目的は白熱電球等の
ブロードな発行スペクトルを持つ光源を音響光学素子を
用いて分光し、超高速波長走査と数10msの時間内で
の1スペクトル取得を実現することによって達成され
る。An object of the present invention is to provide a light source having a broad emission spectrum, such as an incandescent lamp, by using an acousto-optic device to realize ultra-high-speed wavelength scanning and acquisition of one spectrum within a time of several tens of ms. Is achieved by doing
【0012】[0012]
【発明の実施の形態】図1は本発明の第1の実施例の構
成図である。1は光源、2はスリット、3はコリメート
レンズ、4は音響光学素子、5は超音波振動子、6は電
力増幅器、7は電圧制御型高周波発振器、8はスリッ
ト、9はカップリングレンズ、10−1,10−2は光
ファイバ、11は生体、12はカップリングレンズ、1
3は光検出器、14は電流電圧変換器、15はコンピュ
ータ筐体、16はAD変換ボード、17はDA変換ボー
ド、18は中央処理装置、19はランダムアクセスメモ
リ、20は表示器である。本実施例における光源1は2
00Wのタングステンハロゲンランプである。もちろん
必要な波長域を含む半値幅10nm以上のブロードな発
光スペクトルを有する光源ならなんでもよく、例えば有
機電気発光体や蛍光体,蛍光灯,LEDやSLDなどの
半導体発光素子でもよい。FIG. 1 is a block diagram of a first embodiment of the present invention. 1 is a light source, 2 is a slit, 3 is a collimating lens, 4 is an acousto-optic element, 5 is an ultrasonic transducer, 6 is a power amplifier, 7 is a voltage controlled high-frequency oscillator, 8 is a slit, 9 is a coupling lens, 10 -1, 10-2 are optical fibers, 11 is a living body, 12 is a coupling lens, 1
Reference numeral 3 denotes a photodetector, 14 denotes a current-voltage converter, 15 denotes a computer housing, 16 denotes an AD conversion board, 17 denotes a DA conversion board, 18 denotes a central processing unit, 19 denotes a random access memory, and 20 denotes a display. The light source 1 in this embodiment is 2
This is a 00W tungsten halogen lamp. Of course, any light source having a broad emission spectrum having a half-value width of 10 nm or more including a necessary wavelength range may be used. For example, an organic electroluminescent material, a fluorescent material, a fluorescent lamp, a semiconductor light emitting device such as an LED or an SLD may be used.
【0013】光源1を出た光はスリット2によって立体
角を制限して空間的コヒーレンスを良くしたのちにレン
ズ3で平行光束にして音響光学素子4に入射させる。本
実施例では音響光学媒質としてカルコゲナイドガラスを
使用したが、TeO2,InP,LiNbO3,PbMo
O4,SiO2 など近赤外域において透明で、音響光学
性能指数が高い材料を任意に用いることが可能である。The light emitted from the light source 1 is limited in solid angle by a slit 2 to improve spatial coherence, and then is converted into a parallel light beam by a lens 3 and is incident on an acousto-optic element 4. In this embodiment, chalcogenide glass is used as the acousto-optic medium. However, TeO 2 , InP, LiNbO 3 , and PbMo are used.
It is possible to arbitrarily use a material that is transparent in the near infrared region such as O 4 and SiO 2 and has a high acousto-optic figure of merit.
【0014】電圧制御式高周波発振器7から出力された
高周波信号は電力増幅器6によって増幅され、音響光学
素子4に接着された超音波振動子5に入力される。超音
波振動子5は音響光学素子4中に超音波すなわち密度の
回折格子を発生させ、その結果光源1の白色光が回折さ
れる。超音波の伝搬方向を入射光に対して直行する方向
からθ/2傾けておくと、θ方向に回折される光の波長
λと音響光学素子の音速V,超音波の周波数fとの間に
は数1という関係がある。The high-frequency signal output from the voltage-controlled high-frequency oscillator 7 is amplified by the power amplifier 6 and is input to the ultrasonic transducer 5 bonded to the acousto-optic element 4. The ultrasonic transducer 5 generates an ultrasonic wave, that is, a diffraction grating having a density in the acousto-optic element 4, so that the white light of the light source 1 is diffracted. When the propagation direction of the ultrasonic wave is inclined by θ / 2 from the direction perpendicular to the incident light, the wavelength λ of the light diffracted in the θ direction, the sound velocity V of the acousto-optic element, and the frequency f of the ultrasonic wave Has the relationship of Equation 1.
【0015】[0015]
【数1】 (Equation 1)
【0016】タングステンハロゲンランプ1の光は可視
から赤外に至る広範囲の波長の光を含むが、スリット8
によって一定のθの光を取り出すことにより特定の波長
の光が取り出される。スリットによるθの制限をΔθと
おくと、θが十分小さい場合には、波長分解能ΔλとΔ
θの間には、数2が成り立つ。The light of the tungsten halogen lamp 1 includes light of a wide range of wavelengths from visible to infrared.
By extracting light of a constant θ, light of a specific wavelength is extracted. If the limit of θ due to the slit is Δθ, if θ is sufficiently small, the wavelength resolution Δλ and Δλ
Equation 2 holds between θ.
【0017】[0017]
【数2】 (Equation 2)
【0018】本実施例ではV=2.52×103m/s、
周波数fの範囲は94〜109MHz、θ=70mradとし
たので、波長範囲は1620〜1870nm、分解能Δ
θ=7〜14nmとなる。スリット8で単色化された光
はカップリングレンズ9によって光ファイバ10−1に
導入され、生体11に照射される。本実施例では生体1
1の測定部位として手のひら水掻きを選択したが、言う
までもなく耳朶,ゆび,腕など測りやすい部位ならどこ
でもよい。In this embodiment, V = 2.52 × 10 3 m / s,
Since the range of the frequency f was 94 to 109 MHz and θ = 70 mrad, the wavelength range was 1620 to 1870 nm and the resolution Δ
θ = 7 to 14 nm. The light monochromatized by the slit 8 is introduced into the optical fiber 10-1 by the coupling lens 9 and illuminates the living body 11. In this embodiment, the living body 1
Although the palm of a hand was selected as the measurement site in (1), it goes without saying that any site that can be easily measured, such as an earlobe, a crack, or an arm, may be used.
【0019】生体中を拡散した光は集光用のレンズ12
で光ファイバ10−2に導入され、光検出器13に入射
される。光検出器13は光量に比例した光電流を出力
し、この光電流は電流電圧変換器14によって光量に比
例した電圧信号に変換される。電流電圧変換器14のア
ナログ出力電圧はAD変換ボード16によってデジタル
信号となり、バスを介して中央処理装置(CPU)18
が読み込み、ランダムアクセスメモリ(RAM)19に
保存される。The light diffused in the living body is collected by a focusing lens 12.
Is introduced into the optical fiber 10-2 and is incident on the photodetector 13. The photodetector 13 outputs a photocurrent proportional to the amount of light, and this photocurrent is converted by a current-voltage converter 14 into a voltage signal proportional to the amount of light. The analog output voltage of the current / voltage converter 14 is converted into a digital signal by the AD conversion board 16 and is sent to a central processing unit (CPU) 18 via a bus.
Is read and stored in the random access memory (RAM) 19.
【0020】AD変換ボード16はサンプリングのため
のサンプルホールド回路を内蔵し、外部からのクロック
に同期したサンプリングおよびAD変換が可能である。
電圧制御型高周波発振器7にはDA変換ボード17の出
力電圧が入力されており、発振器7は入力電圧に比例し
た周波数の信号を発生させる。中央処理装置18はDA
変換ボードの出力電圧を一定範囲で所定のステップで変
化でさせ、発振器7に94〜109MHzの信号を出力
させ、結果として回折光の波長を1620nmから186
5nmの範囲で5nmステップで走査させる。DA変換
ボード17およびAD変換ボードのサンプルレートおよ
び出力レートはいずれも5kHzであり、DAの電圧出
力とADの電圧取り込みは同期している。波長数は50
波長であるから、毎秒100回のスペクトル測定が可能
である。The AD conversion board 16 has a built-in sample hold circuit for sampling, and can perform sampling and AD conversion in synchronization with an external clock.
The output voltage of the DA conversion board 17 is input to the voltage-controlled high-frequency oscillator 7, and the oscillator 7 generates a signal having a frequency proportional to the input voltage. The central processing unit 18 is a DA
The output voltage of the conversion board is changed at predetermined steps within a certain range, and a signal of 94 to 109 MHz is output to the oscillator 7. As a result, the wavelength of the diffracted light is changed from 1620 nm to 186 nm.
Scan in 5 nm steps over a range of 5 nm. Both the sample rate and the output rate of the DA conversion board 17 and the AD conversion board are 5 kHz, and the voltage output of the DA and the voltage capture of the AD are synchronized. The number of wavelengths is 50
Because of the wavelength, 100 spectral measurements per second are possible.
【0021】生体の動きが無視できるためには、0.2
秒以下の時間内に1スペクトルをとればよいが、本実施
例では十分余裕をみて0.01 秒で行っている。1回の
スペクトル測定に要する時間は10msと非常に短く、
全波長の測定をほとんど同時と見なすことができる。な
お、ADの電圧取り込みはDAの電圧出力から0.1m
s遅延させ、波長アクセス中の波長誤差を防いでいる。In order for the movement of the living body to be negligible, 0.2
One spectrum may be obtained within a time period of less than one second, but in this embodiment, the measurement is performed at 0.01 seconds with a sufficient margin. The time required for one spectrum measurement is as short as 10 ms,
All wavelength measurements can be considered almost simultaneous. The voltage of AD is taken 0.1m from the voltage output of DA.
s to prevent wavelength errors during wavelength access.
【0022】測定開始にあたっては、まず図1から生体
11を取り除き、光ファイバ10−1と10−2を直接
につなげた状態でリファレンススペクトルを測定する。
波長走査に関しては既に述べたように行い、各波長
λ1,λ2,・・・λN に対応する電圧値V0(λ1),V
0(λ2),・・・V0(λN)をメモリ19に記憶する。その
後生体に取り付けた状態で同様に各波長に対応する電圧
値V(λ1),V(λ2),・・・V(λN)を測定する。中央
処理装置は各波長に対応した減光度A(λ1),A(λ2),
・・・A(λN)を数3に従って計算する。At the start of the measurement, the living body 11 is first removed from FIG. 1, and the reference spectrum is measured with the optical fibers 10-1 and 10-2 connected directly.
Carried out as previously mentioned with respect to the wavelength scanning, the wavelength lambda 1, lambda 2, the voltage value V 0 (λ 1) corresponding to · · · lambda N, V
0 (λ 2 ),... V 0 (λ N ) are stored in the memory 19. After that, the voltage values V (λ 1 ), V (λ 2 ),... V (λ N ) corresponding to each wavelength are similarly measured in a state of being attached to the living body. The central processing unit controls the light attenuations A (λ 1 ), A (λ 2 ),
... A (λ N ) is calculated according to Equation 3.
【0023】[0023]
【数3】 (Equation 3)
【0024】この様にして減光度スペクトルが毎秒10
0回測定される。なお本実施例ではN=50である。In this way, the extinction spectrum becomes 10 per second.
Measured 0 times. In this embodiment, N = 50.
【0025】次に図2に従って減光度測定後のデータ処
理について説明する。50msごとに得られた減光度ス
ペクトルの列として数4が得られる。Next, data processing after the light attenuation measurement will be described with reference to FIG. Equation 4 is obtained as a column of the light attenuation spectrum obtained every 50 ms.
【0026】[0026]
【数4】 {A1(λ1),A1(λ2),・・・A1(λN)},{A2(λ1),A2(λ2), ・・・A2(λN)},・・・ …(4) 各スペクトルはまず波長で微分され、波長に対する2次
微分スペクトル数5が計算される。Equation 4] {A 1 (λ 1), A 1 (λ 2), ··· A 1 (λ N)}, {A 2 (λ 1), A 2 (λ 2), ··· A 2 (λ N )},... (4) Each spectrum is first differentiated with respect to wavelength, and the number 5 of second derivative spectra with respect to wavelength is calculated.
【0027】[0027]
【数5】 {D2A1(λ1),D2A1(λ2),・・・D2A1(λN)} …(5) つぎに光路長変動にともなう誤差を補正するため、所定
の一波長λM の値で各2次微分減光度の値を除算し、比
減光度スペクトルの列とする。つまり数6を求める。## EQU5 ## {D 2 A 1 (λ 1 ), D 2 A 1 (λ 2 ),... D 2 A 1 (λ N )} (5) Next, an error due to the fluctuation of the optical path length is corrected. Therefore, the value of each secondary differential dimming value is divided by the value of the predetermined one wavelength λ M to obtain a sequence of the specific dimming intensity spectrum. That is, Equation 6 is obtained.
【0028】[0028]
【数6】 {D2A1(λ1)/D2A1(λM),D2A1(λ2)/D2A1(λM), ・・・D2A1(λN)/D2A1(λM)} …(6) 本実施例では比をとる基準の波長λM として温度の影響
が少ない1790nmを選択した。この2次微分比減光
度スペクトルの値は体動による統計誤差の影響を受けに
くいので、ノイズとしては光検出器のランダムノイズが
支配的となる。ランダムノイズ低減のため、さらに2次
微分比減光度スペクトルの各値は同一波長について、1
0msごとに得られる値を積算する。6D 2 A 1 (λ 1 ) / D 2 A 1 (λ M ), D 2 A 1 (λ 2 ) / D 2 A 1 (λ M ),..., D 2 A 1 (λ N ) / D 2 A 1 (λ M )} (6) In this embodiment, 1790 nm, which is less affected by temperature, was selected as the reference wavelength λ M for obtaining the ratio. Since the value of the secondary differential ratio extinction spectrum is hardly affected by a statistical error due to body movement, random noise of the photodetector is dominant as noise. In order to reduce random noise, each value of the secondary differential ratio extinction spectrum is 1 for the same wavelength.
The values obtained every 0 ms are integrated.
【0029】本実施例では5秒間にわたり、500回の
積算を行っている。これらの処理により生体を対象とし
て極めて高精度な減光度測定が可能となり、その結果生
体の血中グルコース濃度50mg/dLの変化を再現性
よく検出することが実現した。なお本実施例では波長に
ついて減光度を微分したが、波長の逆数である波数、ま
たは波数に比例する光の周波数について微分しても同一
の効果が得られることはいうまでもない。In this embodiment, the integration is performed 500 times over 5 seconds. With these processes, extremely high-precision extinction measurement can be performed on a living body, and as a result, a change in the blood glucose concentration of 50 mg / dL in the living body can be detected with good reproducibility. In this embodiment, the dimming degree is differentiated with respect to the wavelength. However, it goes without saying that the same effect can be obtained by differentiating the wave number which is the reciprocal of the wavelength or the frequency of light which is proportional to the wave number.
【0030】また、本実施例では測定対象をグルコース
としたため、グルコースの吸収バンドである1600n
m〜1850nm付近の波長を用いたが、他の物質にた
いしてもその物質の吸収バンドの波長を含む波長域を走
査すれば同様にしてその物質の濃度変化を検出すること
ができる。たとえばヘモグロビンなら700−900n
m付近の波長帯を含めるようにすればよい。In this embodiment, since the measurement object is glucose, the absorption band of glucose is 1600 nm.
Although a wavelength around m to 1850 nm was used, a change in the concentration of another substance can be similarly detected by scanning a wavelength range including the wavelength of the absorption band of the substance. For example, 700-900n for hemoglobin
What is necessary is just to include the wavelength band near m.
【0031】図3は本発明の第2の実施例の構成図であ
る。第2の実施例は第1の実施例と基本的には同一の構
成であり、主な変更点は次の通りである。FIG. 3 is a block diagram of a second embodiment of the present invention. The second embodiment has basically the same configuration as the first embodiment, and the main changes are as follows.
【0032】本実施例では単色化した光をレンズで光フ
ァイバに入力せず、ミラー21で反射するだけで空間中
のビームとして生体11に照射し、ファイバへの結合ロ
スを防いでいる。また、生体中を拡散した光についても
ファイバで取り込まず、光検出器13を生体11にベタ
付けすることにより、集光効率を上げている。In the present embodiment, the monochromatic light is not input to the optical fiber by the lens, but is reflected by the mirror 21 to irradiate the living body 11 as a beam in the space simply by preventing reflection loss to the fiber. In addition, light diffused in the living body is not captured by the fiber, and the light detector 13 is solidly attached to the living body 11, thereby increasing the light-collecting efficiency.
【0033】また、本実施例では高周波発振器7の出力
する超音波キャリアー用信号を変調器25の無線周波数
入力に入力し、低周波発振器24の出力する変調信号を
変調器24の変調入力に入力し、音響光学素子4中で発
生する超音波に強度変調をかけている。In this embodiment, the ultrasonic carrier signal output from the high frequency oscillator 7 is input to the radio frequency input of the modulator 25, and the modulation signal output from the low frequency oscillator 24 is input to the modulation input of the modulator 24. Then, the intensity of the ultrasonic waves generated in the acousto-optic element 4 is modulated.
【0034】低周波発振器24の周波数はキャリアーで
ある高周波信号の周波数よりも十分低く、具体的には5
00kHzである。超音波が強度変調された結果、回折
光の強度および生体中を拡散した光の強度が500kH
zで変調される。そこで検出器13の出力はケーブル2
2で接続された増幅器14で電圧信号にした後に低周波
発振器24の出力に同期したロックインアンプに入力さ
れ、信号の強度変調成分だけをロックイン検出する。そ
のため、本来の信号となる光が室内灯の光や太陽光など
の背景光と区別され、非常に迷光の影響が少ない測定が
実現されている。The frequency of the low frequency oscillator 24 is sufficiently lower than the frequency of the high frequency signal which is a carrier.
00 kHz. As a result of the intensity modulation of the ultrasonic wave, the intensity of the diffracted light and the intensity of the light diffused in the living body become 500 kHz.
modulated by z. Therefore, the output of the detector 13 is the cable 2
After being converted into a voltage signal by the amplifier 14 connected in 2, the voltage signal is input to a lock-in amplifier synchronized with the output of the low frequency oscillator 24, and only the intensity modulation component of the signal is lock-in detected. For this reason, the light serving as the original signal is distinguished from the background light such as the light of the room light and the sunlight, and the measurement with the extremely small influence of the stray light is realized.
【0035】以上のような改良の結果、本実施例では光
検出の効率、感度および精度が大幅に向上し、生体中の
減衰が大きいため、第1の実施例では測定困難であった
2200−2300nm帯の光を使用した測定が可能となっ
た。2200−2300nm帯を使用するため、本実施
例では高周波キャリアー信号の周波数を66MHz〜6
9MHzとし、2nmステップ50波長とした。As a result of the above improvements, the efficiency, sensitivity and accuracy of light detection are greatly improved in the present embodiment, and the attenuation in the living body is large, so that the measurement was difficult in the first embodiment.
Measurement using light in the 2200-2300 nm band has become possible. In order to use the 2200-2300 nm band, in this embodiment, the frequency of the high-frequency carrier signal is 66 MHz to 6 MHz.
The frequency was set to 9 MHz and 50 wavelengths in 2 nm steps.
【0036】次にロックインアンプのDC出力をAD変
換ボード16で中央処理装置及18びメモリ19に取り
込んだあとの処理を図4に従って説明する。第1の実施
例同様、数7の減光度スペクトルの時系列が得られる。Next, the processing after the DC output of the lock-in amplifier is taken into the central processing unit and the memory 19 by the AD conversion board 16 will be described with reference to FIG. As in the first embodiment, the time series of the extinction spectrum of Expression 7 is obtained.
【0037】[0037]
【数7】 {A1(λ1),A1(λ2),・・・A1(λN)},{A2(λ1),A2(λ2), ・・・A2(λN)},・・・ …(7) これを縦に波長ごとの系列に分割し、各波長ごとの減光
度の時系列、数8とする。Equation 7] {A 1 (λ 1), A 1 (λ 2), ··· A 1 (λ N)}, {A 2 (λ 1), A 2 (λ 2), ··· A 2 (λ N )},... (7) This is vertically divided into a series for each wavelength, and the time series of the extinction degree for each wavelength is represented by Expression 8.
【0038】[0038]
【数8】 {A1(λ1),A2(λ1),A3(λ1),・・・},{A1(λ2),A2(λ2), A3(λ2),・・・},・・・ …(8) 中央処理装置18は10msごとにサンプリングされた
各波長ごとの減光度時系列から生体11の脈拍に同期し
た成分、より具体的には周波数0.85〜1.7Hzの交
流成分の振幅を所定の時定数で平滑化した数9と、もと
の時系列を単に所定の時定数で平滑化した直流成分であ
る数10を算出し、交流成分と直流成分の比である数1
1を計算する。8A 1 (λ 1 ), A 2 (λ 1 ), A 3 (λ 1 ),..., {A 1 (λ 2 ), A 2 (λ 2 ), A 3 (λ 2 ),...,... (8) The central processing unit 18 obtains a component synchronized with the pulse of the living body 11 from the light attenuation time series for each wavelength sampled every 10 ms, more specifically, the frequency. Calculate Equation 9 in which the amplitude of the AC component of 0.85-1.7 Hz is smoothed with a predetermined time constant, and Equation 10 which is a DC component in which the original time series is simply smoothed with a predetermined time constant. Equation 1 which is the ratio of AC and DC components
Calculate 1.
【0039】[0039]
【数9】 {B1(λ1),B2(λ1),B3(λ1),・・・},{B1(λ2),B2(λ2), B3(λ2),・・・},・・・ …(9)9B 1 (λ 1 ), B 2 (λ 1 ), B 3 (λ 1 ),..., {B 1 (λ 2 ), B 2 (λ 2 ), B 3 (λ 2 ), ・ ・ ・}, ・ ・ ・… (9)
【0040】[0040]
【数10】 {C1(λ1),C2(λ1),C3(λ1),・・・},{C1(λ2),C2(λ2), C3(λ2),・・・} …(10)10C 1 (λ 1 ), C 2 (λ 1 ), C 3 (λ 1 ),..., {C 1 (λ 2 ), C 2 (λ 2 ), C 3 (λ 2 ), ...}… (10)
【0041】[0041]
【数11】 {B1(λ1)/C1(λ1),B2(λ1)/C2(λ1),B3(λ1)/C3(λ1),・・・}, {B1(λ2)/C1(λ2),B2(λ2)/C2(λ2),B3(λ2)/C3(λ2),・・・} …(11) この比の波長ごとの時系列を数12とおく。{B 1 (λ 1 ) / C 1 (λ 1 ), B 2 (λ 1 ) / C 2 (λ 1 ), B 3 (λ 1 ) / C 3 (λ 1 ),. }, {B 1 (λ 2 ) / C 1 (λ 2 ), B 2 (λ 2 ) / C 2 (λ 2 ), B 3 (λ 2 ) / C 3 (λ 2 ),. (11) The time series of this ratio for each wavelength is represented by Equation 12.
【0042】[0042]
【数12】 {D1(λ1),D2(λ1),D3(λ1),・・・},{D1(λ2),D2(λ2), D3(λ2),・・・},・・・ …(12) さらに中央処理装置は所定の1波長λM の値を基準に各
D値の系列を除算し、脈動成分に対する比スペクトル数
13を求める。ただしλM=2250nm である。12D 1 (λ 1 ), D 2 (λ 1 ), D 3 (λ 1 ),..., ΔD 1 (λ 2 ), D 2 (λ 2 ), D 3 (λ 2 ),...,... (12) Further, the central processing unit divides each series of D values based on a predetermined value of one wavelength λ M to obtain the number of ratio spectra 13 for the pulsation component. Here, λ M = 2250 nm.
【0043】[0043]
【数13】 {D1(λi)/D1(λM),D2(λi)/D1(λM),D3(λi)/D1(λM),・・・} (ここでi=1,2,・・N) …(13) この比スペクトルの値は個人差が少なく第1の実施例よ
りもさらに高精度な生体減光度測定が可能となり、しか
も本実施例ではグルコースの吸収が大きい2200−230
0nm帯を使用し、さらに脈動成分を取り出しているの
で血液中のグルコース濃度を10mg/dLの誤差で測
定することができる。13D 1 (λ i ) / D 1 (λ M ), D 2 (λ i ) / D 1 (λ M ), D 3 (λ i ) / D 1 (λ M ),. } (Where i = 1, 2,... N) (13) The value of this ratio spectrum has few individual differences, and enables a more accurate measurement of the biological extinction than the first embodiment. In the example, glucose absorption is large 2200-230
Since the 0-nm band is used and the pulsating component is further extracted, the glucose concentration in blood can be measured with an error of 10 mg / dL.
【0044】なお、本実施例ではスペクトルの測定レー
トを100Hzという人間の脈動よりはるかに高い周波
数に設定したが、被験者が安静状態に有れば脈拍は2H
z以下なので、5Hz以上のスペクトル測定レートであ
れば、同様に脈動成分の検出が可能である。またその場
合は走査する波長数を増やせるのでより高い信頼性を得
ることができる。In this embodiment, the spectrum measurement rate is set to 100 Hz, which is much higher than the frequency of human pulsation. However, if the subject is in a resting state, the pulse rate is 2H.
Since it is equal to or less than z, the pulsation component can be similarly detected at a spectrum measurement rate of 5 Hz or more. In that case, the number of wavelengths to be scanned can be increased, so that higher reliability can be obtained.
【0045】[0045]
【発明の効果】本発明によれば、生体光計測において数
10波長以上の光をほとんど同時に生体に照射し、同時
性の高い超多波長スペクトル測定を実現できる。このた
め、生体減光度の高精度測定が可能となり、その結果と
して血中グルコース濃度などの生化学成分の無侵襲計測
が可能となる。According to the present invention, it is possible to irradiate a living body with light having several tens of wavelengths or more almost at the same time in living body light measurement, thereby realizing ultra-multi-wavelength spectrum measurement with high synchronism. For this reason, a highly accurate measurement of the biological extinction degree becomes possible, and as a result, non-invasive measurement of biochemical components such as blood glucose concentration becomes possible.
【図1】本発明の第1の実施例の構成を示す概念図。FIG. 1 is a conceptual diagram showing the configuration of a first embodiment of the present invention.
【図2】本発明の第1の実施例の信号処理過程を示す説
明図。FIG. 2 is an explanatory diagram showing a signal processing process according to the first embodiment of the present invention.
【図3】本発明の第2の実施例の構成を示す概念図。FIG. 3 is a conceptual diagram showing a configuration of a second exemplary embodiment of the present invention.
【図4】本発明の第2の実施例の信号処理過程を示す
図。FIG. 4 is a diagram showing a signal processing process according to a second embodiment of the present invention.
1…光源、2…スリット、3…コリメートレンズ、4…
音響光学素子、5…超音波振動子、6…電力増幅器、7
…電圧制御型高周波発振器、8…スリット、9…カップ
リングレンズ、10−1,10−2…光ファイバ、11
…生体、12…カップリングレンズ、13…光検出器、
14…電流電圧変換器、15…コンピュータ筐体、16
…AD変換ボード、17…DA変換ボード、18…中央
処理装置、19…ランダムアクセスメモリ、20…表示
器、21…ミラー、22…ケーブル、23…ロックイン
アンプ、24…低周波発振器、25…変調器。1 ... light source, 2 ... slit, 3 ... collimating lens, 4 ...
Acousto-optic element, 5: ultrasonic transducer, 6: power amplifier, 7
... voltage controlled high frequency oscillator, 8 ... slit, 9 ... coupling lens, 10-1, 10-2 ... optical fiber, 11
... living body, 12 ... coupling lens, 13 ... photodetector,
14 ... current-voltage converter, 15 ... computer housing, 16
... AD conversion board, 17 ... DA conversion board, 18 ... Central processing unit, 19 ... Random access memory, 20 ... Display, 21 ... Mirror, 22 ... Cable, 23 ... Lock-in amplifier, 24 ... Low frequency oscillator, 25 ... Modulator.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 管 正男 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 二宮 健 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 2G045 AA13 AA16 CA25 CB03 DA31 DA51 FA03 FA11 FA29 FA32 FA34 JA01 2G047 AA04 AC13 CA01 EA00 2G059 AA06 BB13 CC18 EE01 EE12 GG02 HH01 HH06 JJ05 JJ13 JJ17 MM01 MM09 MM10 4C038 KK10 KL07 KX01 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masao Kan 1-280 Higashi Koigakubo, Kokubunji, Tokyo, Japan Inside the Central Research Laboratory, Hitachi, Ltd. (72) Inventor Takeshi Ken Ninomiya 1-280 Higashi Koigakubo, Kokubunji, Tokyo, Hitachi, Ltd. Central Research Laboratory F-term (reference) 2G045 AA13 AA16 CA25 CB03 DA31 DA51 FA03 FA11 FA29 FA32 FA34 JA01 2G047 AA04 AC13 CA01 EA00 2G059 AA06 BB13 CC18 EE01 EE12 GG02 HH01 HH06 JJ05 JJ13 KM10 MM10 MM01 MM01 MM10 MM10
Claims (7)
する光源と、前記光源に対して固定され、近赤外光に対
して透明な媒質と、前記媒質に面接触し、かつ電極を備
えた超音波トランスデューサと、前記電極を介して前記
トランスデューサに高周波信号を供給する周波数掃引可
能な発振器と、前記媒質を透過した光の波面を制限す
る、前記媒質に対して位置が固定されたスリットと、前
記スリットを透過した光を生体に照射する光学系と、前
記生体中を透過あるいは拡散した光を検出する光検出器
と前記光検出器の出力を電圧に変換する回路を備え、前
記発振器が所定の零でない周波数範囲を掃引することを
特徴とする生体光計測方法。1. A light source having an emission spectrum half width of 10 nm or more, a medium fixed to the light source and transparent to near-infrared light, A sound wave transducer, a frequency-sweepable oscillator that supplies a high-frequency signal to the transducer via the electrode, a wavefront of light transmitted through the medium, a slit whose position is fixed relative to the medium, An optical system for irradiating the living body with light transmitted through the slit, a photodetector for detecting light transmitted or diffused in the living body, and a circuit for converting the output of the photodetector to a voltage, wherein the oscillator is a predetermined type A biological light measurement method characterized by sweeping a non-zero frequency range.
する光源と、前記光源に対して固定され、近赤外光に対
して透明な媒質と、前記媒質に面接触し、かつ電極を備
えた超音波トランスデューサと、前記電極を介して前記
トランスデューサに高周波信号を供給する周波数掃引可
能な発振器と、前記媒質を透過した光の波面を制限す
る、前記媒質に対して位置が固定されたスリットと、前
記スリットを透過した光を生体に照射する光学系と、前
記生体中を透過あるいは拡散した光を検出する光検出器
と、前記光検出器の出力を検出光量に対応した電圧に変
換するインピーダンス変換回路と、前記回路の出力電圧
をサンプルホールドしてデジタル信号に変換するAD変
換回路と、前記AD変換回路の出力するデジタル信号を
用いて計算をする中央処理装置を備え、前記発振器が所
定の零でない周波数範囲を0.2 秒未満で掃引し、前記
発振器の出力信号の周波数が前記周波数掃引範囲内の所
定の複数の点にある瞬間に前記AD変換回路がAD変換
を行ってデジタル信号を出力し、前記中央処理装置がA
D変換の行われた時刻が0.2 秒の範囲内にある複数の
デジタル信号の間で演算をすることを特徴とする生体光
計測方法。2. A light source having an emission spectrum half width of 10 nm or more, a medium fixed to the light source and transparent to near-infrared light, An acoustic transducer, a frequency-sweepable oscillator that supplies a high-frequency signal to the transducer via the electrode, a wavefront of light transmitted through the medium, a slit whose position is fixed relative to the medium, An optical system that irradiates a living body with light transmitted through the slit, a photodetector that detects light transmitted or diffused in the living body, and an impedance conversion circuit that converts an output of the photodetector into a voltage corresponding to a detected light amount And an AD conversion circuit that samples and holds the output voltage of the circuit and converts the output voltage into a digital signal, and performs calculation using the digital signal output from the AD conversion circuit. A processing device, wherein the oscillator sweeps a predetermined non-zero frequency range in less than 0.2 seconds, and the AD conversion is performed at a moment when the frequency of the output signal of the oscillator is at a plurality of predetermined points in the frequency sweep range. The circuit performs A / D conversion to output a digital signal, and the central processing unit
A biological light measurement method, wherein a calculation is performed between a plurality of digital signals in which the time when the D conversion is performed is within 0.2 seconds.
する光源と、前記光源に対して固定され、近赤外光に対
して透明な媒質と、前記媒質に面接触し、かつ電極を備
えた超音波トランスデューサと、前記電極を介して前記
トランスデューサに高周波信号を供給する周波数掃引可
能な発振器と、前記媒質を透過した光の波面を制限す
る、前記媒質に対して位置が固定されたスリットと、前
記スリットを透過した光を生体に照射する光学系と、前
記生体中を透過あるいは拡散した光を検出する光検出器
と、前記光検出器の出力を検出光量に対応した電圧に変
換するインピーダンス変換回路と、前記回路の出力電圧
をサンプルホールドしてデジタル信号に変換するAD変
換回路と、前記AD変換回路の出力するデジタル信号を
用いて計算をする中央処理装置を備え、前記発振器が所
定の零でない周波数範囲を毎秒5回以上の所定の頻度で
繰り返し掃引し、前記発振器の出力信号の周波数が前記
周波数掃引範囲内の複数の所定の周波数にある瞬間に前
記AD変換回路がAD変換を行ってデジタル信号を出力
し、前記中央処理装置は前記デジタル信号が得られた時
点の生体の減光度を計算し、AD変換が行われた時点の
前記発振器の出力信号の周波数が同一である前記所定の
頻度で得られる減光度の時系列をもとに、前記中央処理
装置は前記減光度の、前記生体の脈拍に同期した交流成
分の振幅を算出することを特徴とする生体光計測方法。3. A light source having an emission spectrum half width of 10 nm or more, a medium fixed to the light source and transparent to near-infrared light, and a superconducting medium in surface contact with the medium and having an electrode. A sound wave transducer, a frequency-sweepable oscillator that supplies a high-frequency signal to the transducer via the electrode, a wavefront of light transmitted through the medium, a slit whose position is fixed relative to the medium, An optical system that irradiates a living body with light transmitted through the slit, a photodetector that detects light transmitted or diffused in the living body, and an impedance conversion circuit that converts an output of the photodetector into a voltage corresponding to a detected light amount An AD conversion circuit that samples and holds the output voltage of the circuit and converts the output voltage into a digital signal; and performing calculation using the digital signal output from the AD conversion circuit. A processing device, wherein the oscillator repeatedly sweeps a predetermined non-zero frequency range at a predetermined frequency of 5 times or more per second, and when the frequency of the output signal of the oscillator is at a plurality of predetermined frequencies within the frequency sweep range. The A / D conversion circuit performs A / D conversion to output a digital signal, and the central processing unit calculates the dimming degree of the living body at the time when the digital signal is obtained. Based on the time series of the dimming degree obtained at the predetermined frequency in which the frequency of the output signal is the same, the central processing unit calculates the amplitude of the AC component of the dimming degree synchronized with the pulse of the living body. A biological light measurement method, characterized in that:
がカルコゲナイドガラスであることを特徴とする生体光
計測方法。4. A method for measuring biological light, wherein the medium according to claim 1 is chalcogenide glass.
で得られたデジタル信号を用いた減光度の計算と、上記
減光度の各減光度の計算するもとになったデジタル信号
が得られた瞬間の生体へ照射される光の波長の関数また
は波数の関数としての微分、微分して得られた複数の値
と特定の1波長に対応する値との比の計算であることを
特徴とする生体光計測方法。5. The calculation method according to claim 2, wherein the calculation of the dimming degree using the digital signal obtained by one sweep and the calculation of each dimming degree of the dimming degree are performed. Differentiation as a function of the wavelength or the wave number of light irradiated to the living body at the moment when the signal is obtained, and calculation of the ratio between a plurality of values obtained by differentiation and a value corresponding to one specific wavelength. A biological light measurement method, characterized in that:
周波発振器の出力信号で振幅変調した後に上記超音波ト
ランスデューサに入力し、上記回路の出力電圧を前記低
周波発振器の出力に同期させてロックイン検波すること
を特徴とする生体光計測方法。6. The output of the high-frequency oscillator according to claim 1 is amplitude-modulated by the output signal of the low-frequency oscillator, and then input to the ultrasonic transducer, and the output voltage of the circuit is synchronized with the output of the low-frequency oscillator. A biological light measurement method, wherein lock-in detection is performed.
がタングステンハロゲンランプであることを特徴とする
生体光計測方法。7. A biological light measurement method according to claim 1, wherein said light source is a tungsten halogen lamp.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19835998A JP2000023947A (en) | 1998-07-14 | 1998-07-14 | Biological light measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19835998A JP2000023947A (en) | 1998-07-14 | 1998-07-14 | Biological light measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000023947A true JP2000023947A (en) | 2000-01-25 |
Family
ID=16389806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19835998A Pending JP2000023947A (en) | 1998-07-14 | 1998-07-14 | Biological light measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000023947A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003079900A1 (en) * | 2002-03-25 | 2003-10-02 | Ken-Ichi Yamakoshi | Noninvasive blood component value measuring instrument and method |
WO2005107592A1 (en) * | 2004-05-06 | 2005-11-17 | Nippon Telegraph And Telephone Corporation | Component concentration measuring device and method of controlling component concentration measuring device |
JP2007181602A (en) * | 2006-01-10 | 2007-07-19 | Norikata Taguma | Portable blood sugar level measuring instrument |
WO2013011869A1 (en) * | 2011-07-20 | 2013-01-24 | 国立大学法人東京農工大学 | Property measuring device for object to be measured and property measuring method for object to be measured |
JP2015052603A (en) * | 2014-10-09 | 2015-03-19 | セイコーエプソン株式会社 | Spectrometer |
WO2018016709A3 (en) * | 2016-07-21 | 2018-08-02 | 주식회사 인핏앤컴퍼니 | Frequency domain-based multi-wavelength biometric signal analysis apparatus and method thereof |
WO2019164044A1 (en) * | 2018-02-21 | 2019-08-29 | 주식회사 올리브헬스케어 | Signal processing device for analyzing biometric signal and biometric signal analysis device using same |
US10627349B2 (en) | 2018-02-21 | 2020-04-21 | Olive Healthcare Inc. | Signal processing device of analyzing bio-signal and bio-signal analyzing apparatus using the same |
CN112526202A (en) * | 2020-11-19 | 2021-03-19 | 哈尔滨理工大学 | Optical fiber sensing device based on ultrasonic detection voltage and implementation method |
CN112630530A (en) * | 2020-11-19 | 2021-04-09 | 哈尔滨理工大学 | Optical fiber sensing device based on ultrasonic detection frequency and implementation method |
-
1998
- 1998-07-14 JP JP19835998A patent/JP2000023947A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8275433B2 (en) | 2002-03-25 | 2012-09-25 | Yu.Sys.Corporation | Non-invasive blood constituent measuring instrument and measuring method |
WO2003079900A1 (en) * | 2002-03-25 | 2003-10-02 | Ken-Ichi Yamakoshi | Noninvasive blood component value measuring instrument and method |
US9008742B2 (en) | 2004-05-06 | 2015-04-14 | Nippon Telegraph And Telephone Corporation | Constituent concentration measuring apparatus and constituent concentration measuring apparatus controlling method |
US8332006B2 (en) | 2004-05-06 | 2012-12-11 | Nippon Telegraph And Telephone Corporation | Constituent concentration measuring apparatus and constituent concentration measuring apparatus controlling method |
WO2005107592A1 (en) * | 2004-05-06 | 2005-11-17 | Nippon Telegraph And Telephone Corporation | Component concentration measuring device and method of controlling component concentration measuring device |
US9060691B2 (en) | 2004-05-06 | 2015-06-23 | Nippon Telegraph And Telephone Corporation | Constituent concentration measuring apparatus and constituent concentration measuring apparatus controlling method |
US9198580B2 (en) | 2004-05-06 | 2015-12-01 | Nippon Telegraph And Telephone Corporation | Constituent concentration measuring apparatus and constituent concentration measuring apparatus controlling method |
JP2007181602A (en) * | 2006-01-10 | 2007-07-19 | Norikata Taguma | Portable blood sugar level measuring instrument |
US9551688B2 (en) | 2011-07-20 | 2017-01-24 | Tokyo University Of Agriculture And Technology | Property measuring device for object to be measured and property measuring method for object to be measured |
WO2013011869A1 (en) * | 2011-07-20 | 2013-01-24 | 国立大学法人東京農工大学 | Property measuring device for object to be measured and property measuring method for object to be measured |
JPWO2013011869A1 (en) * | 2011-07-20 | 2015-02-23 | 国立大学法人東京農工大学 | Characteristic measuring device for measurement object and method for measuring characteristic of measurement object |
JP2015052603A (en) * | 2014-10-09 | 2015-03-19 | セイコーエプソン株式会社 | Spectrometer |
WO2018016709A3 (en) * | 2016-07-21 | 2018-08-02 | 주식회사 인핏앤컴퍼니 | Frequency domain-based multi-wavelength biometric signal analysis apparatus and method thereof |
WO2019164044A1 (en) * | 2018-02-21 | 2019-08-29 | 주식회사 올리브헬스케어 | Signal processing device for analyzing biometric signal and biometric signal analysis device using same |
US10627349B2 (en) | 2018-02-21 | 2020-04-21 | Olive Healthcare Inc. | Signal processing device of analyzing bio-signal and bio-signal analyzing apparatus using the same |
CN112526202A (en) * | 2020-11-19 | 2021-03-19 | 哈尔滨理工大学 | Optical fiber sensing device based on ultrasonic detection voltage and implementation method |
CN112630530A (en) * | 2020-11-19 | 2021-04-09 | 哈尔滨理工大学 | Optical fiber sensing device based on ultrasonic detection frequency and implementation method |
CN112526202B (en) * | 2020-11-19 | 2021-09-07 | 哈尔滨理工大学 | Optical fiber sensing device based on ultrasonic detection voltage and implementation method |
CN112630530B (en) * | 2020-11-19 | 2021-09-07 | 哈尔滨理工大学 | Optical fiber sensing device based on ultrasonic detection frequency and implementation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3875798B2 (en) | Method of operating a bloodless measuring device for blood component concentration and bloodless measuring device | |
US5945676A (en) | Method and apparatus for multi-spectral analysis in noninvasive NIR spectroscopy | |
CA2704789C (en) | Optical sensor for determining the concentration of an analyte | |
KR100762659B1 (en) | Noninvasive blood component value measuring instrument and method | |
US5460177A (en) | Method for non-invasive measurement of concentration of analytes in blood using continuous spectrum radiation | |
US5372135A (en) | Blood constituent determination based on differential spectral analysis | |
AU716192B2 (en) | Method and apparatus for multi-spectral analysis in noninvasive infrared spectroscopy | |
US6741875B1 (en) | Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths | |
EP1214578A1 (en) | Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths | |
JPH11344442A (en) | Method for deciding medium parameter and self-reference type optical sensor | |
JP2010066280A (en) | Quantification device of glucose concentration | |
JP2003534087A (en) | Method and apparatus for detecting substances in body fluids using Raman spectroscopy | |
EP1965692A2 (en) | System for non-invasive measurement of blood glucose concentration | |
JP4472794B2 (en) | Glucose concentration determination device | |
US20080144004A1 (en) | Optical Spectrophotometer | |
JP2000023947A (en) | Biological light measuring method | |
JPH10189A (en) | Multiple wavelength simultaneous non-invasive biochemical measuring device | |
US10779755B2 (en) | Non-invasive blood sugar measurement method and device using optical reflectometry | |
JPH07132120A (en) | Nonaggressive measuring method and device of specimen concentration using discontinuous emission | |
JP3359756B2 (en) | Biological light measurement device | |
JPH07136151A (en) | Method and device for detecting concentration of blood component and device for calibrating the device | |
KR100883153B1 (en) | Instrument for noninvasively measuring blood sugar level | |
JP2003149145A (en) | Non-invasive glucose level measuring device | |
AU713502C (en) | Method and apparatus for multi-spectral analysis in noninvasive NIR spectroscopy | |
WO1996013201A1 (en) | Non-invasive measurement of analyte concentration in blood |