JPS62113782A - Heat insulator for high temperature and non-oxidizable atomosphere - Google Patents

Heat insulator for high temperature and non-oxidizable atomosphere

Info

Publication number
JPS62113782A
JPS62113782A JP25431485A JP25431485A JPS62113782A JP S62113782 A JPS62113782 A JP S62113782A JP 25431485 A JP25431485 A JP 25431485A JP 25431485 A JP25431485 A JP 25431485A JP S62113782 A JPS62113782 A JP S62113782A
Authority
JP
Japan
Prior art keywords
carbon
heat insulating
materials
insulating material
atomosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25431485A
Other languages
Japanese (ja)
Inventor
恭一 鈴木
正人 佐藤
憲一 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Carbon Co Ltd
Original Assignee
Toyo Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Carbon Co Ltd filed Critical Toyo Carbon Co Ltd
Priority to JP25431485A priority Critical patent/JPS62113782A/en
Publication of JPS62113782A publication Critical patent/JPS62113782A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は炭素系断熱材に係わり、より詳しくは、比較的
高温で非酸化性雰囲気の環境で用いられる断熱材に係わ
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a carbon-based heat insulating material, and more particularly to a heat insulating material used in a relatively high temperature, non-oxidizing atmosphere environment.

従来、各種の多孔質炭素系物質は比較的高温ではあるが
、炭素自身が燃焼もしくは変質しない非酸化性雰囲気に
おける断熱材として知られており、例えば、炭素繊維を
用いたフェルト状、或いは、織物状多孔質体を所望の厚
さに加工した成形材料、又は各種多孔質炭素、黒鉛焼成
体れている。
Conventionally, various porous carbon-based materials have been known as heat insulating materials in non-oxidizing atmospheres where the carbon itself does not burn or change, although the temperature is relatively high.For example, felt-like or woven materials using carbon fibers It is a molding material made by processing a shaped porous body into a desired thickness, or various types of porous carbon or graphite fired bodies.

このような多孔質炭素系断熱材の場合、長期間の使用で
断熱材の劣化、一部機械的衝撃などにより、繊維小片、
カーボン粉じんなどの発生が起り易く高純度セラミック
ス製品或いは、単結晶製品などの装造に致命的な不都合
Z−来たすといった問題点がある。
In the case of such porous carbon-based insulation materials, the insulation deteriorates after long-term use, and due to some mechanical shocks, fiber particles, etc.
There is a problem in that carbon dust and the like are likely to be generated, resulting in fatal inconveniences for the construction of high-purity ceramic products or single crystal products.

これに対し、一部に多孔体表面に、フェノール樹脂、そ
の他の樹脂tコーティング後、更にこれを炭化処理した
炭素系多孔質断熱材によって、問題を解決しようとの試
みがなされてはいるが、・この場合もやはり長期間使用
による劣化などで表面コーティングが欠落するなどの現
象があり十分な対策となっていない。
Attempts have been made to solve this problem by using carbon-based porous insulation materials, which are made by coating the surface of a porous body with phenol resin or other resin and then carbonizing it.・In this case as well, there are phenomena such as the surface coating being missing due to deterioration due to long-term use, so there is no sufficient countermeasure.

本発明者等はか−る従来の炭素系断熱材の難点を解決す
べく鋭意検討した結果、多孔質炭素系断熱材の少くとも
一表面に使用温度条件下で安定な金属もしくはセラミッ
クスの被覆層ヲ溶射注により形成せしめれば長期使用に
耐えて劣化に対する抵抗l力を大幅に改良せしめ得ると
共に該金属もしくはセラミックス被覆層が輻射#を反射
する結果、断熱材としての性能も向上することを見出し
本発明に到達した。
The inventors of the present invention have conducted intensive studies to resolve the drawbacks of conventional carbon-based heat insulating materials, and have found that at least one surface of the porous carbon-based heat insulating material is coated with a metal or ceramic coating that is stable under the operating temperature conditions. It has been found that if it is formed by thermal spray injection, it can withstand long-term use and greatly improve its resistance to deterioration, and as a result of the metal or ceramic coating layer reflecting radiation, its performance as a heat insulating material is also improved. We have arrived at the present invention.

本発明の目的は耐久性、断熱効果ともに優れた新規な炭
素系断熱材l提供することにあり、しかしてか振る本発
明の目的は多孔質炭素系断熱材の表面に、使用温度条件
下で安定な金属もしくはセラミックスの被覆層t、溶射
法により形成せしめることによって容易に達成される。
The purpose of the present invention is to provide a novel carbon-based heat insulating material that is excellent in both durability and heat insulation effect. This can be easily achieved by forming a stable metal or ceramic coating layer by thermal spraying.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の断熱材の基礎をなす、多孔質炭素系物質として
は、フェノール樹脂等の各種の官機高分子物質やコール
タールやピッチ等の炭素前駆体物質ン成型した後炭化処
理したもの、適当な基材上に有機物質の熱分解(いわゆ
るC1VD法)によって炭素を析出せしめたもの、更に
は炭素繊維Z主材とするフェルト状や縁物状構成体ン本
質的成分とする多孔質体等各種のものであり得る。これ
らの炭素系物質は単に炭化されたものtはじめ、少(と
も一部が黒鉛化されているものであり得ることは当然で
ある。
Porous carbon-based materials forming the basis of the heat insulating material of the present invention include various government polymer materials such as phenol resin, carbon precursor materials such as coal tar and pitch, which are molded and then carbonized. materials on which carbon is precipitated by thermal decomposition of organic substances (so-called C1VD method) on base materials, and porous materials whose essential components are felt-like or edge-like structures mainly composed of carbon fibers. It can be of various types. It goes without saying that these carbon-based materials may be simply carbonized or may be partially graphitized.

次にこれら多孔性炭素系物質の表面に溶射云により金属
もしくはセラミックスを被覆するが、溶射される金属も
しくはセラミックスは製品としての断熱材が使用される
温度会件下で安定なものが選択され、例えば酸化反応等
の化学変化で変質したり、溶解、揮散等の物理的変化ン
受けないものが好ましい。金属としては一般的にはモリ
ブデン、タングステン、タンタル等の高融点金属が最も
汎用されるが、本発明では上述の条件Z満す限りこれに
限定されず、各種の耐熱性金・属や合金が挙げられ、又
セラミックスとしては溶射が可能なら場合に応じて適宜
各種のセラミックスを選択することができる。か〜る金
属もしくはセラミックスの被覆層の厚さも場合に応じて
適宜選択されるが、通常0.3u以下。
Next, the surface of these porous carbon-based materials is coated with metal or ceramic by thermal spraying, and the metal or ceramic to be thermally sprayed is selected to be stable under the temperature conditions under which the insulation material is used as a product. For example, it is preferable that the material is not altered by chemical changes such as oxidation reactions or subjected to physical changes such as dissolution and volatilization. Generally, high-melting point metals such as molybdenum, tungsten, and tantalum are most commonly used as metals, but the present invention is not limited to these as long as the above-mentioned condition Z is satisfied, and various heat-resistant metals, metals, and alloys can be used. Various ceramics can be selected depending on the case, as long as they can be thermally sprayed. The thickness of the metal or ceramic coating layer is also appropriately selected depending on the case, but is usually 0.3 μ or less.

より好ましくはo、os−o、、yy、程度であって、
他に別の目的がない限り、表面の粉化等の物理的劣化を
防止できる範囲で可及的に薄い厚さが好演性の面で好ま
しい。
More preferably about o, os-o, yy,
Unless there is any other purpose, a thickness as thin as possible is preferable from the viewpoint of performance, as long as physical deterioration such as surface powdering can be prevented.

次に溶射法としては、特に制限されず、公知の各種の万
a−を採用できるが、例えば具体的にはアーク溶射、ガ
スフレーム溶射、プラズマ溶射、減圧プラズマ溶射等を
挙げることができる。
Next, the thermal spraying method is not particularly limited, and various known methods can be employed, and specific examples include arc thermal spraying, gas flame thermal spraying, plasma thermal spraying, and reduced pressure plasma thermal spraying.

本発明の断熱材は炭素が主材であることから真空もしく
は不活性雰囲気で支配される非酸化性雰囲気で、かつ本
来炭素系断熱材を必要とする程度の温度で使用される。
Since the heat insulating material of the present invention is mainly composed of carbon, it can be used in a non-oxidizing atmosphere dominated by a vacuum or an inert atmosphere, and at a temperature that would normally require a carbon-based heat insulating material.

それらの使用例としては各種単結晶引上げ用の炉、元フ
ァイバー紡糸炉、各種金属の熱処理炉や各穐材質の焼結
炉等の為の断熱材を挙げることができる。
Examples of their use include heat insulating materials for various single crystal pulling furnaces, original fiber spinning furnaces, heat treatment furnaces for various metals, and sintering furnaces for various sinter materials.

本発明の断熱材tより具体的に説明すると気孔ago%
、気孔径平均−θμ、見掛密度o、lIg/(Aの炭素
多孔質断熱材の機械別工表面に、モリブデンメタルパウ
ダーン用いてプラズマ溶射し、モリブデン金属層’t’
 0− / mm厚さで、全面均一に形成させた。この
ものは、プラズマ溶射を行わない断熱材がその表面をド
ライバーで軽く走らせるだけで微細片7生ずるのに対し
走査痕跡を殆んど生ぜず、表面のブリットル性は大幅に
改善されており、しかも断熱性も改善されており、これ
は輻射熱の反射によるものと推測される。
To explain more specifically the heat insulating material t of the present invention, pore ago%
, average pore diameter -θμ, apparent density o, lIg/(Molybdenum metal powder is plasma sprayed onto the mechanically processed surface of the carbon porous heat insulating material of A, and a molybdenum metal layer 't' is formed.
It was formed uniformly over the entire surface with a thickness of 0-/mm. Unlike non-plasma-sprayed insulation materials, which generate minute particles 7 just by lightly running a screwdriver over the surface, this material hardly produces scanning traces, and the brittleness of the surface has been greatly improved. Furthermore, the insulation properties have also been improved, which is presumed to be due to the reflection of radiant heat.

このようにして、本発明の炭素多孔質断熱材は、その表
面にコーテイング膜が均一に施されており、断熱材の劣
化などにより表面あるいは、内部からの繊維小片、炭素
粉等の炉内への飛散防止が可能となった。
In this way, the carbon porous heat insulating material of the present invention has a coating film uniformly applied to its surface, and as a result of deterioration of the heat insulating material, small pieces of fibers, carbon powder, etc. may fall on the surface or from inside the furnace. It has become possible to prevent the scattering of

併せて、炉内処理物などから発生する、シリコンその他
各種蒸発物等が、多孔質断熱材内部に長期間使用の間に
浸透し、断熱効果が劣化し寿命カー短期化するなどの、
問題点に対しても極めて官効な結果が得られ、長寿命化
が可能となる。
In addition, silicon and other evaporated substances generated from the materials processed in the furnace penetrate into the porous insulation material during long-term use, deteriorating the insulation effect and shortening the car lifespan.
Extremely effective results can be obtained even when problems are solved, and life can be extended.

更に、従来の無コーテイング断熱材、炭素質コーティン
グ断熱材と比較して1本発明によるコーティングを施行
した断熱材によれば、炉内熱源からの側対MY反射する
効果があり、より効率の良い断熱材となり、省エネルギ
ー化或いは、まり熱効不のよい炉の設計が可能となるの
である。
Furthermore, compared to conventional uncoated insulation materials and carbonaceous coated insulation materials, the insulation materials coated according to the present invention have the effect of side-to-side MY reflection from the heat source in the furnace, and are more efficient. It acts as a heat insulating material, making it possible to save energy or to design a furnace with good thermal efficiency.

ほか1名1 other person

Claims (1)

【特許請求の範囲】[Claims] 多孔質炭素系断熱材の表面に、使用温度条件下で安定な
金属もしくはセラミツクスの被覆層を、溶射法により形
成せしめて成る高温、非酸化性雰囲気用断熱材。
A heat insulating material for high-temperature, non-oxidizing atmospheres made by forming a coating layer of metal or ceramics, which is stable under the operating temperature conditions, on the surface of a porous carbon-based heat insulating material using a thermal spraying method.
JP25431485A 1985-11-13 1985-11-13 Heat insulator for high temperature and non-oxidizable atomosphere Pending JPS62113782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25431485A JPS62113782A (en) 1985-11-13 1985-11-13 Heat insulator for high temperature and non-oxidizable atomosphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25431485A JPS62113782A (en) 1985-11-13 1985-11-13 Heat insulator for high temperature and non-oxidizable atomosphere

Publications (1)

Publication Number Publication Date
JPS62113782A true JPS62113782A (en) 1987-05-25

Family

ID=17263274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25431485A Pending JPS62113782A (en) 1985-11-13 1985-11-13 Heat insulator for high temperature and non-oxidizable atomosphere

Country Status (1)

Country Link
JP (1) JPS62113782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139084A (en) * 1990-09-29 1992-05-13 Agency Of Ind Science & Technol Production of surface-coated carbon material
JPH05868A (en) * 1991-06-21 1993-01-08 Sumitomo Shoji Kk Porous body and aggregated structure thereform
US5695883A (en) * 1991-09-17 1997-12-09 Tocalo Co., Ltd. Carbon member having a metal spray coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637279A (en) * 1979-08-31 1981-04-10 Sumitomo Spec Metals Coating material for graphite and ceramic coating method
JPS57135771A (en) * 1981-12-14 1982-08-21 Sumitomo Spec Metals Ceramic coating method to graphite
JPS5837171A (en) * 1981-08-29 1983-03-04 Sumitomo Electric Ind Ltd Heat treated plate for powder metallurgy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637279A (en) * 1979-08-31 1981-04-10 Sumitomo Spec Metals Coating material for graphite and ceramic coating method
JPS5837171A (en) * 1981-08-29 1983-03-04 Sumitomo Electric Ind Ltd Heat treated plate for powder metallurgy
JPS57135771A (en) * 1981-12-14 1982-08-21 Sumitomo Spec Metals Ceramic coating method to graphite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139084A (en) * 1990-09-29 1992-05-13 Agency Of Ind Science & Technol Production of surface-coated carbon material
JPH05868A (en) * 1991-06-21 1993-01-08 Sumitomo Shoji Kk Porous body and aggregated structure thereform
US5695883A (en) * 1991-09-17 1997-12-09 Tocalo Co., Ltd. Carbon member having a metal spray coating

Similar Documents

Publication Publication Date Title
KR100634935B1 (en) Composite Carbonaceous Heat Insulator
JPS594825B2 (en) X-ray tube anode and its manufacturing method
JPS62113782A (en) Heat insulator for high temperature and non-oxidizable atomosphere
US2891879A (en) Black coating of high thermal emissivity and process for applying the same
JP4920135B2 (en) Electrical insulator-coated vapor-phase carbon fiber, method for producing the same, and use thereof
US4426405A (en) Method for producing improved silicon carbide resistance elements
US642414A (en) Manufacture of electrical resistances.
JP2004516629A (en) Resistor element for extreme temperatures
JPH0589946A (en) Electric heating body
US3375127A (en) Plasma arc spraying of hafnium oxide and zirconium boride mixtures
JP3966911B2 (en) In-furnace members and jigs
JPS643350B2 (en)
US1025469A (en) Tubular metallized filament.
JPH06122579A (en) Production of article coated with glassy carbon
JPS6196095A (en) Graphite electrode and its manufacture
JPS59207820A (en) Highly electrically conductive carbon based heat-treated material
JPH0345553A (en) Carbon-containing refractory
JPH0825800B2 (en) A method for controlling the densification behavior of metallic structures in ceramic materials
JPS5948955B2 (en) Iron, chromium, aluminum alloy with reticulated alumina coating and method for producing the same
JPH039945B2 (en)
JPS59138094A (en) Graphite resistance heater reinforced with carboneceous fiber
JPH02275709A (en) Heat-and corrosion-resistant inorganic material and production thereof
JP3141136B2 (en) Low carburized graphite
JP2015067495A (en) Conductive silicon carbide sintered body
JPH0717468B2 (en) Method for producing pyrolytic carbon-coated graphite material